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*e common failure forms in the uniaxial compression test of standard cylindrical rock specimens are symmetric cone failure and
splitting failure. In the past, two kinds of failure forms were explained from the plane problems of elasticity theory. However, there
was a lack of research based on space problems. In this paper, based on spatial axisymmetric elastic mechanics theory, three-
dimensional stress function is constructed for the cylindrical rock specimen under uniform axial compression by adopting the
semi-inverse method. According to the stress function, the stress components and the principal stress are deduced when
considering the end effect. *e failure form is speculated, which can well explain the two common types of damage in uniaxial
compression. *is work may enrich the basic research of rock mechanics.

1. Introduction

As we all know, uniaxial compression experiment is themost
common type of experiment to understand the mechanical
properties of certain kinds of rocks. In various international
standards, national standards, local standards, and industrial
standards, there are clear test procedures, and the experi-
mental results have become the classic textbook content.*e
two corresponding types of typical failure, i.e., split failure
and symmetric cone failure, impressed people deeply.
Traditionally, it is believed that the failure mechanism is
related to the end effect of the compression head of the
testing machine. But this explanation is not detailed and
thorough enough from the view point of mathematical
mechanics model. Some researchers tried to use the theory
of elastic mechanics to derive the stress function. However,
most of them are confined to the two-dimensional space,
and most of the three-dimensional stress functions used to
solve the rock-related problems are only based on fuzzy
theoretical reasoning [1, 2], which lacks the applicability
extension. In reference [1], the two-dimensional Airy stress
function of cylindrical rock specimens under uniform load
was given. In this paper, based on further derivation on the
theory of spatial axisymmetry [3–5], the three-dimensional

stress function and stress components of a standard cylin-
drical rock specimen under uniform axial load will be given
on the basis of reference to predecessors’ experience [6–12],
and the destruction mechanism of uniaxial compression will
be explained, which can well explain the two common types
of failure in uniaxial compression. *is work may enrich the
basis research of rock mechanics.

2. Uniaxial Compression Mechanical Model of
Cylindrical Rock Specimen

Figure 1 shows the uniaxial compression mechanical model
of a typical cylindrical specimen, with the heighth, the radius
b, and the elastic modulus and Poisson’s ratio E and μ,
respectively. *e rock mass deforms in both axial and radial
directions when the uniformly distributed load σv is applied
in the axial direction (since the volume force is much smaller
than σv, the volume force is isotropic and not considered).
Some researchers have found that the force exerted on the
surface of the specimen by the testing machine is nonuni-
form. But in practice, if the specimen meets the require-
ments of flatness and straightness, the assumption of axial
uniform pressure is approximately true. Furthermore, by
applying lubricant on the contact surface, the friction effect
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can be reduced and the uniformity of axial pressure can be
further ensured. In the process of continuous deformation,
the upper and lower surface of the rock specimen will
produce friction binding force Fs, which is similar to the case
in physics where the slider moves on a nonsmooth contact
surface. In the limit case, when all the points at the same
position on the two interfaces have relative motion, the value
of Fs follows the friction law (take unit angle):

Fsmax �
σ]fb

2

2
, (1)

where Fsmax is the maximum value of the derived friction
binding force and 30∘ is the friction coefficient of the contact
surface.

As shown in Figure 2, a space cylindrical coordinate
system is established at the center of the specimen, with the z

axis along the axial direction, the downward direction as the
positive direction, and the r axis along the radial direction.

3. Stress Function

3.1. Stress Function Form Analysis. According to the basic
theory of elastic mechanics, the stress function of space
axisymmetric problem is a function that is only related to z

and ρ, but unrelated to θ. *erefore, the stress function is
expressed as ϕ(ρ,z), and the terms can be expressed in the
form of exponential function, logarithmic function, expo-
nential function form, and so on. But according to the
definition domain and its physical meaning, the exponential
function with positive integer is selected as the term of the
stress function. Suppose the stress function has the form as

ϕ(ρ,z) �  ρm
z

n
(m, n ∈ N). (2)

*e stress function ϕ(ρ,z) must be a biharmonic function
and satisfy the compatible equation ∇4φ � 0.*e term of the
stress function is expressed as

F(ρ,z) � ρm
z

n
(m, n ∈ N), (3)

and

∇4F(ρ,z) � m(m − 1)(m − 2)(m − 3)ρ(m− 4)
z

n
+ 2m(m − 1)(m − 2)ρ(m− 4)

z
n

− m(m − 1)ρ(m− 4)
z

n
+ mr

(m− 4)
z

n
+ 2mn(m − 1)(n − 1)ρ(m− 2)

z
(n− 2)

+ 2mn(n − 1)ρ(m− 2)
z

(n− 2)
+ n(n − 1)(n − 2)(n − 3)ρm

z
(n− 4)

� m
2
(m − 2)

2ρ(m− 4)
z

n
+ 2m

2
n(n − 1)

2ρ(m− 2)
z

(n− 2)

+ n(n − 1)(n − 2)(n − 3)ρm
z

(n− 4)
.

(4)
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Figure 1: Uniaxial compression mechanics.
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Figure 2: Cylindrical coordinate system model of rock specimen.
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Formula (4) shows that terms of the same degree can be
substituted into the compatible equation to the same power,
while terms of different degrees can be substituted into the
compatible equation to different powers. *erefore, if the
stress function ϕ satisfies the compatible equation, the
combination of terms of the same degree must satisfy the
compatible equation. When m (the exponent of ρ ) is even
and F(ρ,z) of the same power is substituted into the

compatible equation, the results are linearly dependent.
When the exponent m of ρ is odd and F(ρ,z) of the same
power is substituted into the compatible equation, the results
are linearly independent and the stress function cannot be
constructed to satisfy the compatible equation. So, we know
that the exponent of ρ has to be even.

From the terms of the stress function F(ρ,z), the terms of
the stress component can be expressed as

σzF �
z

zz
(2 − μ)∇2F(ρ,z) −

z
2
F(ρ,z)

zz
2

⎡⎣ ⎤⎦,

� (2 − μ) m
2
nρ(m− 2)

z
(n− 1)

+ n(n − 1)(n − 2)ρm
z

(n− 3)
  − n(n − 1)(n − 2)ρm

z
(n− 3)

,

� (2 − μ)m
2
nρ(m− 2)

z
(n− 1)

+(1 − μ)n(n − 1)(n − 2)ρm
z

(n− 3)
,

σρF �
z

zz
μ∇2F(ρ,z) −

z
2
F(ρ,z)

zρ2
⎡⎣ ⎤⎦,

� μ m
2
nρ(m− 2)

z
(n− 1)

+ n(n − 1)(n − 2)ρm
z

(n− 3)
  − mn(n − 1)ρ(m− 2)

z
(n− 1)

,

� mn(μm − m + 1)ρ(m− 2)
z

(n− 1)
+ μn(n − 1)(n − 2)ρm

z
(n− 3)

,

σθF �
z

zz
μ∇2F(ρ,z) −

1
ρ

zF(ρ,z)

zr
 ,

� μ m
2
nρ(m− 2)

z
(n− 1)

+ n(n − 1)(n − 2)ρm
z

(− 3)
  − mnρ(m− 2)

z
(n− 1)

,

� mn(μm − 1)ρ(m− 2)
z

(n− 1)
+ μn(n − 1)(n − 2)ρm

z
(n− 3)

,

τzρF � τρzF �
z

zρ
(1 − μ)∇2F(ρ,z) −

z
2
F(ρ,z)

zz
2

⎡⎣ ⎤⎦,

� (1 − μ) m
2
(m − 2)ρ(m− 3)

z
n

+ mn(n − 1)ρ(m− 1)
z

(n− 2)
  − mn(n − 1)ρ(m− 1)

z
(n− 2)

,

� (1 − μ)m
2
(m − 2)ρ(m− 3)

z
n

− μmn(n − 1)(n − 2)ρ(m− 1)
z

(n− 2)
.

(5)

According to the z-axis symmetry of the specimen, it can be
known that σz must be z-axis symmetric, that is, σz is an even
function of z. n is odd by combining with formula (5). At this
point, there isF(ρ,z) � ρmzn(m, n ∈ N,m is even, and n is odd).
Removing the independent stress term: z, which can be set

y0 � A0z
3

+ B0r
2
z,

y1 � A1z
4

+ B1r
2
z
2

+ C1r
4

y2 � A2z
5

+ B2r
2
z
3

+ C2r
4
z,

y3 � A3z
6

+ B3r
2
z
4

+ C3r
4
z
2

+ D3r
6
,

y4 � A4z
7

+ B4r
2
z
5

+ C4r
4
z
3

+ D4r
6
z,

⋮
yk � Akz

2k+3
+ Bkr

2
z
2k+1

+ Ckr
4
z
2k− 1

+ · · ·, (k ∈ N),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

there are

ϕ(ρ,z) � y0 + y2 + y4 + y6 + · · ·yn(n ∈ N and n is even).

(7)

Substituting y0, y2, y4, . . . , yn into the compatible
equation and combining formula (4), we have

∇4y0 � 0,

∇4y2 � 120A2 + 48B2 + 64C2( z,

∇4y4 � 840A4 + 160B4 + 64C4( z
3

+ 120B4 + 120C4 + 480D4( ρ2z,

⋮

∇4yn � · · · .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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It can be known from the above that y0, y2, y4, . . . , yn is
the biharmonic function. *at is,

∇4y0 � 0,

∇4y2 � 0,

∇4y4 � 0,

∇4y6 � 0 · · · ∇4yn � 0.

(9)

Let

σz0 �
z

zz
(2 − μ)∇2y0 −

z
2
y0

zz
2 ,

σz2 �
z

zz
(2 − μ)∇2y2 −

z
2
y2

zz
2 ,

σz4 �
z

zz
(2 − μ)∇2y4 −

z
2
y4

zz
2 ,

⋮

σzn �
z

zz
(2 − μ)∇2yn −

z
2
yn

zz
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Substitutingy0, y2, y4, . . . , yn into formula (10), we can
get

σz0 � 6A0(1 − μ) + 4B0(2 − μ),

σz2 � 60A2(1 − μ) + 12B2(2 − μ) z
2

+ 6B2(1 − μ) + 16C2(2 − μ) ρ2,

σz4 � 210A4(1 − μ) + 20B4(2 − μ)  z
4

+ 60B4(1 − μ) + 48C4(2 − μ)  ρ2z2
,

+ 6C4(1 − μ) + 36D4(2 − μ)  ρ4,
⋮

σzn � · · ·.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

In Figure 1, since FS is the derived friction binding force,
the direction is outward along the radius and the z direction
of the sandwich contact surface is only subject to uniform
distribution stress σv

′ actually, and the axial stress σz can be
regarded as a function of z in the specimen, that is, σz is
independent of ρ. According to formulae (8), (9), and (11),
the conditions are right.

When k � 2,
120A2 + 48B2 + 64C2 � 0,

6B2(1 − μ) + 16C2(2 − μ) � 0,
 (12a)

when k � 4,

840A4 + 160B4 + 64C � 0,

120B4 + 120C4 + 480D4 � 0,

60B4(1 − μ) + 48C2(2 − μ) � 0,

6C4(1 − μ) + 36D4(2 − μ) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⋮
when k � · · · .

(12b)

Solution to formula (12a) is obtained as follows:

A2 �
8(3 − μ)

15(1 − μ)
C2, (13a)

B2 � −
8(2 − μ)

3(1 − μ)
C2. (13b)

Solution to formula (12b) shows that the equation
system can only be established if and only if all of A4, B4,
C4, and D4 are equal to 0. It can be seen from the analysis
that each increase of n by 2 will increase a coefficient in the
functionyn, and two equations will be added to the cor-
responding equation system and generate excessive
constraints in formulae (12a) and (12b). *e equation
system can only be established if and only if all the un-
knowns contained are 0, that is, when the conditions of
n> 2cannot be satisfied. So, the stress function can be
expressed as
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ϕ(ρ,z) � y0 + y2 � A0z
3

+ B0ρ
2
z + A2z

5
+ B2ρ

2
z
3

+ C2ρ
4
z.

(14)

*e stress components can be expressed as

σz � 6A0(1 − μ) + 4B0(2 − μ) + 60A2(1 − μ)

+ 12B2(2 − μ) z
2
,

(15a)

σρ � 6A0μ + 4B0μ − 2B0 + 60A2μ + 6B2(2μ − 1)  z
2

+ 6B2μ + 4C2(4μ − 3) ρ2,
(15b)

σφ � 6A0μ + 4B0μ − 2B0 + 60A2μ + 6B2(2μ − 1)  z
2

+ 6B2μ + 4C2(4μ − 1)  ρ2,
(15c)

σz � 6A0(1 − μ) + 4B0(2 − μ) + 60A2(1 − μ)

+ 12B2(2 − μ)z
2
.

(15d)

3.2. Boundary Conditions. For the boundary conditions of
rock mass specimens, the main boundary conditions
should be exactly satisfied firstly, and the secondary
boundary conditions should be satisfied as far as possible.
*e tension of normal stress is defined as “+,” and the
pressure is defined as “− ”*e sign for shear stress is defined
as follows: when the specimen is clockwise rotation, the
shear stress is defined as “+.” For the counterclockwise
rotation, the shear stress is defined as “− .” Next, the
boundary conditions are substituted into the parameters in
formulae (14) and (15a)–(15d).

(1) *e z-direction stress of the upper and lower end
faces is − σv

′:

σz( z�−(h/2) � − σv , (16a)

σz( z�(h/2) � − σv. (16b)

Formulae (16a) and (16b) can be obtained.

6A0(1 − μ) + 4B0(2 − μ) + 60A2(1 − μ) + 12B2(2 − μ) 

×
h
2

4
� − σv.

(17)

(2) Resultant force of shear stress is zero of lateral free
surface (unit angle):


(h/2)

− (h/2)
(τzρ)ρ�bdz � 0, natural meet.

(3) Resultant force of the shear stress of the upper and
lower boundary, respectively, is FS and − FS (taking
unit angle).
Upper boundary:


b

0
τρz 

z�−(h/2)
ρ dρ � FS. (18)

Reduction to draw:
2
3

3B2μ − 8C2(1 − μ) hb
3

� FS. (19)

Lower boundary:


b

0
τρz 

z�(h/2)
ρ dρ � − FS. (20)

*is simplifies to the same (3)–(17), (19), (21), and
(23).
Formulae (3)–((15a)–(15d)) and formulae (3)–(17),
(19), (21), and (23) can be calculated:

A2 � −
3 − μ
10hb

3FS,

B2 �
2 − μ
2hb

3FS,

C2 � −
3(1 − μ)

16hb
3 FS.

(21)

(4) *e resultant of normal stress on the free side is zero:


(h/2)

−(h/2)
σρ ρ�b

dz � 0, (22)

which reduces to

6A0μ + 4B0μ − 2B0( h + 5A2μ + B2 μ −
1
2

   h
3

+ 6B2μ + 4C2(4μ − 3)  b
2
h � 0.

(23)

(5) *e resultant moment of the free side is zero:


(h/2)

− (h/2)
(σρ)ρ�bzdz � 0, natural meet.

According to formulae (17) and (21), the following
equation can be obtained:

6A0(1 − μ) + 4B0(2 − μ) +
3h

2b
3FS � − σv. (24)

According to formulae (21) and (23), the following
equation can be obtained:
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6A0μ + 4B0μ − 2B0 −
(2 + μ)h

4b
3 FS +

3(3 + μ)

4hb
FS � 0. (25)

From formulae (24) and (25), we can get

A0 �
(2 − μ)(2 + μ)h

12b
3
(μ + 1)

FS −
(3 + μ)(2 − μ)

4hb(μ + 1)
FS +

(2μ − 1)h

4b
3
(μ + 1)

FS +
(2μ − 1)σv

′

6(μ + 1)
,

B0 �
3(3 + μ)(1 − μ)

8hb(μ + 1)
FS −

(2 + μ)(1 − μ)h

8b
3
(μ + 1)

FS −
3μh

4b
3
(μ + 1)

FS −
μσv
′

2(μ + 1)
.

(26)

*us, all undetermined coefficients are determined. *e
stress function and each stress component are determined

accordingly, as shown in formulae (27) and (28),
respectively.

ϕ(z,ρ) �
(2 − μ)(2 + μ)h

24b
3μ

FS −
(3 + μ)(2 − μ)

8hbμ
FS +

h

4b
3FS +

σv
′

6
−
1
3

+
2 − μ
3μ

  z
3

+
3(3 + μ)(1 − μ)

16hbμ
FS −

(2 + μ)(1 − μ)h

16b
3μ

FS −
3h

8b
3FS −

σv
′

4
+
1
2

−
1 − μ
2μ

  ρ2z

−
(3 − μ)FS

10hb
3 z

5
+

(2 − μ)FS

2hb
3 ρ2z3

−
3(1 − μ)FS

16hb
3 ρ4z.

(27)

σz �
6FS

hb
3z

2
−
3FSh

2b
3 − σv
′,

σρ �
3(μ + 3)FS

4hb
3 ρ2 −

3(μ + 2)FS

hb
3 z

2
+

(2 + μ)FSh

4b
3 −

3(3 + μ)FS

4hb
,

σθ �
3(3μ + 1)FS

4hb
3 ρ2 −

3(μ + 2)FS

hb
3 z

2
+

(2 + μ)FSh

4b
3 −

3(3 + μ)FS

4hb
,

τzρ � τρz � −
6FS

hb
3 ρz.

(28)

4. Uniaxial Compression Stress Distribution of
Cylindrical Rock Specimens

In order to directly reflect the results, the assignment calculation
is adopted based on experience and standard. If the standard
cylinder specimen is taken and the height-diameter ratio is
equal to2: 1, thenH � 4b, that is, the full height of the specimen
H � 100mm, the radius b � 25mm, the modulus of elasticity
E � 800MPa, uniformly distributed axial load σv � 2MPa,
Poisson’s ratioμ � 0.28, friction coefficient between specimen
and end face f � 0.21, and maximum frictional force
Ff � (σvfb2/2). All these can be substituted into the stress
component expression (28), which can be further simplified to

σz � 0.000504z
2

− 3.26,

σρ � 0.00020664ρ2 − 0.00057456z
2

+ 0.34965,

σφ � 0.00011592ρ2 − 0.00057456z
2

+ 0.34965,

τzρ � − 0.000504ρz.

(29)

Because τρφ � τφρ � τzφ � τφz � 0, σφ can be thought of
as a principal stress, and the stresses on the cross sections

orthogonal to the principal plane are independent of the
principal stress σφ. *erefore, the three-dimensional prob-
lem can be transformed into a plane problem, combined
with the calculation formula of plane principal stress:

σ1

σ3
�
σz + σρ

2
±

�������������
σz − σρ

2
 

2
+ τ2zρ



, (30)

and if specific values are substituted, Table 1 can be obtained.
*e following conclusions can be drawn from the

analysis of formulae (28) and (29):

(1) *e stress component at different positions of rock
specimen is related to the uniform load applied, the
friction coefficient between the specimen and the
applied force, and the height-diameter ratio of the
specimen. Among them, σρand σφare also related to
Poisson’s ratio of the specimen. *e greater the
applied load, the greater the stress component.

(2) *e normal stress of rock specimen has a quadratic
function relation with the height and diameter of the
specimen, and the shear stress has a linear function
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distribution with the height and diameter of the
specimen.

By comparing Table 1 and above, more accurate con-
clusions can be drawn:

(1) All normal stress components and principal stress are
distributed symmetrically around the surface ρoφ.

(2) Normal stress σz is compression stress, which is the
smallest at both ends of the specimen and the largest
in the middle of the specimen, whose value is not
related to ρ.

(3) *e existence of friction force is like a hoop applied
to the specimen. *e normal stress presents a
compression distribution at both ends from (h/4) to
(h/2) of the specimen. *e closer the same height is
to the center, the greater the absolute value of the
stress will be. Just as stress accumulates from all sides
towards the center, stress is in the tensile state from
the middle of (h/4) to (h/4), and the outward tensile
stress at the same height increases.

(4) *e absolute value of normal stress is relatively large
from (h/2) to ±(h/4) at both ends of the specimen,

while the stress at±(h/4) is small and almost negligible.
But it gets bigger in the opposite direction at h � 0.

(5) *e tangential stress is distributed in mirror image
on ρoφ plane, whose absolute value increases with
the increase of the absolute value of h andρ. It in-
dicates that the closer the specimen is to the surface,
the greater the shear stress will be. *e shear stress is
zero at z � 0 or ρ � 0. In summary, due to the ex-
istence of friction force, the stress value of the
specimen is distributed centrally at both ends, which
leads to complicated stress situation at both ends.
*e direction of stress will also change along the
direction of height and radial direction.

(6) By analyzing the maximum principal stress, it can be
found that the absolute value of maximum principal
stress increases from both ends of the rock mass to the
middle, which reaches themaximumvalue at themiddle
height of the rock mass, and is equal to σz in value.

(7) *e distribution of minimum principal stress σφis
similar to the above. It indicates that the direction of
principal stress of rock mass is consistent with the
direction of coordinate axes at h � 0. *e place of

Table 1: Stress distribution details of sample internal key points (unit of stress: MPa).

ρ
z f � 0.21, μ � 0.28, σv

′ � 2Mpa 0 (b/2) b

− (h/2)

σz − 2 − 2 − 2
σρ 1.0868 − 1.0545 0.9576

σφ/σ2 − 1.0868 − 1.0686 1.0143
τzρ 0 0.315 0.63
σ1 − 1.0868 − 0.9592 − 0.5284
σ3 − 2 − 2.0953 − 2.4276

− (h/4)

σz − 2.945 − 2.945 − 2.945
σρ − 0.0095 0.0228 0.1197

σφ/σ2 − 0.0095 0.00866 0.063
τzρ 0 0.1575 0.315
σ1 − 0.0095 0.0311 0.1517
σ3 − 2.945 − 2.9533 − 2.977

0

σz − 3.26 − 3.26 − 3.26
σρ 0.3497 0.3819 0.4788

σφ/σ2 0.3497 0.3678 0.4221
τzρ 0 0 0
σ1 0.3497 0.3819 0.4788
σ3 − 3.26 − 3.26 − 3.26

(h/4)

σz − 2.945 − 2.945 − 2.945
σρ − 0.0095 0.0228 0.1197

σφ/σ2 − 0.0095 0.00866 0.063
τzρ 0 − 0.1575 − 0.315
σ1 − 0.0095 0.0311 0.1517
σ3 − 2.945 − 2.9533 − 2.977

(h/2)

σz − 2 − 2 − 2
σρ − 1.0868 − 1.0545 − 0.9576

σφ/σ2 − 1.0868 − 1.0686 − 1.0143
τzρ 0 − 0.315 − 0.63
σ1 − 1.0868 − 0.9592 − 0.5284
σ3 − 2 − 2.0953 − 2.4276
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h � 0 and ρ � b is the place where rock mass is most
prone to failure.

According to Mohr criterion, bidirectional compressive
strength> unidirectional compressive strength> bidirec-
tional tensile strength. *erefore, considering the friction,
the specimen in the zones of ① and ② forms a tight hoop
effect, not easy to damage, while the specimen in the⑤ zone
damages first (the radius of the stress circle is the maximum,
bidirectional tensile), and the damage extends to the zones of
③ and④ and forms the conical failure pattern (namely, the
conjugate shear failure surface under Mohr–Coulomb cri-
terion), as shown in Figure 3. *is is consistent with the
common failure patterns of uniaxial compression
specimens.

FS � 0 when the friction effect at the end is not con-
sidered. Formula (28) can be further reduced to

σZ � − σv
′,

σρ � σθ � τzρ � τρz � 0.
(31)

Obviously, each point is a unidirectional stress state, and
σz is the main stress. In the transverse direction, due to the
Poisson effect, the lateral strain is generated.*e strain is the
same at the same ρ position. When the strain reaches the
maximum of elongation line strain, it will crack along the

parallel direction of the main stress. Considering the in-
evitable nonuniformity of the material, the cracks may be
multiple and finally present the splitting failure pattern. In
this way, logical and reasonable explanations are given for
the causes of the two kinds of failure modes commonly seen
in uniaxial compression experiments of rock specimens (see
Figure 4).

*e compressive strength is always obtained by σc �

(F/A) in standard rock compression experiments, pro-
vided that each point inside the specimen is in a unidi-
rectional stress state. In fact, the points in the specimen
are not in a unidirectional stress state when the friction
effect of the end is considered. Obviously, the unidirec-
tional stress state can only be approximately considered
when the specimen is prepared in full compliance with
national standards and the end face is treated with special
lubrication during loading.
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