Hindawi

Shock and Vibration

Volume 2021, Article ID 6675078, 11 pages
https://doi.org/10.1155/2021/6675078

Research Article

Hindawi

A New Support Vector Regression Model for Equipment Health
Diagnosis with Small Sample Data Missing and Its Application

Qinming Liu ! Wenyi Liu,’ Jiajian Mei,’ Guojin Si,> Tangbin Xia,? and Jiarui Quan1

'Department of Industrial Engineering, Business School, University of Shanghai for Science and Technology, 516 Jungong Road,

Shanghai 200093, China

*State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University,

SJTU-Fraunhofer Center, Shanghai 200240, China

Correspondence should be addressed to Qinming Liu; Igm0531@163.com

Received 4 December 2020; Revised 7 January 2021; Accepted 8 February 2021; Published 25 February 2021

Academic Editor: Gerardo Silva-Navarro

Copyright © 2021 Qinming Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Actually, it is difficult to obtain a large number of sample data due to equipment failure, and small sample data may also be
missing. This paper proposes a novel small sample data missing filling method based on support vector regression (SVR) and
genetic algorithm (GA) to improve equipment health diagnosis effect. First, the genetic algorithm is used to optimize support
vector regression, and a new method GA-SVR can be proposed. The GA-SVR model is trained by using other data of the variable
to which the missing data belongs, and the single-variable prediction method can be obtained. The correlation analysis is used to
reconstruct the training set, and the GA-SVR is trained by using the data of the variables related to the missing data to obtain the
multivariate prediction method. Then, the dynamic weight is presented to combine the single-variable prediction method with the
multiple-variable prediction method based on certain principles, and the missing data are filled with the combined prediction
methods. The filled data are used as input of GA-SVM to diagnose equipment failure. Finally, a case study is given to verify the

applicability and effectiveness of the proposed method.

1. Introduction

For equipment health diagnosis, complete monitoring data
is the premise and foundation for an accurate diagnosis.
However, in the actual engineering application, many
monitoring sample data are incomplete, including small
sample, unbalanced sample, and sample data missing. In the
collection of sample data, equipment may not be able to
operate normally due to fault, or it can be affected by the
environment, and the effective monitoring data collected is
less, resulting in less failure sample data. The sample data
may also be missing due to abnormal data transmission,
sensor repair and replacement, or human factors. This paper
importantly considers the condition of small sample data
missing.

Recently, with the rapid development of technology,
equipment health diagnosis has been widely concerned by a
large number of experts and scholars. The intelligent

diagnosis methods applied to equipment health diagnosis
mainly include expert system (ES), neural networks (NNs),
and support vector machine (SVM).

For the expert system, Husain [1] expanded the fault
diagnosis of the power transformer, proposed a fuzzy logic
expert system for early fault diagnosis of the transformer,
and improved the shortcomings of traditional transformer
fault diagnosis methods. Berredjem and Benidir [2] pro-
posed a fuzzy expert system based on an improved range
overlap method and similarity division method to solve the
problem of high noise in bearing fault data. The system was
used to realize accurate bearing fault diagnosis, and the
feasibility of the model was verified by an example analysis.
Cheriet et al. [3] proposed an expert system based on fuzzy
logic, which used stator current signal pair for fault diag-
nosis, and verified the feasibility of the expert system for
fault diagnosis of doubly fed wind turbines through simu-
lation experiments. Xu et al. [4] carried out a series of
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researches on the fault diagnosis of marine diesel engines,
proposed a diagnosis expert system based on belief rules, and
applied the proposed method to the abnormal wear de-
tection of marine diesel engines, indicating that the method
had good accuracy and stability. Equipment health diagnosis
method based on the expert system can acquire knowledge
from diagnosis examples, but this method does not have the
ability to automatically acquire new knowledge, and the fault
tolerance is relatively poor. Thus, the fault diagnosis method
based on the expert system has great limitations in practical
application.

For neural networks, Xing et al. [5] constructed an
automatic fault diagnosis method for reciprocating com-
pressors based on information entropy and radial basis
function neural networks. The test results showed that the
fault diagnosis method can effectively improve the accuracy
of automatic fault diagnosis and the practicability of the
condition monitoring system. Yang et al. [6] analyzed the
fault diagnosis of rotating machinery, proposed an intelli-
gent diagnosis method based on long-term and short-term
memory recurrent neural network, and detected and clas-
sified the fault with the help of the correlation between time
and space. Gunerkar et al. [7] established a rolling bearing
fault diagnosis model based on an artificial neural network
(ANN) and applied wavelet transform to preprocess the
original signal to extract fault features. ANN and the
k-nearest neighbor were used for fault classification of
rolling bearing, and the validity of the model was verified by
test. In order to solve the problem of end-to-end fault di-
agnosis of rotating machinery, Wu et al. [8] constructed a
one-dimensional CNN model which can directly learn
features from the original signal, applied it to the fault di-
agnosis of the fixed gearbox and planetary gearbox, and
showed that the model had high diagnostic accuracy. Han
et al. [9] proposed a method for fault diagnosis of the
planetary gearbox by using an expanded neural network,
which expanded the receiving domain by two times, so as to
enhance the learning ability of fault features and improve the
diagnosis accuracy. The fault diagnosis method based on an
artificial neural network often needs a large number of fault
samples to train the neural network, but it is difficult to
obtain enough fault data in practical engineering applica-
tions. In addition, the neural network has the disadvantages
of slow convergence, overfitting, and ease to fall into the
local optimal value, which will have a negative impact on the
diagnostic accuracy of the equipment.

For the support vector machine, Huang and Fei et al.
[10, 11] used the SVM model for equipment fault diagnosis
and verified that the model has high accuracy and good
generalization ability. Yang et al. [12] established an SVM
fault classification model using an ant colony algorithm and
verified the effectiveness of the model. Zhang et al. [13]
combined SVM with an improved imperialist competitive
algorithm and applied it to fault diagnosis of the oil-im-
mersed transformer. The results showed that the method was
feasible and effective. Yan and Jia [14] proposed a fault
recognition algorithm based on optimized multidomain
feature SVM. The feature vectors of fault samples were
extracted from the time domain, frequency domain, and
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time-frequency domain. And Laplace fractional algorithm
was introduced to filter fault features. Zhong et al. [15]
established a diagnosis model based on convolutional neural
network transmission learning and SVM and verified the
effectiveness of the model through an example. For the
accuracy of transformer fault diagnosis, Huang et al. [16]
proposed a diagnosis method based on an improved gray
wolf algorithm and SVM. The differential evolution
mechanism was introduced into the gray wolf optimization
algorithm to improve its performance, and then the SVM
optimized by the improved gray wolf algorithm was used for
fault diagnosis of the transformer.

Equipment fault diagnosis under the condition of in-
complete data also has certain research and development.
Zhang and Dong [17] proposed an online nonimputation
reasoning method based on mixed Gaussian output for fault
detection and identification and proved that the method can
accurately identify the fault. Mao et al. [18] studied the
bearing fault diagnosis with unbalanced data and con-
structed an online fault prediction method based on an
extreme learning machine. The simulation experiment
showed that the method can obtain high fault diagnosis
accuracy. Liu et al. [19] proposed a Bayesian network pa-
rameter learning method based on BPNN and maximum
likelihood estimation to solve the problem of solar-assisted
heat pump fault diagnosis under the condition of lack of
small sample data and lack of expert knowledge. BP neural
network was used to predict and fill in the missing sample
data, and the effectiveness of the method was verified by
simulation. Chen et al. [20] constructed a fault diagnosis
model of missing data based on transfer learning for the fault
diagnosis problem with too small complete sample size, an
appropriate migration learning mechanism was established
to improve the accuracy of fault diagnosis, and the effec-
tiveness of this method was verified by data. Zhao et al. [21]
constructed a rolling bearing fault diagnosis model based on
normalized CNN under unbalanced data and eliminated the
difference of feature distribution by batch normalization.
The experimental results showed that the model has a good
diagnosis effect and robustness for rolling bearing fault
diagnosis under unbalanced data. Qian and Li [22] estab-
lished a kind of unbalance robust network for bearing fault
diagnosis, which was used to solve the class imbalance
problem in the feature extraction stage and classification
stage, and the method was verified by simulation analysis.
Zhang et al. [23] proposed to use the deep learning method
to solve the problem of fault diagnosis when the data was
unbalanced and established a deep generated countermea-
sure network to generate false samples to balance the sample
data. Simulation experiments showed that the proposed
method has a better effect on fault diagnosis under unbal-
anced data.

Collecting sample data in the field of fault diagnosis, a
large number of fault sample data cannot be obtained be-
cause equipment may not operate normally due to the ex-
istence of faults. Presently, most of the research on
equipment fault diagnosis is based on complete data set, the
research on equipment fault diagnosis under incomplete
data is less, and there are some problems such as complex
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diagnosis process, long diagnosis time, and unsatisfactory
accuracy.

Small sample data missing can not only increase the
difficulty of data analysis but also greatly affect the accuracy
of the equipment failure diagnosis. For most of equipment
failure diagnosis under data missing, it needs a large number
of failure sample data to obtain more accurate diagnosis
results. Actually, due to equipment aging or human error, a
large number of sample data cannot be collected, and there is
sample data missing. Thus, the objective of this paper is to
propose a novel small sample data missing filling method
based on GA-SVR to improve the equipment failure diag-
nosis effect.

For equipment fault diagnosis, ANN needs a large number
of failure samples to train the neural network, but it is difficult
to obtain enough failure data in practical application. Addi-
tionally, the neural network has the disadvantages of slow
convergence, overfitting, and ease to fall into the local optimal
value. These will have an adverse impact on the diagnostic
accuracy of equipment. Actually, equipment may not operate
normally due to failure. And it is unable to obtain a large
number of failure sample data. SVR needs less training samples
and has high model accuracy. Thus, it is suitable for equipment
fault diagnosis in the case of small samples. The advantages of
GA lie in its fast optimization speed, good effect, and strong
global search ability, and it is not easy to fall into the local
optimal solution. Thus, it is used to optimize the key pa-
rameters of SVR. In this paper, first, the GA-SVR model is
trained by using other data of the variable to which the missing
data belongs, and the single-variable prediction method can be
obtained. The correlation analysis is used to reconstruct the
training set, and the GA-SVR is trained by using the data of the
variables related to the missing data to obtain the multivariate
prediction method. Then, the dynamic weight is presented to
combine the single-variable prediction method with the
multiple-variable prediction method based on certain princi-
ples, and the missing data are filled with the combined pre-
diction methods. The filled data are used as input of GA-SVM
to diagnose equipment failure. Finally, a case study is given to
verify the applicability and effectiveness of the proposed
method.

This paper aims to develop a new method for equipment
health diagnosis. The paper is organized as follows. In
section 2, the basic theories of SVR and GA are introduced.
Section 3 develops a novel GA-SVR. In Section 4, a case
study for equipment health diagnosis with small sample data
missing is analyzed and discussed. Finally, conclusions are
drawn in Section 5.

2. Theoretical Background

2.1. Support Vector Regression. For the support vector re-
gression (SVR), it is to use the given sample data to fit a
continuous function which can reflect the relationship be-
tween input and output. In the case that the sample is linear
and inseparable, SVR uses a nonlinear transformation to
map the data set to a high-dimensional space and carries out
regression fitting in this space to establish the continuous
function with the minimum loss function.

The key parameters of SVR include insensitive loss
function ¢, radial basis function parameter o, and penalty
factor C. € represents the insensitive region width and plays a
decisive role in the number of support vectors and the
generalization ability of the model. o determines the com-
plexity of sample mapping space. The larger 0 means that it is
difficult to obtain high regression accuracy. The smaller ¢
means that the regression accuracy is high and the gener-
alization ability is poor. C represents the penalty degree for
samples with an error greater than e. The larger C indicates
that the penalty for samples is large. Although the training
accuracy can be improved, the generalization ability of the
model is poor. The smaller C shows that the penalty for
samples is very small, and it will cause a large training error.
These three key parameters determine the performance of
SVR; thus, it is necessary to optimize these parameters to
improve the prediction effect of SVR.

2.2. Genetic Algorithm. Genetic algorithm (GA) is a kind of
heuristic optimization technology. GA searches from the
initial population generated randomly, and the individuals
in the population evolve through selection, crossover, and
mutation based on the fitness function until the iteration
termination condition is met, and the optimal solution is
output.

The advantages of GA include fast optimization speed
and strong global searchability, and it is not easy to fall into
the local optimal solution. It is widely used in various op-
timization problems such as parameter optimization and
path optimization.

The basic procedure of GA is as follows:

Step 1. The chromosome needs to be coded to deter-
mine the initial population

Step 2. The fitness function is described to evaluate the
fitness value of individuals

Step 3. The new species group is generated by selection,
crossover, and mutation

Step 4. The individuals satisfied the termination iter-
ation condition that can be retained

Step 5. The decoding outputs the global optimal
solution

In this paper, for the problem of equipment health di-
agnosis, SVR is used to predict and fill the missing data. But
the values of kernel function parameter o, penalty factor C,
and insensitive loss function ¢ in SVR are particularly im-
portant. Thus, the set of key parameters (C, o, €) of SVR can
be regarded as a population, and the key parameters of SVR
can be optimized by GA to improve the prediction per-
formance of SVR.

3. Equipment Health Diagnosis Based on GA-
SVR

3.1. Support Vector Regression Optimized by Genetic
Algorithm. SVR is obtained by introducing insensitive loss
function into SVM. It is usually used to solve regression



fitting problems and seek a regression function representing
the relationship between input and output.

For the given data set {x;, y;}, i=1,2,...,N, where
x; € R"isthe input sample, and y; € Ris the output expected
value. Assume that SVR maps samples to a high-dimen-
sional space by nonlinear transformation ¢ ( * ) to establish
the regression function, and it is as follows:

fx)=w-¢(x)+b, (1)

where w and b are regression function coefficients. And
insensitive loss function ¢ is introduced and defined as

[ly-f@l-& ly-f(o)l=e
L.(f(x),y) = { 0, other )

Thus, the objective function can be defined as
min (1/2)|w|?, and the constraints are

{yi—w-xi—bgs,

i=1,...,N. (3)
w-x;+b-y,;<¢

N
max

ST {
i=1

where K (x;,x;) = ¢(x;)¢(x;) is the kernel function. By
solving equation (5), the regression fitting function can be
obtained as follows:

=

Il
—

i=1

M=

N

F) =) (o —a])K(x;x;) +b. (6)

i=1

For the selection of the SVR kernel function, the RBF
kernel function is used in this paper, and its parameter o > 0
is the kernel function width factor. It has an important
influence on the regression prediction effect of SVR.

The small sample data missing has a great influence on
the equipment diagnosis results; thus, this paper uses SVR to
execute regression fitting for the missing data. However, the
key parameters C, o, and ¢ have a great influence on the
regression prediction accuracy of SVR. GA is used to op-
timize C, 0, and ¢ to improve the prediction performance of
SVR for missing data.

The optimization process of C, g, and ¢ by GA can be
shown in Figure 1, and the specific operation steps are as
follows:

Step 1. Parameter initialization: initialize GA param-
eters and C, o, and & any group (C, o, €) represents an
individual in GA.

Step 2. Fitness value calculation: in order to evaluate the
advantages and disadvantages of GA in selecting SVR
parameters, the K-fold cross-validation method is used
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The relaxation factors &; and & are introduced under the
condition of allowing the fitting error; then, the objective
function is

1 N
min<2||w||2 +CY(E+E )>,

y,—w-x;—b<e+{, (4)
ST.{ w-x;+b—y;<e+&,

gi: f,* 2 0:

where C > 0 is the penalty factor, and it is used to control the
punishment for errors exceeding e. By introducing the
Lagrange multiplier o; and «;, then the above problem is
transformed into its dual problem.

(0 =)= (6 *a)e=3 23 (6] = )]~ K (o)

i=1 j=1

(5)

(of —;) =0,0<;<C,0<;<C,i=1,2,...,N,

to take the mean value of K-th root mean square error
as the fitness value of an individual, and the calculation
of fitness value is as follows:

1 & /2311 (y-7

Step 3. Terminating iteration: if the condition of ter-
minating iteration has not been reached, the selection,
crossover, and mutation will be carried out to generate
a new group; then, go back to Step 2 to continue
iteration.

Step 4. Output optimal values: the optimal values of C,
o, and ¢ are output after completing iteration and
obtain the GA-SVR model.

3.2. Combination Prediction Filling Based on GA-SVR

3.2.1. Single-Variable Prediction Filling Based on GA-SVR.
The monitoring data of equipment operation status is
mostly time series. It is a series of monitoring values X}
obtained by multiple sensors in a time sequence where
t(t=1,2,...,n)  represents t-th  time  point,
q(q@=1,2,...,m) denotes the g-th sensor, and X/ means
the monitoring data value corresponding to the g-th
sensor at the t-th time point.
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FiGure 1: The flow chart of SVR parameters optimized by GA.

End

Using GA-SVR to predict the single variable of missing
data is to train GA-SVR by using other data of variables with
missing data as input to predict the value of missing data.

First, let the length of the missing data segment be /, and
determine the variable g of the missing data. The n-I-1 data
values in the g-th variable dimension are selected as the
input of GA-SVR, and the remaining data value is used as the
output to train GA-SVR. Then, the trained GA-SVR model is
used to predict missing data, and the single-variable pre-
diction results can be obtained.

3.2.2. Multiple-Variable Prediction Filling Based on GA-SVR.
This paper uses GA-SVR to predict the missing data. The
data related to the variable dimension containing missing
data is used as input to train the GA-SVR model and predict
the value of missing data.

First, the correlation analysis is used to find the other
variables related to the variable g to form the training set
X, e+ Xy - o+, Xy X, represents the monitoring value at ¢-th
time point. The correlation coefficient R is used to evaluate
the correlation among the variables. If the correlation co-
efficient R>0.8, it indicates that the two variables are
strongly correlated. The correlation coefficient R is calcu-
lated as follows:

R= Z?:I (xi - i) ()’i - 7)
VI (- %P3 (- 9)

The monitoring data from 1-st to k-th time point can be
used to execute correlation analysis. And the GA-SVR is
trained with the monitoring data values at remaining n-k
time points as the input and the data values at a time point
where the missing data belongs to as the output. Then, the
trained GA-SVR model is used to predict the missing data
and obtain the multivariable prediction results.

(8)

3.2.3. Dynamic Weight Combination Prediction Filling Based
on GA-SVR. In order to improve the accuracy of missing
data prediction, reduce the deviation between the predicted
value and the actual value, and improve the effectiveness of
equipment fault diagnosis, a dynamic weight combination
prediction method based on GA-SVR is established to fill the
missing data. GA-SVR is used to make a single-variable
prediction and multiple-variable predictions, respectively,
and then the dynamic weight combination of single-variable
prediction and multiple-variable prediction results is ob-
tained. The combined prediction results are used to fill in the
missing data to obtain complete data set.

Root mean square error (RMSE) can describe the de-
viation between the predicted value and the actual value.
Thus, RMSE is used to evaluate the quality of the prediction
results. The smaller RMSE represents the better prediction
effect of missing data. The root mean square error is
expressed as follows:

n ~\2

RMSE = 21 (vi= ) ’ (9)
n

where y; is the actual value, ¥; is the predicted value, and n is

the prediction times.

The weight value of single-variable prediction results and
multiple-variable prediction results in combination fore-
casting depends on their root mean square error difference.
The root mean square error is smaller, and the weight is
greater. Based on equation (10), the prediction result of
missing data can be obtained and it is followed as equation

@1n).

k
wlzR—,
1
k
w, =—,
) R, (10)
wy; +w, =1,
L yi = 0y + w7
Vi = Ry Vi + R Vai> (11)
" R/+R,”" R +R”

where 7,; and ¥,; denote single-variable prediction results
and multiple-variable prediction results, respectively. R; and
R, are the RMSE values corresponding to single-variable
prediction and multiple-variable prediction, respectively. y;
is the final missing data filling values.

The chart of combination prediction based on GA-SVR
can be seen in Figure 2.

3.3. Equipment Failure Diagnosis Procedure. For the prob-
lem of equipment fault diagnosis under the condition of
small sample data missing, GA-SVR is used to fill the
missing data, and the complete data after filling is used as the
input of SVM to realize the fault diagnosis of equipment. The
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L
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FIGURE 2: The flow chart of combination prediction based on GA-SVR.

fault diagnosis flow chart based on SVR under the condition
of small sample data missing can be shown in Figure 3, and
the specific fault diagnosis scheme can be shown as follows:

Step 1. The other data of the variable to which the
missing data belongs is used to train the GA-SVR
model to obtain the single-variable prediction filling
result that can be obtained.

Step 2. Find out the variables related to the variables of
missing data by correlation analysis, and the data of
these variables can be used to train the GA-SVR model.
The multiple-variable prediction filling results can be
obtained.

Step 3. Based on equation (11), the single-variable
prediction results and the multivariate prediction re-
sults are combined to obtain the combined prediction
results, and the missing data are filled to obtain the
complete data.

Step 4. The complete data is divided into training
sample data set and test sample data set, and SVM is
trained and tested, respectively, to obtain the fault
diagnosis results of equipment.

4. Case Study

4.1. Experimental Setup and Data Acquisition. To validate the
proposed methods, a real-world case is studied. In this case
study, the long-term wear test experiments were conducted
ata research laboratory facility. In the test experiments, three
pumps (A, B, and C) were worn by running them using oil
containing dust. Each pump experienced four states:
Baseline state, Degradation state, Degradation state, and
Failure state. The degradation stages in this hydraulic pump
wear test case study correspond to different stages of flow

Sample with missing data

L

| GA-SVR model |
[

NP L
Single-variable Multiple-variable
prediction filling prediction filling
I I
£
Dynamic weight combination
prediction filling
N

Complete sample data

l

SVM diagnosis

End

FiGure 3: Equipment fault diagnosis scheme based on GA-SVR
with small sample data missing.

loss in the pumps. As the flow rate of a pump clearly in-
dicates the pump’s health state, the degradation stages
corresponding to different degrees of flow loss in a pump
were defined as the health states of the pump in the test
[24, 25].

The vibration signals were collected from pump accel-
erometers that were positioned parallel to the axis of the
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swash plate swivel axis and data was continuously sampled.
Figure 4 shows the schematic diagram of the experimental
setup. The pump used for testing in the experiments was a
Back Hoe Loader: a 74 cc/rev variable displacement pump.
The data was collected at a sample rate of 60kHz with
antialiasing filters from accelerometers designed to have a
usable range of 10kHz. In many cases, the most distin-
guished information is hidden in the frequency content of
signals. So, the time-frequency representation of signals is
needed. In this case study, the signals were processed using a
wavelet packet with Daubechies wavelet 10 (db10), and five
decomposition levels as the db10 wavelet provide the most
effective way to capture the fault information in the pump
vibration data. The coeflicients obtained by the wavelet
packet decomposition were used as the inputs.

There are 80 groups of experimental data for Pumps A, B,
and C, respectively. Each group of data contains 32 variables
(32 sensors). In this paper, the monitoring data of the 3-th
sensor is taken as the experimental object, and the moni-
toring data from the 75-th to 80-th time point is deleted to
simulate the missing situation of small sample data. The
single-variable prediction, multiple-variable prediction, and
dynamic weight combination prediction based on GA-SVR
are used to fill the missing data, and the filling effect and the
diagnosis effect after filling are compared.

4.2. Reconstruction Training Set. The multiple-variable
prediction model selects monitoring data from sensors
having a strong correlation with Sensor 3 as the training set
to predict the missing data value. Based on equation (8), the
correlation coefficients between Sensor 3 and other sensors
are calculated in Pumps A, B, and C, respectively. If the
correlation coefficient R >0.8, then the sensor and Sensor 3
have a strong correlation; thus, the training set can be
reconstructed, as shown in Tables 1-3. The reconstructed
training sample is only 6-dimensional. It can reflect the
characteristics of the original data, reduce the amount of
calculation, and shorten the prediction time.

4.3. Result Analysis of Missing Data Filling. In order to
evaluate the filling effect of the proposed dynamic weight
combination prediction method based on GA-SVR, the
missing values in Pumps A, B, and C are predicted by single-
variable prediction, multiple-variable prediction, and dy-
namic weight combination prediction by using GA-SVR,
respectively. And the filling effects are compared.

The parameters of GA are set as follows: the population
size is 20, and the maximum iteration number is 100. The key
parameters of SVR are 0.1<C<1000, 0.01<0<100, and
0.01 < e< 1. The root mean square error (RMSE) and mean
absolute percentage error (MAPE) are used as the evaluation
indexes for the filling effect of missing data. MAPE is as
follows:

MAPE = Zn:

i=1

7i- i 100%
n

Yi

(12)

where y; is the actual value and y; is the predicted value.

Tables 4-6 show the predicted filling values of missing
data of Pumps A, B, and C based on GA-SVR, respectively.
Figures 5-7 show the missing data fitting curves of three
prediction methods based on GA-SVR for Pumps A, B, and
C, respectively.

From Figures 5-7, it can be intuitively seen that the
simulation results of the three data sets are basically con-
sistent. The fitting curve of dynamic weight combination
prediction is more consistent with the actual value curve
than that of single-variable prediction and multiple-variable
prediction. It indicates that the effect of the dynamic weight
combination prediction method is better than that of single-
variable prediction and multiple-variable prediction.

In order to evaluate the effect of equipment fault di-
agnosis under the small sample data missing based on the
proposed GA-SVR, the proposed GA-SVR prediction model
is compared with the standard SVR prediction model and BP
neural network prediction model (BPNN). The key pa-
rameters of SVR are selected by grid search cross-validation
method, 0.1 <C<1000,0.01 <0<100,and 0.01<e<01. For
the single-variable prediction of missing data, the input layer
of BPNN is 1, the output layer is 1, and the number of hidden
layers is 3. For the multiple-variable prediction of missing
data, the input layer of BPNN is 6, the output layer is 1, and
the number of hidden layers is 5. The maximum iteration
times are set to 100, the error accuracy is 0.002, the learning
rate is 0.1, and the activation function is a sigmoid type
function.

Tables 7-9 show the filling effect of missing data of
Pumps A, B, and C for three different prediction models,
respectively. It can be seen from Tables 7-9 that the RMSE
and MAPE values of dynamic weight combination predic-
tion are the smallest compared with single-variable pre-
diction and multiple-variable prediction for different
prediction modes of the same prediction model. For the
same prediction mode of different prediction models, the
RMSE and MAPE values of the proposed GA-SVR model are
the minimum. Thus, the proposed dynamic weight com-
bination prediction of missing data based on GA-SVR has
the best filling effect on missing data.

4.4. Result Analysis of Equipment Failure Diagnosis. In order
to compare the effects of different missing data prediction
models and prediction modes on equipment fault diagnosis,
the complete data filled with missing data is used for
equipment fault diagnosis. 50 groups of Pumps A, B, and C
data sets are randomly selected as training samples, and the
remaining 30 groups are used as test samples.

Tables 10-12 show the influence of three different
missing data filling models of GA-SVR, SVR, and BPNN and
three prediction filling modes on the fault diagnosis effect of
Pumps A, B, and C, respectively. It can be seen from
Tables 10-12 that the dynamic weight combination pre-
diction filling mode has the highest diagnosis accuracy rate
and shorter time compared with single-variable prediction
filling mode and multiple-variable prediction filling mode
under the same prediction model. For the same prediction
mode, the fault diagnosis rate based on GA-SVR is the
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FIGURE 4: Schematic diagram of the experimental setup.

TaBLE 1: Sensors having a strong correlation with Sensor 3 in
hydraulic Pump A.

TaBLE 6: Prediction results of missing data based on GA-SVR for
Pump C.

CH2
R 0.826

CH5
0.872
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CH13
0.911

CH16
0.956

CH32
0.858

TaBLE 2: Sensors having a strong correlation with Sensor 3 in
hydraulic Pump B.
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TaBLE 3: Sensors having a strong correlation with Sensor 3 in
hydraulic Pump C.
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TaBLE 4: Prediction results of missing data based on GA-SVR for
Pump A.

A Single-variable Multiple- Dynamic weight
ctual . . .
value predicted variable combination
value predicted value predicted value
16.9640 16.9023 17.0052 16.9502
16.8942 16.8425 16.9732 16.9033
16.7349 16.7745 16.6997 16.7397
16.6608 16.7177 16.6369 16.6801
16.6291 16.6791 16.6002 16.6424
16.7138 16.7330 16.7265 16.7300

TaBLE 5: Prediction results of missing data based on GA-SVR for
Pump B.

A Single-variable Multiple- Dynamic weight
ctual . . .
value predicted variable combination
value predicted value predicted value
15.1519 15.3855 14.9987 15.2222
14.2496 13.7533 14.4974 14.0675
12.8249 12.5942 13.0492 12.7863
12.9940 12.5854 13.1238 12.8128
12.3819 12.5935 11.9923 12.3396
12.4991 12.8678 12.2324 12.5995

A Single-variable Multiple- Dynamic weight
ctual . . ..
value predicted v_arlable comblnatlon
value predicted value predicted value
9.4516 9.3048 9.5537 9.4079
9.3964 9.3058 9.4623 9.3706
9.7349 9.6812 9.7615 9.7145
9.1048 9.1879 9.0531 9.1321
9.5237 9.5981 9.4552 9.5389
9.6634 9.6289 9.6801 9.6501

75 76 77 78 79 80

—e— Actual value
B Single-variable predicted value
-A- Multiple-variable predicted value
-¢- Dynamic weight combination predicted value

FiGure 5: The fitting curve of missing data based on GA-SVR for
Pump A.

highest compared with SVR and BPNN, and the diagnosis
time is shorter than that of BPNN. And the diagnosis time is
longer than SVR, but the difference is not significant.

Generally, the missing data filling method of dynamic
weight combination prediction based on GA-SVR can ob-
tain the best fault diagnosis effect. It can be concluded that
the proposed failure diagnosis method based on GA-SVR
under the condition of small sample missing data is effective
for Pumps A, B, and C and has certain universality.
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FIGURE 6: The fitting curve of missing data based on GA-SVR for Pump B.
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FIGURE 7: The fitting curve of missing data based on GA-SVR for Pump C.

TaBLE 7: Prediction effect of missing data of Pump A for three different prediction models.

Single-variable prediction Multlple.-v.arlable Dynarplc welght.
prediction combination prediction
RMSE MAPE RMSE MAPE RMSE MAPE
GA-SVR 0.0486 0.28 0.0423 0.22 0.0138 0.08
SVR 0.0737 0.40 0.0500 0.25 0.0303 0.16
BPNN 0.0920 0.52 0.0644 0.36 0.0547 0.28

TaBLE 8: Prediction effect of missing data of Pump B for three different prediction models.

Single-variable prediction Multlple.—vgrlable Dynamlc welgbt .
prediction combination prediction
RMSE MAPE RMSE MAPE RMSE MAPE
GA-SVR 0.3420 2.44 0.2500 1.80 0.1185 0.76
SVR 0.6547 2.90 0.3989 213 0.2158 1.12

BPNN 0.8832 3.28 0.5150 2.82 0.2990 1.98
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TaBLE 9: Prediction effect of missing data of Pump C for three different prediction models.
Single-variable prediction Multlple'—vgrlable Dynamic we1gbt .combmanon
prediction prediction
RMSE MAPE RMSE MAPE RMSE MAPE (%)
GA-SVR 0.0878 0.85 0.0621 0.59 0.0263 0.26
SVR 0.1439 1.69 0.1219 1.33 0.0498 0.73
BPNN 0.2293 2.12 0.1580 1.83 0.0724 1.20
TasLE 10: Failure diagnosis effect of different missing data filling models for Pump A.
Single-variable prediction filling Multiple-variable prediction Dynamic weight combination
mode filling mode prediction filling mode
Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
GA-SVR 83.33 20.84 90.00 41.20 96.67 41.64
SVR 80.00 21.33 83.33 39.86 90.00 41.50
BPNN 76.67 50.8 90.00 87.23 93.33 88.92
TaBLE 11: Failure diagnosis effect of different missing data filling models for Pump B.
Single-variable prediction filling Multiple-variable prediction Dynamic weight combination
mode filling mode prediction filling mode
Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
GA-SVR 86.67 16.43 93.33 23.45 100.00 24.29
SVR 83.33 14.50 90.00 22.76 96.67 23.40
BPNN 76.67 31.80 86.67 59.80 93.33 61.02
TaBLE 12: Failure diagnosis effect of different missing data filling models for Pump C.
Single-variable prediction Multiple-variable prediction Dynamic weight combination
filling mode filling mode prediction filling mode
Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
GA-SVR 86.67 9.43 93.33 13.45 96.67 14.23
SVR 83.33 8.55 86.67 10.98 93.33 11.45
BPNN 80.00 15.78 83.33 21.50 90.00 23.27

5. Conclusion

In this paper, for the problem that small sample data missing
will affect the effect of equipment failure diagnosis, a novel
missing data filling method based on GA-SVR is proposed to
improve the effect of the equipment failure diagnosis. First,
the single-variable prediction is carried out for the missing
data. And the training set is reconstructed by correlation
analysis. Meanwhile, the multiple-variable prediction is
carried out based on GA-SVR. Then, the dynamic weight is
presented to combine the single-variable prediction results
and the multiple-variable prediction results to fill in the
missing data. Finally, the complete data obtained by filling
missing data is used as input, and GA-SVM is used to di-
agnose the equipment failure.

By the case study, the proposed GA-SVR model is
compared with SVR and BPNN to predict the filling effect of
missing data of Pumps A, B, and C, respectively. And the
failure diagnosis effect based on the complete data after the
filling is compared. It can be shown that the proposed
dynamic weight combination prediction method based on
GA-SVR has the best missing data filling effect and failure

diagnosis effect. And the effectiveness and universality of
this proposed method under the condition of small sample
data missing can be verified.
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