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Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we
propose a novel diagnosis method combining multisynchrosqueezing S transform and faster dictionary learning (MSSST-FDL).
Firstly, MSSST is adopted to transform vibration signals into high-resolution time-frequency images. Then, the local binary
pattern (LBP) operator is introduced to extract the low-dimensional texture features of time-frequency images, which improves
the speed of fault recognition. Finally, nonnegative matrix factorization (NMF) with only one hyperparameter and nonnegative
linear equation are used to solve the dictionary learning and feature coding, respectively. The feature coding is input into the
classifier for training and recognition. Experiments show that our method performs well on the rolling bearing dataset of Case
Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT). Further, the
proposed method is applied to the loudspeaker pure-tone detection dataset, and the loudspeaker anomaly diagnosis is achieved.

The diagnosis results verify that our method can meet the needs of practical engineering.

1. Introduction

Rotating machinery plays an increasing role in electric
manufacturing, transportation, power, and other industries.
As the core component of rotating machinery, rolling
bearings directly affect the operation of the entire equip-
ment. However, the damage of rolling bearings is inevitable,
which may cause serious economic losses and even safety
accidents [1-3]. Thus, it is of great significance to detect
bearing faults in time and take appropriate maintenance
measures according to the diagnosis results [4, 5].
Vibration signal, which contains rich information and
can reflect the running state of rotating machinery well, has
become the most commonly used signal source in fault
diagnosis of rotating machinery. The vibration signals of
rolling bearings have obvious nonlinear and nonstationary
characteristics so that it is difficult to recognize their faults
directly. By using the appropriate time-frequency analysis

method to process the vibration signal, we can obtain the
varjation law of its spectrum with time. The idea of time-
frequency analysis is originated from the Gabor transform
[6]. Thereafter, short-time Fourier transform (STFT) [7],
continuous wavelet transform (CWT) [8], and S transform
(ST) [9] appear successively. Although these methods are
easy to implement, the limitations of Heisenberg’s uncer-
tainty principle [10, 11] prevent them from improving both
time and frequency resolutions. To obtain time-frequency
images with better energy concentration of vibration signals,
Daubechies et al. [12] proposed synchrosqueezed wavelet
transform (SSWT). In essence, it is a time-frequency analysis
method of energy rearrangement. Namely, based on CWT,
the spectrum energy is redistributed and concentrated on
the instantaneous frequency [13]. Based on this idea, Huang
et al. [14] proposed the synchrosqueezing S transform
(SSST) and Yu et al. [15] proposed the multi-
synchrosqueezing transform (MSST). SSST is an energy
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rearrangement algorithm based on ST, and ST has better
performance than STFT. MSST is a multiple energy rear-
rangement algorithm based on STFT. In other words,
multiple iterations of synchrosqueezing transform are per-
formed. The more iterations, the better the time-frequency
energy concentration. Combining the advantages of both
SSST and MSST, multisynchrosqueezing S transform
(MSSST) [16] is proposed as a new time-frequency analysis
method for rolling bearing vibration signals.

Although the time-frequency image of the vibration
signal of the rolling bearing is more intuitive than the raw
signal, the dimension of the time-frequency image is too
large to be directly inputted into the classifier for training
and recognition. Therefore, it is necessary to extract the low-
dimensional and valuable features of the time-frequency
image. Over recent years, many scholars have studied this
problem. In reference [17-19], a convolutional neural net-
work (CNN) was used to extract the features of CWT, STFT,
and HHT time-frequency images, respectively. Li et al. [20]
proposed a convolution sparse self-learning (CSSL) to ex-
tract the defective bearing morphological feature. Wang
et al. [21] designed a one-dimensional vision ConvNet
(VCN) to extract multiscale sensitive features of bearings in
complex operating environments. These deep learning-
based methods are relatively new, but they have three major
problems as follows: (1) they require a large number of
training samples which are expensive and difficult to obtain;
(2) itis challenging and time-consuming to train an excellent
CNN from scratch with only a small number of samples; (3)
plenty of hyperparameters have to be predetermined for
CNN, such as activation functions, epoch number, learning
rate, momentum, kernel sizes, and numbers of layers.

Therefore, the traditional machine learning method based
on feature engineering is still worth further study. In reference
[22], two-dimensional nonnegative matrix factorization
(2DNMEF) is developed to extract more informative features
from the ST time-frequency images for accurate fault recog-
nition. In reference [23], the features of ST time-frequency
images were first extracted by nonnegative matrix factoriza-
tion (NMF) [24, 25], and then nondominated sorting genetic
algorithms (NSGA-II) were proposed to make secondary the
selection of features. Yu et al. [26] proposed a rolling bearing
fault diagnosis method based on Hilbert-Huang transform
(HHT) and supervised sparse coding (SSC). This method
adopted SSC to obtain a sparse representation of the marginal
spectrum generated by HHT and used the support vector
machine (SVM) to achieve fault recognition. Although these
methods can obtain high recognition precision on their own
datasets, they may not be suitable for simultaneous diagnosis
of fault location and damage degree.

In this regard, Sun et al. [27] proposed a method
combining MSST and sparse feature coding based on dic-
tionary learning (SFC-DL). Li et al. [28] designed a sym-
plectic weighted sparse SMM (SWSSMM) model with the
sparsity constraint and low-rank constraint, and Li et al. [29]
developed the discriminative manifold random vector
functional link neural network (DMRVFLNN) model. The
above fault diagnosis methods cannot overcome the problem
of how to select the optimal parameters for their models.
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More importantly, the method proposed by Sun et al. would
consume many computer resources and running time be-
cause all the elements of time-frequency images are taken for
nonnegative matrix factorization with sparseness constraints
(NMEFSCs) [30] and sparse coding.

To overcome the abovementioned problems, we propose
to first extract the texture features of time-frequency images
by the local binary pattern (LBP) [31, 32] operator and then
use these texture features for dictionary learning. The LBP
algorithm with linear order time complexity and space
complexity is simple to calculate. Meanwhile, the texture
features of time-frequency images have rich information and
low dimension, which can greatly improve the performance
of dictionary learning and feature coding. In addition, we
use NMF instead of NMFSC for dictionary learning and
reduce the hyperparameter to only one, which makes the
optimal fault diagnosis model easier to be obtained. We
name these optimizations faster dictionary learning (FDL).

In summary, the main contributions of this article are as
follows:

(1) A new method for rolling bearing fault diagnosis is
proposed by combining MSSST and FDL, which is
named MSSST-FDL

(2) MSSST is adopted to obtain high-resolution time-
frequency images of vibration signals, which can
promote the accuracy of fault diagnosis

(3) To improve the speed of feature extraction from
time-frequency images, we design the FDL algorithm
by introducing LBP and NMF

(4) Experiment results on two rolling bearing datasets
and one loudspeaker dataset show that the proposed
method performs well and has the potential to be
applied to different types of equipment

The remaining of this article is mainly described as
follows. Section 2 introduces the theory of MSSST and FDL.
Section 3 presents the experimental comparisons. An ex-
tended application of the proposed method is shown in
Section 4. Finally, the conclusions are presented in Section 5.

2. The Proposed Method

In this paper, a new method based on time-frequency
analysis and improved dictionary learning is proposed for
fault diagnosis of rolling bearing. The main procedures are
described as follows:

Step 1. Raw vibration signals of rolling bearing are
collected under different working conditions, and their
states are noted.

Step 2. The raw signals are segmented and ensured that
each sample signal contains one complete period at
least.

Step 3. MSSST is performed for sample signals to obtain
the time-frequency images with high resolution.

Step 4. FDL is used to process the time-frequency
images, and we can get the effective feature coding of
each sample quickly.
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Step 5. The feature coding set is divided into the
training, validation, and testing sets. Then, the diag-
nosis model is obtained by cross-validation on the
training set and the validation set.

Step 6. Testing set is input into the diagnosis model for
fault diagnosis.

Figure 1 shows the overall framework of the proposed
method, and the following subsections provide details of
MSSST and FDL.

2.1. Multisynchrosqueezing S Transform. In practice, raw
vibration signals are always nonlinear and nonstationary. It
is necessary to process these complex signals. Fortunately,
time-frequency analysis is an effective approach to reveal the
frequency components and time-variation features of vi-
bration signals. In various time-frequency analysis methods,
MSSST combines the advantages of SSST and MSST to
generate better energy concentration and suppress the cross-
terms over the time-frequency plane.

Let the vibration signal be s (t), then the expression of its
ST is as follows:
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It can be seen from equation (1) that the window
function of ST is flexible. Its window width can change
according to the change of the frequency w. The window
width is wider in the low-frequency part and narrower in the
high-frequency part. This not only improves the short-
comings of STFT but also inherits the multiresolution
characteristics of CWT. Therefore, combining the advan-
tages of ST and the idea of iterative compression of MSST,
the MSSST can be expressed as
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where ST (t, ) is the ST of signal s (¢), MSSSTIN (¢, w) is the

MSSST after N iterations, @g(t,7)is the instantaneous fre-

quency (IF) estimate based on ST, and its expression is

defined as follows [14]:

10ST (t, w)
o

We substitute MSSSTM (¢, n) into MSSSTR! (¢, 1), and
then the MSSST!?! (¢, n) can be expressed as follows:
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The rest can be done in the same manner, and then the
MSSST™ (£, w) can be expressed as follows:

MSSST™ (¢, w) = Jm ST(t,md(w-aMN (t,n))dy  (5)

where o™ (¢, w) = @, (£, @V (£, w)).

The MSSST uses the S transform of the SSST to obtain
time-frequency coefficients with better energy concentra-
tion. At the same time, combined with the idea of multiple
iterations in the MSST, the time-frequency results can be
turther sharpened. After one iteration, MSSST will construct
a new IF estimate to reassign the blurry ST energy. Therefore,
after several iterations, the IF estimation in the MSSST will
get closer and closer to the real IF of the vibration signal.

Namely, the energy of the time-frequency distribution can
be gradually concentrated.

2.2. Faster Dictionary Learning. The dimension of the time-
frequency image generated by MSSST is 1600 x 800, which is
too high. If all the elements of the time-frequency image are
directly input into the classifier for training and recognition,
serious overfitting will occur. Therefore, we propose the FDL
algorithm to extract the effective features of time-frequency
images. The procedures of FDL are shown in Figure 2. First
of all, the texture feature vectors of MSSST time-frequency
images are extracted by the LBP operator, and each feature
vector is taken as one column of V. After that, one-tenth of
the samples are uniformly and randomly selected to
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FIGURE 2: The procedures of FDL.

compose matrix V', which is decomposed by NMF to
generate the dictionary W. At last, in combination with W,
the feature coding set H' of all samples can be solved by
NLE. More details are described in the following
subsections.

2.2.1. Local Binary Pattern Operator. As shown in Figure 3,
the original LBP operator is defined as a 3x3 square window,
and the center point of the window is taken as the threshold
value to compare it with 8 adjacent pixels. If the surrounding

pixel value is greater than the value of the center point, this
pixel is marked as 1; otherwise, it is 0. In the end, we can
obtain 256 types of binary patterns.

To further reduce the number of binary patterns and
improve the statistics, a uniform pattern [32] is designed,
which recorded the jump times of binary numbers 0 and 1 of
the LBP operator. If the number of jumps is less than or
equal to 2, it is called uniform pattern, and all except the
uniform pattern are classified into one class. As a result, the
number of patterns has been reduced from 256 to 59.
Namely, the dimension of the feature vector of the time-
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FIGURE 3: The original LBP operator.

frequency image is 59. The low-dimensional texture features
of time-frequency images extracted by LBP can speed up
dictionary learning and feature coding.

2.2.2. Feature Coding for LBP. By extracting the LBP fea-
tures of the time-frequency images, the feature size can be
reduced to 59. However, there are still some redundant
features that affect the recognition accuracy. The optimal
dimension can be further determined by feature coding so as
to achieve the best recognition.

Before feature coding for LBP, it is necessary to find its
basis dictionary. The method is NMF which is defined as
follows:

anm = anrHer’ (6)

where V..., W, and H,,, are nonnegative matrices, V is
the small-batch set of the LBP features, W is the basis dic-
tionary, and H is the feature coding set. Each column of V' is
the LBP feature of one time-frequency image, and each column
of H is corresponding to the feature coding of each LBP feature.
Then, r can control the dimension of the feature coding.
NMEF has only one hyperparameter, which can be used
for dictionary learning to obtain the optimal model more
efficiently. All the remaining samples can be represented by
different linear combinations of column vectors of the basis
dictionary. The linear combinations are called feature
coding. We can solve the feature coding by nonnegative
linear equation (NLE), which is expressed as follows:

min ||v; - Wh;”2

st hi20,

(7)

where v; represents the ith sample, K} represents the cor-
responding feature coding of v;, and hi]'- represents the jth
element in the feature coding k..

By equation (7), we can obtain the vector set
(i, hy, ... h,]in Figure 2. The set [hj, h,, ... h,] is the feature
coding set of all LBP features, which is denoted as H' and
input into the classifier for training and fault recognition.

3. Experimental Study

To verify the performance of the proposed method, the Case
Western Reserve University (CWRU) [33] and the Ma-
chinery Failure Prevention Technology (MFPT) [34] rolling
bearing vibration signal datasets are selected for experi-
ments. All experiments are carried out with Windows 10
(64bit), CPU Intel Xeon E5-2640@2.40 GHz, memory
64 GB, and MATLAB 2017b.

3.1. Description of Dataset. The CWRU test platform is
mainly composed of a motor, torque sensor, dynamometer,
and electronic control equipment. The designation of the
tested bearing is 6205-2RS JEM SKF, which is located at the
drive end. The EDM technology is adopted to set the faults at
three different positions (inner race, outer race, and ball) of
the bearing. Each fault location has three different degrees of
damage (fault diameter of 0.007, 0.014, and 0.021 inches,
respectively). Therefore, after adding the normal state, there
are 10 kinds of health conditions of rolling bearings. Vi-
bration signals under each health condition are collected at
four different motor loads (0, 1, 2, and 3hp) and speeds
(1797, 1772, 1750, and 17301r/min) with a sampling fre-
quency of 12 kHz. To retain data features as much as possible
and increase the number of samples, the 40 raw samples are
obtained under 10 health conditions and 4 working con-
ditions are further divided. As shown in Figure 4, each raw
sample is continuously divided into 150 samples, and each
sample has 800 sampling points. Finally, the total number of
samples is 6000, including 600 samples for each health
condition and 150 samples for each working condition,
which are divided into the training set, validation set, and
testing set according to the ratio of 6:2:2. To improve the
robustness of the diagnosis method and meet the needs of
practical engineering, the influence of working conditions
on fault recognition is not considered. At the same time, to
avoid contingency, 150 samples under each working con-
dition are randomly divided into the training set (90),
validation set (30), and testing set (30). The details of the
CWRU dataset are shown in Table 1.

MFPT dataset includes inner race, outer race, and
normal health conditions with a motor speed of 25 Hz. The
sampling frequencies of the inner race and outer race data
are both 97656 Hz. The inner race data are collected at 7
different motor loads (0, 50, 100, 150, 200, 250, and 300 Ibs).
The outer race data are collected at 7 different motor loads
(25, 50, 100, 150, 200, 250, and 3001lbs). The sampling
frequency of normal data is 97656 Hz, and the motor load is
2701bs. MFPT data are segmented in the same way as
CWRU. However, each segmented sample has 4000 sam-
pling points. To reduce the redundant information of each
sample and facilitate the subsequent operation, it is sampled
down every 5 points to get the final sample length of 800
sampling points. In the end, a total of 2,100 samples are
obtained, with 700 samples for each health condition. In the
case of inner and outer race faults, 100 samples are corre-
sponding to each motor load. The ratio of training set
validation set and testing set is 6:2:2. They are selected at
random in the same way as the CWRU. The details of the
MFPT dataset are shown in Table 2.



6 Shock and Vibration
800 sampling points
l i i i
: '\Hl‘ “' !l ( W‘ ‘ ‘ ’.‘) ".
: | i
1 1 1 1
FIGURE 4: Segmentation of raw sample data of CWRU.
TaBLE 1: Description of CWRU dataset.
. . . Dataset
Fault type Fault diameter (inches) Motor load (hp) Motor speed (r/min) o o ) Fault label
Training set Validation set Testing set
Normal — 0/1/2/3 1797/1772/1750/1730 360 120 120 1
0.007 0/1/2/3 1797/1772/1750/1730 360 120 120 2
Inner race 0.014 0/1/2/3 1797/1772/1750/1730 360 120 120 3
0.021 0/1/2/3 1797/1772/1750/1730 360 120 120 4
0.007 0/1/2/3 1797/1772/1750/1730 360 120 120 5
Ball 0.014 0/1/2/3 1797/1772/1750/1730 360 120 120 6
0.021 0/1/2/3 1797/1772/1750/1730 360 120 120 7
0.007 0/1/2/3 1797/1772/1750/1730 360 120 120 8
Outer race 0.014 0/1/2/3 1797/1772/1750/1730 360 120 120 9
0.021 0/1/2/3 1797/1772/1750/1730 360 120 120 10
TaBLE 2: Description of MFPT dataset.
Dataset
Fault type Motor load (hp) Motor speed (Hz) o o ) Fault label
Training set Validation set Testing set
Normal 270 25 420 140 140 1
Inner race 0/50/100/150/200/250/300 25 420 140 140
Outer race 25/50/100/150/200/250/300 25 420 140 140 3

3.2. Time-Frequency Analysis of Vibration Signals. To prove
the superiority of MSSST, it is compared with several
popular time-frequency analysis methods. Each type of
faults in two datasets provides one sample randomly for our
study. Table 3 shows the Rényi entropy (RE) [35, 36] of the
samples. The time-domain waveform of the vibration signal
of the CWRU inner race fault is shown in Figure 5(a).
Figures 5(b)-5(g), respectively, show the time-frequency
distribution of STFT, ST, Wigner-Ville transformation
(WVT) [37], SSST, MSST, and MSSST.

It can be seen from Figure 5 that the energy concen-
tration of time-frequency images by STFT and ST is poor,
and WVT has a serious cross-term. Further comparing
SSST, MSST, and MSSST, we find that MSST and MSSST
have better energy concentration, which verifies that iter-
ative compression can improve the time-frequency analysis
algorithm, and we also find that the time-frequency image of
MSSST has less redundant information than that of MSST.
Meanwhile, it can be seen from Table 3 that the RE of MSSST
is always the lowest, which further indicates that the energy
of the time-frequency distribution by MSSST is more
concentrated. Therefore, in this paper, MSSST is adopted as

the time-frequency analysis method of the rolling bearing
vibration signal.

3.3. Ablation Study

3.3.1. Hyperparameter r. From Section 2.2.2, it can be seen
that the hyperparameter r directly determines the dimension
of feature coding of the sample. In order to obtain the al-
gorithm model, it is necessary to determine the value of the
hyperparameter r. We change the value of r and combine
different time-frequency analysis methods with FDL to carry
out the experiments. To avoid contingency and particularity,
each method is performed for ten repeated runs under
different r. We determine the value of r by the average
recognition accuracy of the validation set.

Detailed results are available in Figure 6. Table 4 records
the highest average recognition accuracy and its corre-
sponding standard deviation and r. According to Figure 6,
from the overall trend, the average accuracy of MSSST is
higher than that of other time-frequency analysis methods.
From Table 4, it can be observed that the standard deviations
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TaBLE 3: Rényi entropy of different frequency analysis methods.
Method
Dataset Fault type
STET ST WVT SSST MSST MSSST
Normal 17.9889 16.9369 16.3525 12.6381 11.5885 10.6908
CWRU Inner race 17.7992 16.8018 16.9188 12.7815 12.7316 11.8420
Ball 17.1826 16.6566 16.4919 12.1864 11.2877 10.6046
Outer race 17.6826 17.1549 16.3112 12.8543 12.2866 11.4123
Normal 19.5311 18.5683 17.8579 14.8126 14.5465 12.4836
MEFPT Inner race 19.0094 18.3162 18.2588 14.6791 13.7552 11.1386
Outer race 19.9868 19.3678 19.0506 14.4431 13.6602 11.9499

of diagnostic accuracy are relatively small, which indicates
that the obtained models are relatively stable.

3.3.2. Module Combination. We carry out a series of ex-
periments to study the effect of time-frequency analysis and
feature extraction methods. The hyperparameters r applied
to the testing set are set according to Table 4. The experi-
mental results are shown in Figure 7. We have the following
three findings. (1) Under the same conditions, the recog-
nition accuracy of MSSST is always higher than that of
MSST. Investigating its reason, MSST is based on STFT and
the width of its window function is fixed. However, it is
based on ST that MSSST has a variable window function,
which improves the self-adaptability of spectrum analysis
and can extract more detailed time-frequency characteristics
in vibration signals. (2) The features extracted using
NMF + NLE have higher recognition accuracy than those
extracted directly using the LBP operator. That is because
NMEF + NLE gets the optimal feature dimension, while LBP
has a fixed value of 59. (3) When LBP is combined with
NMEF + NLE, the recognition accuracy reaches the highest,
which indicates that when NMF + NLE is directly used to
extract the features of the time-frequency image, its di-
mension is too large. Therefore, too much redundant in-
formation is also extracted, which affects the recognition
effect.

Taken together, these results suggest that whether in the
CWRU dataset or the MFPT dataset, MSSST + FDL is the
best combination.

3.3.3. Time for Feature Extraction. To verify the superiority
of the time efficiency of the feature extraction algorithm in
this paper, four different methods are designed to extract the
features of the MSSST time-frequency image, and the time
taken by them is recorded, respectively. We define T'; as the
time spent in dictionary learning and T ; as the time spent in
feature extraction of one sample.

As shown in Table 5, in CWRU and MFPT datasets, the
dictionary learning time of texture feature vectors of time-
frequency images is 0.037 and 0.012 hours, respectively. And
yet, the time of dictionary learning on time-frequency im-
ages is 16.469 hours and 3.897 hours separately, which is
very time-consuming. More importantly, in the process of
fault recognition of the signal, although the time of only
using LBP is the shortest, it can be seen from Section 3.3.2
that the recognition accuracy of this method is low. In

addition, the feature coding of a time-frequency image takes
39,525 and 37,413.6 milliseconds, respectively.

By contrast, the proposed algorithm only consumes less
than 100 milliseconds, saving more than 300 times of time,
which can better meet the real-time requirements in prac-
tical engineering applications. At the same time, the feature
coding algorithm in reference [27] is also very time-con-
suming, which further indicates that the proposed algorithm
has high timeliness.

3.4. Comparisons with Other Methods. To prove the effec-
tiveness of the proposed method, Table 6 shows the rec-
ognition accuracy of different fault diagnosis methods for
bearing faults.

Reference [27] directly adopted NMFSC + NLE to obtain
the sparse coding of MSST time-frequency images and
trained SVM to diagnose bearing faults. The parameter
sparsity was set to 0.7; the parameter rank was set to 25 and
100 in datasets CWRU and MFPT, respectively. In reference
[38, 39], Hilbert-Huang transform and convolutional neural
network (HHT + CNN) were combined to recognize the
bearing state. The former input the CWRU time-frequency
images of 32x 32 pixels into CNN, while the latter input
MEFPT time-frequency images of 32 x 32 and 96 x 96 pixels.
In reference [40], the wavelet packet energy features com-
bined with multifractal features (WPE-MFs), which are of
feature size 33, were used to train SVM.

It can be seen from the results that, compared with other
methods, our method has only one hyperparameter and can
achieve higher recognition accuracy with fewer features.

4. Extended Application

To demonstrate the practical engineering application value
of the proposed method, we try to apply the proposed
method to loudspeaker fault diagnosis.

4.1. Data Description and Analysis. The loudspeaker signal
acquisition system consists of a microphone, acquisition
card, sweep generator, and acquisition software. First, the
sweep generator touches the signal collection points of the
loudspeaker. Then, the signal acquisition software syn-
chronously collects the data of the loudspeaker sound signal.
Finally, the label of the collected sound signal is marked.
The sampling frequency of the loudspeaker sound signal
is 8 kHz. To increase the number of samples and ensure that
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FiGure 5: Time-frequency images of different frequency analysis methods: (a) raw signal; (b) STFT; (c) ST; (d) WVT; (e) SSST; (f) MSST;

(g) MSSST.
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TaBLE 4: The highest average accuracy of validation set and its corresponding standard deviation and r.

Methods
Dataset Data name
MSSST MSST SSST WVT ST STFT
Max average accuracy 99.08 98 97.16 96.66 96.41 93.83
CWRU Standard deviation 0.32 0.42 0.46 0.43 0.51 0.42
Optimal 28 35 33 40 49 38
Max average accuracy 97.61 94.04 92.61 91.66 90.24 88.33
MEFPT Standard deviation 0.36 0.44 0.42 0.48 0.53 0.50
Optimal 22 42 39 56 52 43
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FIGURE 7: The recognition accuracy of testing set under different methods (a) in the CWRU dataset; (b) in the MFPT dataset.
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TaBLE 5: Time taken by different feature extraction methods.
. . Time
Dataset Feature extraction method Feature size T, (h) T (ms)
d f ms
LBP 59 — 87.6
CWRU NMF + NLE 28 16.469 39525.0
LBP + NMF + NLE (FDL) 28 0.037 88.8
NMFSC + NLE [27] 25 8.089 19413.0
LBP 59 — 93.6
MFPT NMF + NLE 22 3.897 37413.6
LBP + NMF + NLE (FDL) 22 0.012 95.4
NMFSC + NLE [27] 100 2.247 21573.6
TaBLE 6: Comparison of the proposed method with other methods.
Dataset Method Sparsity Feature size Fault types Accuracy (%)
The proposed method — 28 10 929
SFC-DL + SVM [27] 0.7 25 10 98.03
CWRU HHT + CNN [38] 32%32 10 95
WPE-MF + SVM [40] — 33 10 88.9
The proposed method — 22 3 97.85
SEC-DL +SVM [27] 0.7 100 3 95.83
MEPT 96 X 96 3 92.9
HHT + CNN [39] - 32x 32 3 75.9
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FIGURE 8: Time-domain waveform of loudspeaker signals: (a) normal; (b) abnormal.
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TaBLE 7: Description of loudspeaker pure-tone detection dataset.

Fault type Training set Validation set Testing set Fault label
Normal 600 200 200 1
Abnormal 600 200 200
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FIGURE 9: Time-frequency images of loudspeaker signals: (a) normal; (b) abnormal.
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FIGURE 10: Average recognition accuracy of loudspeaker validation set under different .

each sample contains one complete period at least, as shown
in Figure 8, the raw sound signal is randomly segmented to
obtain the segmented samples with 8000 sampling points.
Then, the down-sampling process is performed on the
segmented samples and each sample is of 1600 sampling
points. And it can be seen from Figure 8 that the down-
sampling sample not only reduces the computational
complexity but also retains the waveform of the segmented
sample. Finally, we can obtain a total of 2000 samples, which
are divided into the training set, validation set, and testing
set at a ratio of 6:2: 2. More sample information is shown in
Table 7.

4.2. Fault Diagnosis. The time-frequency images obtained by
MSSST are shown in Figure 9. They have concentrated
energy, but the dimension is 1600x3200, and there is a lot of
irrelevant background information. Using the whole image
as a raw sample for dictionary learning will consume a lot of
computing resources and time, and redundant information
will be added to the generated dictionary. Therefore, we can
extract the optimal features of time-frequency images by
FDL.

Figure 10 shows the average recognition accuracy of the
validation set under different r values. It can be seen that the
optimal value of r is 46. At this time, the average recognition
accuracy of the validation set is 99%. This model is applied to
the testing set. The experimental results show that 2 normal
samples are misdiagnosed as the abnormal state and 1 ab-
normal sample is misdiagnosed as the normal state. Namely,
the recognition accuracy is 98.5%.

In reference [41], the second-order time-reassigned
multisynchrosqueezing transform was used to obtain the
time-frequency images of the loudspeaker sound signals,
and CNN was adopted to implement the feature extraction
and fault recognition. The accuracy was 98.25%. By com-
parison, the proposed method is not inferior to the deep
learning method.

5. Conclusions

In this paper, a new fault diagnosis method for the rolling
bearing, which is called MSSST-FDL, is proposed to boost
the speed and accuracy of recognition. Experiments show
that the MSSST has better energy concentration than other
time-frequency analysis methods; time-frequency images
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with better energy concentration can improve the quality of
fault diagnosis; the dictionary learning and feature coding of
LBP feature vectors are faster than those of the whole time-
frequency images, which can not only quickly determine the
optimal hyperparameter but also meet the real-time re-
quirement of fault diagnosis. The effectiveness of the pro-
posed method is verified in CWRU and MFPT datasets, and
the fault recognition accuracy is 99% and 97.85%, respec-
tively. Furthermore, we apply the proposed method to
loudspeaker anomaly diagnosis, and the recognition accu-
racy reaches 98.5%, which indicates that our method has the
potential to be applied to other equipment.
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