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To deal with the problem of weak prediction and performance evaluation capabilities of traditional prediction and evaluation methods, a
method of health state prediction and performance evaluation of belt conveyor based on Dynamic Bayesian Network (DBN) is proposed.
First, the belt conveyor sensor monitoring data are preprocessed to obtain the feature data set with labels. At the same time, qualitative and
quantitative analyses and interval discretization are carried out from belt conveyor fault-causing elements to construct the DBN network.
+en, the sample data are applied to the DBN network for training, and the DBN-based prediction and performance evaluation model is
established. Finally, taking the real-time monitoring data of a belt conveyor in an underground mine as an example, a DBN-based belt
conveyor health prediction and evaluation model is constructed to evaluate and predict the health of the equipment.+e results show that
the model could identify different operating conditions and failure modes and further improves the prediction accuracy.

1. Introduction

As a key transport equipment in coal production, the belt
conveyor is widely used in underground coal mine and main
transport roadway on the ground [1, 2]. +e working envi-
ronment of belt conveyor in underground mines is often
complex and hazardous, which cause belt faults such as
conveyor deviation, sliding, broken belt, spreader, and re-
ducer shaft. +e health status condition of the belt conveyor
directly affects the workload of the working face and the life
safety of the coal mine site operators [3-5].+erefore, accurate
prediction and performance evaluation of belt conveyor
health status is the necessary and prerequisite for health
management of critical equipment in coal mines [6-8].

Most techniques used for equipment health state prediction
and performance evaluation fall into twomain categories [9, 10],
which are model-based approaches [11, 12] and data-driven
approaches [13, 14]. Most model-based approaches require the
identification of accurate physical or mathematical models to

describe the process of device health state changes. Data-driven
model prediction and performance evaluation methods have
become an important approach of prediction and performance
assessment for complex equipment for its difficulty to determine
a specific health state [15–17]. +e data-based prediction ap-
proaches are mainly based on data fusion and feature extraction
of sensor history data of the system or component to obtain a
mapping relationship between data and health states [18, 19].
+e method is not combined with the a priori knowledge of the
device itself and is a more practical method for prediction and
evaluation operations based on the existing collected data and
mining the implicit correlation information in the data through
various analytical processing methods [20-22]. In general, most
of the existing studies focus on prediction and assessment under
a single health state and failuremode, ignoring a certain extent of
influence of environmental and operational conditions [23–25].
In practical engineering applications, traditional prediction and
evaluationmethods fall short inmassivemonitoring data, which
in turn affects the effectiveness of prediction [26–28].
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Based on this, a method was proposed for health state
prediction and performance evaluation of belt conveyor
based on DBN, carries out quantitative evaluation on the
health state of belt conveyor, and predicts the change in the
health state of the belt conveyor in the future time slice. First,
the historical monitoring data and patrol statistical data on
the belt conveyor sensor of the coal mine monitoring system
are collected, and the health state prediction and perfor-
mance evaluation indexes of the belt conveyor are mined.
+e indexes are discretized to reduce the influence of time
parameters on the training results. +en, it analyses the
process of DBN network learning and reasoning. Finally, the
preprocessed data are input to DBN network for training,
and a DBN model for health state prediction and perfor-
mance evaluation of belt conveyor is established. Experi-
ments show that the proposed approach could effectively
solve the shortcoming of traditional methods in data pro-
cessing, and it has strong feasibility and practicability which
could improve the equipment performance in engineering
application.

2. Data-Driven DBN Prediction and
Performance Evaluation Method

In this section, the basic principles of DBNs which include
basic assumptions, structure learning, parameter learning,
inference, and prediction are introduced. Based on this, a
DBN prediction and performance evaluation method is
proposed.

2.1. Basic Assumptions of DBN. Bayesian network (BN) is a
system model at a given time, which is used to model a
system in some states of equilibrium [28]. A Bayesian
network can be defined as

BN � (G, θ), (1)

where G is the directed acyclic graph of the joint probability
distribution over nodeZ and θ is a parameter in the network,
and the joint probability distribution of Z is as follows:

P Z1, Z2, . . . , Zn( 􏼁 � 􏽙
n
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DBN is a dynamic Bayesian network that simulate the
effects of changes in the network over time, reflecting
changes in the health of the system at different times. To
describe this specific process, some assumptions need to be
made as follows:

(1) Steady-state assumption: the conditional probability
of a network node is the same for all time slices t, and
the transfer probability of any two neighbouring
time slices is the same.

(2) +e first-order Markovian hypothesis: the current
state depends only on the state of the previous
moment, independent of the state of the previous
moment, i.e.,
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2.2. Structural Learning of DBN. Based on the above as-
sumptions, a DBN can be defined as (B0, B⟶ ), where B0
is the joint probability distribution specifying the initial state
Z[0] of the variable and B⟶ refers to the transfer
probability P(Zt|Zt− 1) (which holds for all t) on variables
Z[0]and Z[1].+e Bayesian network formula for two
neighbouring time slices is shown in the following equation:
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where Zi
t is the value of the i-th variable, moment t, and

Pa(Zi
t) is the parent of Zi

t.
+e process in the DBN is fixed and the structure is

repeated after the second time slice, and the variable
t � 2, 3, . . . , Tin the slice DBN is kept constant, so that the
system can be expressed by only two adjacent slices (i.e., the
first and second time slice) and a finite number of pa-
rameters can be used to simulate the unbounded sequence
length. +e probability distribution of the time slice se-
quences obtained by expanding the 2TBN network is shown
as follows:
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DBN is often seen as a generalization of other devel-
opments in temporal reasoning, such as the Hidden Markov
Model (HMM) and the Kalman Filter Model (KFM). +ese
models can be expressed in a compact form and are popular
because of their fast learning and rapid inference techniques.
A network example of DBN is shown in Figure 1.

In Figure 1, (a) represents the initial distribution B0, (b)
represents the conditional distributionB⟶, and (c) repre-
sents a network segment formed by the initial network and
the transfer network.

2.3. Parameter Learning for Dynamic Bayesian Networks.
Based on the above DBN structure, it is necessary to learn
the DBN network parameters, i.e., the conditional
probability table reflecting the strength of the correlation
between the network nodes from a large amount of data,
including observation probabilitiesP(Z0), P(Z1), and
P(Z2) and transfer probabilities PZt+1

0 |Zt
0, PZt+1

1 |Zt
1, and

PZt+1
2 |Zt

2. +e higher the similarity log(P(E|θ)) between
parameter θ in the conditional probability table in the
DBN and the training data set E, the more realistic the
results of parameter learning will be. In this paper, the
method of maximum release probability is chosen to solve
the conditional probability table parameter 1, and the
following maximum release probability equation is
constructed:
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where i is all the nodes in the DBN, j is all the parents of Zi, k
is the state of Zi, and nijk is the number of samples of the
state k of the i-th node Zi when its parent is the j-th
combination:

Max logP(E|θ)

S.T. gij(θ) � 􏽘

ri

k�1
θijk − 1 � 0.
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(7)

+e process of solving for the maximum probability of
likelihood from equation (7) yieldsθijk � (nijk/􏽐knijk).+e
sample data for parameter learning are preprocessed his-
torical health status monitoring data, and experiments can
be performed by some software such as GeNIe or MATLAB
toolbox to complete the DBN parameter learning process.

2.4. DBN Inference Prediction and Evaluation. DBN infer-
ential prediction and evaluation is a key step in the big data-
based prediction and performance evaluation of DBN belt
conveyor health status, and DBN inferential prediction and
evaluation is a mathematical method to obtain a posterior

distribution by updating the prior distribution of parameter
values θ. After determining the DBN structure and pa-
rameter learning, it is necessary to analyse each variable in
the network and make inferential predictions on the results
of specific variables or events. In underground mine
transportation system operation, when the belt conveyor
health state changes, the monitoring data are entered into
the DBN as evidence, and the dynamic Bayesian network
could be updated to make inference prediction and evalu-
ation. Finally, through inference calculations, the perfor-
mance evaluation results of the equipment health state at the
observation point at time t, and the prediction results of the
trend of the belt conveyor health state from time t to time
t + h can be obtained.

Assuming that the group of observable
nodesY � [y11, . . . , y1m, . . . , yT1, . . . , yTm] satisfy an inde-
pendent identically distribution and the group of unknown
network nodes are Z � [z11, . . . , z1n, . . . , zT1, . . . , zTn], the
dynamic Bayesian network inference rule for m known
network nodes when a time slice contains n unknown
network nodes is as follows:

P(Z|Y) � 􏽘
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(8)

where P(z11, . . . , z1n, . . . , zT1, . . . , zTn|y11, . . . , y1m, . . . ,

yT1, . . . , yTm) represents the conditional probability density
of the variable z11, . . . , z1n, . . . , zT1, . . . , zTn with respect to
y11, . . . , y1m, . . . , yT1, . . . , yTm, i ranges fromi ∈ [1, T], j

ranges from j ∈ [1, m], k ranges fromk ∈ [1, n], Zik is the
value of the unknown network node zik,Yijis the value of the
observable nodeyij, andPa(Yij) is the parent node of yij.

+e performance evaluation process is based on his-
torical monitoring data to evaluate the current condition
values, and the inference prediction process is based on
historical monitoring data to predict the changes in the
health status of the equipment. +e DBN performance
evaluation and inference prediction formulas are shown in
the following equations:

P Zt|y1: t−1( 􏼁 � 􏽘
zt−1

P Zt|zt−1( 􏼁P zt−1|y1: t−1( 􏼁, (9)

where y1: t−1 is the evidence value of each condition
indicator of belt conveyor health at moments 1 to t − 1 and
Zt is the probability of occurrence of belt conveyor health at
moment t. P(Zt|y1: t−1) is the probability of evaluating the
occurrence of belt conveyor health at moment t given that
the evidence value of each health indicator at moments 1 to
t − 1 is known:

P Zt|y1: t( 􏼁 � P yt|Zt( 􏼁 􏽘
zt−1

P Zt|zt−1( 􏼁P zt−1|y1: t−1( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦,

(10)

where y1: t is the evidence value for each of the health
state indicators of the belt conveyor at moment t and
P(Zt|zt−1) is the probability of inferentially predicting the
occurrence of the health state of the belt conveyor from
moment t to moment t, given that the evidence value for
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Figure 1: Example of a dynamic Bayesian network. (a) B0: P(Z0). (b) B⟶: P(Z1|Z2). (c) B0⟶ B⟶: (Z0)⟶ P(Z1|Z2)
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each of the health state indicators from 1 to moment t is
known.

2.5. Data-Driven DBN Prediction and Evaluation Methods.
With the development of Internet of things in underground
coal mine, more and more belt conveyor state data could be
obtained by different kind sensor on it. +erefore, it is more
feasible than ever before to precisely predict the health state
and evaluate the performance of belt conveyor. As shown in
Figure 2, the steps for data-driven DBN prediction and
evaluation are as follows:

Step 1. Collect belt conveyor health status system
monitoring data and preprocess to get a labelled feature
data set
Step 2. Construct the DBN Topology
Step 3. Dynamic Bayesian network parameter learning
Step 4. Identifying observational evidence, dynamic
Bayesian network evaluation, and inferential prediction

For underground mine belt conveyor health state pre-
diction and performance evaluation, the above proposed
method is mainly based on machine learning approaches.
With the data obtained from the sensor or monitoring
system, feature engineering is needed in the early stage
where raw data should be processed and the key features
should be selected to reduce the dimensionality of the
training problem. Based on the DBN model, the perfor-
mance evaluation and health state prediction could be
conducted by inference.

3. Condition Prediction and Performance
Evaluation of DBN Model

As a key equipment in coal mines, the actual performance of
the belt conveyor will decrease over time due to various
factors, leading to an increase in the probability of machine
failure. To avoid economic losses and casualties due to
sudden belt conveyor failure, it is necessary to provide
enough time for maintenance, make a reasonable assessment
of its current operating state, and make reasonable pre-
dictions of future changes in its operating state. A data-
driven DBN belt conveyor health status prediction and
performance evaluation method are proposed by combining
real-time big data of belt conveyor health monitoring system
and the advantages of deep learning. +e flowchart of the
method is shown in Figure 3, after which the specific steps
model application are as follows:

(1) DBN network model construction: first, the belt
conveyor health status historical data are processed,
and the data are discretized to obtain the belt con-
veyor health status samples. +en, an initial DBN
network model is constructed by using the experi-
ence of experts, and the training set data are pa-
rameterized to obtain a data-driven DBN belt
conveyor health status prediction and performance
evaluation model.

(2) Belt conveyor health status prediction and perfor-
mance evaluation: the values of belt conveyor health
status parameters obtained from the belt conveyor
health status monitoring system are entered into the
DBN network model as evidence, and the DBN
model is used to evaluate future belt conveyor health
status, predict future belt conveyor health status
changes, and propose safety maintenance decisions.

4. Case Study

4.1. Data Sources. +e data used in this case are all from the
actual data collected on-site by a new system of Internet of
+ings (IOT) in a coal mine in Shanxi province. From 2012,
the coal mining company carried out a national demon-
stration project of the Internet of +ings and introduced a
new system of mine Internet of +ings consisting of sensors,
cloud platforms, and software systems. +e enterprise has
achieved certain results in data analysis after the develop-
ment of two stages of the perceptual mine and the current
development of intelligent mines. +e big data provided by
the mine IOTs are highly accessible and can realize real-time
automatic collection of information, high-speed network
transmission, standardized integration, three-dimensional
visualization simulation, automatic operation, and intelli-
gent decision-making. +e real-time monitoring system of
belt conveyor operation status can obtain eight types of
typical belt conveyor health status, specifically involving belt
stacking, belt fumes, belt overload, belt longitudinal tear, belt
runaway, belt slip, belt breakage, normal system functions as
shown in Figure 4. In this paper, the health status of a belt
conveyor located in the main transport belt system of the
mine’s lean production platform is selected for the pre-
diction and performance evaluation study.

+e health status of a belt conveyor can be represented by
a series of parameters that reflect its status. +ere are two
ways to obtain health parameters, one is through the sensor
in real time, and the other is from the periodic inspection
statistics. +e real-time monitoring data obtained from the
sensors in the monitoring system include characteristic

Belt conveyor health condition monitoring 
system data

Construct dynamic bayesian network 
topologies

Preprocess sample data

Dynamic bayesian network parameter learning Add time slice

Designated evidence

DBN performance evaluation, inference 
prediction

Figure 2: Dynamic bayesian network modeling flowchart.
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Figure 3: Mode application flow chart.
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Figure 4: Belt conveyor health condition monitoring system functions.
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parameters that can accurately reflect the operating status of
the equipment and are easy to measure, specifically power,
temperature, speed, offset, smoke concentration, conveyor
belt tension, vibration, voltage, current, flow pressure, etc.
+e health parameters can be obtained from the sensors in
real time, and the health parameters have different timeliness
in predicting the health status. In this paper, only the health
parameters collected by the coal mine belt conveyor oper-
ating status real-time monitoring system over a period are
selected for analysis, and the sample data are shown in
Table 1.

+e above characteristic parameters constitute the set of
variables of the dynamic Bayesian network and are denoted
as Z � Z1, Z2, . . . , Z14􏼈 􏼉,whereZ1 ∼ Z13represents main
motor power, motor temperature, belt temperature, fuel
tank temperature, two-stage right tail runout, two-stage left
tail runout, two-stage right head runout, two-stage head
runout, smoke concentration, belt speed, belt tension, and
fan air volume, inverter voltage, andZ14 is the belt conveyor
health, respectively. Status levels, corresponding to dis-
cretization values, represent the belt conveyor health status
of very good, good, fair, poor, and very poor. Since the values
of some of the characterization parameters are continuous,
the variables are discretized as discontinuous. Based on
expert experience and the statistical eigenvalues of the
different variables, the continuous intervals are divided to
obtain the discretization results shown in Table 2, where the
corresponding discretization values are the risk level of each
variable.

Due to the lack of sample data on the health status of belt
conveyors, this paper collects the abnormal operation data
from belt maintenance personnel and compiles the sample
data containing abnormal operation data and real-time
monitoring data of the normal operation of the system. +e
sampling frequency of the system real-time monitoring data
was recorded every 10 seconds, and the recording frequency
of manual statistical data was recorded once a week. +e
17280 historical monitoring data within 48 hours were taken
according to the time series, the time step of the dynamic
Bayesian network was set to 2, and the first 17200 data and
the last 80 data were selected as the training set of the model,
respectively.

4.2. BeltHealthPredictionandPerformanceEvaluationModel
for Main Belt Conveyors

4.2.1. Determination of the DBN Structure and Parameter.
After identifying the nodes of a dynamic Bayesian network
and determining the node values, it is necessary to construct
the relationships between the nodes. In this paper, the expert
knowledge method is chosen to construct the node rela-
tionships, and the set of relationships is established se-
quentially as follows:

A � Z14⟶ Zi􏼈 􏼉, (11)

where i takes the range of i ∈ (1, 2, 3, . . . , 13). +e initial
dynamic Bayesian network through the set of relations is
shown in Figure 5.

After the initial dynamic Bayesian network structure is
determined, the DBN parameters are learned from a sample
of belt health data from the main conveyor section of the
belt. +e learning process is dynamic and the learned DBN
parameters become more and more accurate as the oper-
ating time of the belt conveyor changes.

4.2.2. DBN Prediction and Performance Evaluation. +e
evidence and posterior probability distributions in the DBN
network model are distributed according to time, and this
paper selects the test set data in the data set to verify the
contribution of the model in belt conveyor health status
prediction and performance evaluation. First, we set up the
time evidence and divide the test set of belt conveyor health
monitoring data into 40 test set groups, and the eigenvalues
at the moment t� 0 of each group are entered into the belt
health prediction model to evaluate the performance of belt
conveyor health in the first ten seconds and predict the belt
conveyor health at the moment t� 1 as evidence. +e evi-
dence data of test set 1 is shown in Table 3.

Taking the test set 1 as an example, the belt conveyor
health status data at t� 0 is input into the model as evidence
assignment, and the belt conveyor health status evaluation at
t� 0 and the belt conveyor health status prediction at t� 1
can be obtained, respectively, as shown in Figure 6. +e
probability distribution of each network node can be clearly
seen from the bar graph of each node in the figure, and each
health state has a different conditional probability table at
different network nodes. +e probability of belt conveyor
health condition at t� 0 and t� 1 changes, and the proba-
bility of belt coal stacking increases significantly, and belt
safety managers should take corresponding measures to
manage the belt coal stacking phenomenon. Comparing the
prediction and performance evaluation results of test set 1
with the actual situation, it can be found that there is in-
consistency between the prediction data in test set 1 and the
actual data, in which the prediction result of node X11
deviates greatly from the actual. +e historical data of belt
conveyor health condition and belt tension of belt conveyor
has been in a relatively safe range for the past seven days, so it
is judged that the excessive belt tension on that day is an
emergency, while other inconsistent prediction results are in
a small error range. +e model is more accurate for belt
conveyor health condition prediction and performance
evaluation, which meets the basic requirements of actual belt
conveyor health condition prediction and performance
evaluation.

Set the experimental step to 10 to get the trend of the
health state of the belt conveyor, as shown in Figure 7.

In Figure 7, “BCS”, “BS”, “LTFB”, “BD”, and “BSL”,
“BB”, “BO”, and “N” represent the eight types of belt
conveyor health, respectively. “BCS” is the belt stacker, “BS”
is the belt fume, “LTFB” is the belt slitting, “BD” for the belt
runout, “BSL” for the belt slip, “BB” for the belt breakage,
and “BO” for the belt overload. “N” is the normal condition.
+e eight belt conveyor health states have changed over time,
with the probability of a belt coal stacking condition in-
creasing significantly. At this point, the belt safety manager
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is required to deal with the failure condition in a timely
manner to prevent more serious damage.

4.3. Results and Discussion. With the development of IOT
application in underground mine, more and more data are
obtained. Meanwhile, more machine learning method could
be used to fill the gap between data and useful information.
To apply a dynamic Bayesian network-based model for

equipment health prediction and performance evaluation,
there are 2 issues need to be addressed:

(1) Compared with other prediction methods, DBN
construction can combine both expert knowledge
and machine equipment operating condition data to
reduce model construction difficulty and use prob-
ability distribution tables and graphical structure to
represent the uncertainty relationship between
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1111111111
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Figure 5: Initial dynamic bayesian network model.

Table 1: Health characteristics of coal mine belt conveyors in operating condition.

Characterization Belt stacker Belt fume Belt slitting Belt runout Belt slippage Belt break Belt overload Normal
Main motor Power (KW) 345.23 345.65 284.51 283.29 206.45 286.9 348.25 248.55
Motor temperature (°C) 35.2 34.6 36.7 34.8 82.1 86.5 36.3 34.9
Belt temperature (°C) 55.8 55.5 56.5 55.7 88.3 86.5 55.6 55.6
Fuel tank temperature (°C) 56.4 55.6 56.2 56.1 55.9 58.9 56.3 55.9
Two-stage right tail runout (cm) 7 0 −53 5 0 −3 0 0
Two-stage left tail runout (cm) −7 0 53 −5 0 3 0 0
Two-stage right head runout (cm) 0 0 −5 24 0 −63 13 0
Two-stage head runout (cm) 0 0 5 −24 0 63 −13 0
Smoke concentration（mg∙m-2） 0.26 0.52 0.13 0.14 0.13 0.16 0.19 0.14
Belt speed (m∙s-1) 2.45 3.51 2.55 3.53 3.51 0 2.62 3.51
Belt tension (kg) 82.3 82.1 86.5 87.4 77.1 89.6 92.4 80.0
Fan air volume (m∙s-1) 6.15 6.19 6.13 6.12 6.13 6.15 6.15 6.14
Inverter voltage (v) 20.5 20.1 19.6 19.5 19.4 19.6 20.5 19.4

Table 2: Variable interval discretization classification.

Variables Variable intervals Corresponding discretized values
Main motor power (KW) [0,248], [248, -] 1,2
Motor temperature (°C) [0,70], [70,75], [75,80], [80, -] 1,2,3,4
Belt temperature(°C) [0,55], [55,85], [85,90], [90, -] 1,2,3,4
Fuel tank temperature(°C) [0,85], [85,90], [90,95], [95, -] 1,2,3,4
Two-stage right tail runout (cm) 0 1,2
Two-stage left tail runout (cm) [1], [0] 1,2
Two-stage right head runout (cm) [1], [0] 1,2
Two-stage head runout (cm) [1], [0] 1,2
Smoke concentration (mg·m−2) [1], [0] 1,2
Belt speed (m·s−1) [0,3.15], [3.15,3.5], [3.5,4], [4, -] 1,2,3,4
Belt tension (kg) [1], [0] 1,2
Fan air volume (m·s−1) [0.25,6], [6,8,8,10,10,15] 1,2,3,4
Inverter voltage (v) [0,20], [20,25], [25, -] 1,2,3
Health status levels [0,0.2], [0.2,0.4], [0.4,0.6] [0.6,0.8], [0.8,1] 1,2,3,4,5
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Figure 7: Trend of belt conveyor health status.

Table 3: Test set 1 node evidence data table.

Characterization
parameters

t� 0 moment
eigenvalues

t� 0 moment corresponds to the
value of the discretization

t� 1 moment
eigenvalue

t� 0 moment corresponds to the
value of the discretization

Main motor Power (kW) 283.29 2 345.23 2
Motor temperature (°C) 34.8 1 35.2 1
Belt temperature (°C) 55.7 2 55.8 2
Fuel tank temperature
(°C) 56.1 1 56.4 1

Two-stage right tail
runout (cm) 0 2 0 2

Two-stage left tail runout
(cm) 0 2 0 2

Two-stage right head
runout (cm) 1 1 0 2

Two-stage head runout
(cm) 0 2 0 2

Smoke concentration
(mg∙m.s−1)) 0 2 0 2

Belt speed (m∙s−1) 3.53 2 2.46 2
Belt tension (kg) 87.5 2 104.2 2
Fan air volume (m∙s−1) 6.12 2 6.16 2
Inverter voltage (v) 19.6 1 20.6 1

Belt slipping 20%

Belt broken 21%

Belt overload 5%

Normal 55%

Health status of belt
conveyor

Fan air volume

Main motor power

Nose right secondary deviation

Motor temperature

Belt temperature Tank temperature

Tail right secondary deviation

Y 91%

N 9%

Belt speed

Tail left secondary deviation

Y 4%
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emergency 0%
Emergency 0%
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Normal 100%

Special
emergency 9%
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Normal 74%
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Emergency 0%

Warning 0%

Normal 99%

Y 8%

N 92%
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Emergency 0%
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Normal 100%

Belt coal stacking 20%

Belt smoke 21%

Longitudinal tearing of
belt 5%
Belt deviation 55%

Special
emergency 4%
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Warning 5%

Normal 80%

N 4%

Y 8%

N 92%
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Y 91%

N 9%

Y 91%

N 9%
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Figure 6: DBN prediction and performance evaluation results of belt conveyor.
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variables in a temporal context, which is basically in
line with the need of mining uncertainty relationship
between equipment health condition and charac-
teristic parameters. At the same time, the prediction
method can update the evidence using real-time
updated data from machine equipment, thus re-
ducing errors in prediction and performance
evaluation.

(2) Among the 40 test sets, some of them have more than
5 deviations from the prediction, and the prediction
effect is not so ideal, while the better-performing test
sets have more conformity between the predicted
and actual conditions. Analysing these test sets with
unsatisfactory prediction results, the following
possibilities can be suggested: ① +e possibility of
contingency: the possibility of contingency is men-
tioned in the analysis of the Z11 node in test set 1.
+is refers to a situation that has been stable for the
current time, but the current state is less likely to
occur. A contingency does not mean a situation that
should not happen but rather a situation that hap-
pens with a small probability. +is is a possibility of
error because it is a common occurrence in real
problems. ② Changes in influencing factors: since
the data used in this paper are for a 48-hour period,
the time span of the data is small, and during this
period, there may be factors related to the im-
provement of belt conveyor maintenance technol-
ogy, etc., which may have some impact on the health
status. For example, if there is a defect in the main
motor, the indicator is at a high safety level for the
first 5 hours, but after the 5th hour, up to the 48th
hour, the level of risk is often high, but in general, it
has been significantly reduced and the trend of the
risk level is stable. +erefore, this is a possible sce-
nario for error generation.

5. Conclusions

+e fault of belt conveyor in underground mine is analyzed
and fault feature are selected from the monitoring Indica-
tors. Based on data preprocessing, a dynamic Bayesian
network is constructed after which the parameter is obtained
by learning algorithm. It is proved that the proposed method
is effective to assess and predicted the health performance of
the conveyor belt. +e main conclusions are as follows:

(1) +e prediction and performance evaluation method
proposed in this paper is based on a real-time data-
driven dynamic Bayesian network model, and the
accuracy of the results is 92% and 80% compared
with the actual situation. +e model could predict
and evaluate the health status of belt conveyors and
improve the accuracy of prediction and performance
evaluation.

(2) Based on the analysis of the results, it is recom-
mended that the data volume of the belt conveyor
performance monitoring system should be increased
to improve the prediction and warning efficiency of

the belt conveyor from the source and avoid acci-
dents caused by unstable belt health status.

(3) +e belt conveyor health state prediction and per-
formance evaluation are meaningful to promote the
solution of coal mine machinery reliability problems
and thus improve the reliability of the coal mine
machinery system and ensure the normal imple-
mentation of coal mine safety management. In actual
production, the mine machinery system is mostly a
linked multidevice joint production system. +ere-
fore, the method can be applied to the prediction of
equipment health status and performance evaluation
of multiple machines.
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