TY - JOUR TI - The Contact Mechanics of Novikov’s Surface-Hardened Gearing during Running-in Process VL - 2018 PY - 2018 DA - 2018/09/13 DO - 10.1155/2018/9607092 UR - https://doi.org/10.1155/2018/9607092 AB - The article is devoted to the analysis of the state of the contact surfaces of the higher kinematic pair in the general case of relative motion, that is, in the presence of rolling, sliding, and twisting, which is characteristic of Novikov’s circular-screw gears. The purpose of the work is to assess the impact of friction forces, the state of contact surfaces after tool processing, and the localization of the instantaneous contact spot on the level of contact—fatigue durability of gears. Power contact in the presence of geometric slippage of the mating surfaces leads to a significant change in the initial geometry and the mechanical properties of surface layers. In the existing methods of calculations of contact strength, the effect of running-in is investigated insufficiently, which leads to an incorrect result, especially for gear with high hardness of the teeth. In this work, the conditions of contact interaction close to the real requirements are studied on the basis of experimental material, numerical solution of the contact problem, determination of the terms of the contact areas of slip, and adhesion within the instantaneous spot. The shape of the instant contact spot has asymmetry and can be approximated by an ellipse with the introduction of a correction factor. The running-in period is of a plastic nature with cold deformation and reduction of the roughness of surfaces. As a result of the run-in period, the area of actual contact (tooth height) is increased by 2 or more times. It is not desirable to spread the area of contact at the area of adhesion that initiates the formation of pitting. The presence of defective surface area on the level of contact strength does not have significant influence, because of the running-in period, but increases the risk of spalling and brittle fracture. JF - Advances in Tribology SN - 1687-5915 PB - Hindawi SP - 9607092 KW - A2 - Khonsari, Michael M. AU - Beskopylny, Alexey AU - Onishkov, Nikolay AU - Korotkin, Viktor ER -