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Structural health monitoring (SHM) is essential when detecting damage in large and complex structures in order to provide a
comprehensive assessment of the structural health state. Optimal sensor placement (OSP) is critical in the structural health
monitoring system, which aims to use a limited number of sensors to obtain high-quality structural health diagnosis data.
However, the current research mainly focuses on OSP for structures, without considering the values contributed by different
modes to the bridge structure. In this article, an optimal sensor placement method based on initial sensor layout, using the
dynamic adjustment of attenuation factor gravitational search algorithm (DGSA), is proposed. *e effective modal mass par-
ticipation ratio is introduced to ensure the validity of the initial data of optimal sensor placement. In view of the insufficient
developmental ability of the gravitational search algorithm, the attenuation factor α adjusted dynamically aids the global search in
the early iteration and the local fine search in the late iteration.*e double coding method is used to apply the DGSA algorithm to
OSP; taking cable-stayed bridges as an example, the feasibility of the algorithm is verified. *e results show that the improved
algorithm has a good optimization ability and can accurately and efficiently determine the optimal placement of sensors.

1. Introduction

With the progress being made in science and technology,
large buildings and bridge structures are becoming widely
used. When they are subjected to harsh environments and
extreme events, such as strong winds and severe earth-
quakes, the functionality and safety of the large structures
become a vital issue, and structural health monitoring
(SHM) technology has been developed for damage detection
[1]. SHM uses nondestructive sensing technology to analyze
the system characteristics through the detected response,
achieving the purpose of monitoring the structural health
state, or predicting the service life, of the structure. In the
SHM system, the main tasks of the sensor system include
real-time acquisition of the operating environment of the
structure, the load on the structure, and the dynamic
characteristics of the structure [2, 3]. When the number of
sensors is large, the monitoring cost will increase. When

there are few sensors, the measurement data will be in-
complete, and the measurement result will be unreasonable.
*erefore, adopting an optimal sensor placement scheme to
obtain maximal structural information is critical in health
monitoring.

In the optimal sensor placement method, the traditional
optimization algorithm is incorporated with one of the
following: the effective independence method [4–6], the
Guyuan reduction method [7], the modal kinetic energy
method [8, 9], and the information entropy method [10, 11].
*e above mentioned traditional methods have difficulties in
obtaining their global or near-global optimum. In recent
years, many optimal sensor placement methods based on
intelligent algorithms have been proposed, such as the ge-
netic algorithm (GA) [12, 13], the monkey algorithm (MA)
[14], the harmony search (HS) algorithm [15], the sequence
algorithm (SA) [16], the particle swarm optimization (PSO)
algorithm [17], and the differential evolution algorithm (DE)
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[18]. For the objective function, the modal assurance cri-
terion (MAC) is widely used to quantify the collinearity
between the modal shape vectors placed by the sensors. *e
strategy involves minimizing the nondiagonal term of the
MAC matrix to distinguish the modal shapes.

Many researchers have attempted to improve the effi-
ciency and performance of sensor optimization methods.
Zhou et al. [19] proposed a one-dimensional binary coding
method, which was applied in the optimal arrangement of
cable-stayed bridge sensors. Yi et al. [12] improved the
genetic algorithm and used the double structure coding
method to optimize sensor placement in high-rise buildings.
Yi et al. [14] introduced the adaptive operator into the
monkey algorithm, increased the global search ability of the
algorithm, and took the modal assurance criterion as the
objective function, and the optimization is thus achieved
through the experimental analysis. Jin et al. [15] combined
the harmony search (HS) algorithm with the modal as-
surance criterion and applied it to sensor placement on a
gantry crane. *e results show that the HS algorithm is a
powerful search and optimization algorithm. Yin et al. [16]
used the concept of Dijkstra’s edge relaxation operation to
generate the initial solution set from the sequence algorithm
and improved this set via relaxation until the end of the
relaxation operation. Taking the truss structure as an ex-
ample, the effectiveness of the algorithm was verified. Al-
though the abovementioned swarm intelligence algorithm
can be applied to sensor layout optimization, it has the
disadvantages of poor robustness, insufficient development
ability, and more control parameters.

Although the above mentioned research has made sig-
nificant achievements, there are still three aspects that have
not been considered. Firstly, many sensor optimization
methods do not consider the mode selection but select the
first few modes based on experience, which may not fully
reflect the information of the mechanism due to improper
mode selection. Secondly, many researchers do not consider
the relationship between the number of sensors and the
objective function but give a set of sensor layout schemes for
a given number of sensors.*ird, there are many nodes to be
measured in the optimal sensor layout. Figuring out how to
use OSP to solve high-dimensional problems with high
accuracy and efficiency is still a challenge. *erefore, an
innovative method is needed to accurately and effectively
determine OSP in the structure.

In view of these three defects, a reworking of the dy-
namic adjustment of attenuation factor gravitational search
algorithm (DGSA) is presented in this paper.*e cumulative
effective modal participation ratio is the percentage of the
modal effective mass to the total mass.*is concept has been
successfully applied in seismic design and the optimal
placement of bridge sensors in order to determine the
number of main modes [13, 17, 20]. In this paper, the ef-
fective modal mass participation ratio is used to select the
main modal of a bridge. In order to improve the perfor-
mance and search ability of the gravitational search algo-
rithm (GSA), this paper improves the GSA by adjusting the
attenuation factor α, of the gravitational constantG, to
change the step lengths of particles in different periods. *e

improved DGSA offers greater precision and a faster con-
vergence speed. *e specific content of this paper is as
follows: Section 2 introduces the improved GSA, Section 3
introduces the optimal sensor placement method based on
the DGSA, and Section 4 takes a cable-stayed bridge as the
object, reports on the example test, and offers an analysis of
its results. Section 5 contains the conclusion and future work
arrangement.

2. DGSA Algorithm

*e gravitational search algorithm utilizes the gravitational
attraction between particles. *e particle with the largest
mass in the given population occupies the optimal position,
and the other particles move towards the particle with the
highest mass under the action of gravity; thus, the process
of obtaining the global optimal solution of the problem is
carried out. *ere are M particles in the algorithm. Taking
one of the particle i as an example, the particle i is subjected
to the gravitational attraction of the other particles, and
acceleration a and velocity v are generated under this
combined force, such that in the ensuing moments, the
particle i approaches the global optimal solution. *e
gravitational constant runs through the entire search
process of the algorithm from the beginning to end. *e
change process of the G value directly affects the search
efficiency and optimization precision of the algorithm. *e
value of the attenuation factor α in the GSA is constant,
which causes the particles to move with fixed step sizes in
the process of searching, making it easy for the algorithm to
reach the local extreme point. In order to enhance the
optimization ability of the algorithm, the DGSA proposed
in this paper adaptively adjusts α. At the beginning of the
search, the particle is far away from the optimal solution
and searches globally with a larger step size. At a later stage
of the search, the particle is in closer proximity to the
optimal solution and employs smaller step sizes in
searching, which is conducive to the local search of the
algorithm and to effectively finding the global optimal
solution.

2.1. Gravity Search Algorithm. GSA [21], with its advantages
of easy implementation, good operability, and obvious
optimization effect, has been widely used in production
practice [22–24].

Assuming the population number is N, the position of
particle i in the Wdimensional space isXi � [x1

i , . . . ,

xd
i , . . . xW

i ] , where (i � 1, 2, . . . , N). *en, the gravitational
attraction of particle i and particle j in the Wdimensional
space at time t is defined as

F
d
ij(t) � G(t)

Mi(t)∗Mj(t)

D + ε
x

d
i (t) − x

d
j (t) , (1)

where Mi(t) is the gravitational mass related to particle i,
Mj(t) is the gravitational mass related to particle j, G(t)

is the gravitational constant at time t, ε is a small
constant, and D is the Euclidian distance between two
agents i and j.
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Formula for calculating G(t) is defined as

G(t) � G0e
− α∗I/Imax( ), (2)

where I is the number of the iterations and Imax refers to the
maximum number of iterations.

*e resultant force Fd
i (t) of particle i in d dimensional

space is defined as

F
d
i (t) � 

j∈best
rand∗F

d
ij(t), (3)

where best is a collection of particles that have gravitational
effects on particle i.

*e acceleration ad
i (t) of particle i is defined as

a
d
i (t) �

F
d
i (t)

Massi(t)
�

j∈bestrand∗F
d
ij(t)

Massi(t)
, (4)

where Massi(t) is the inertia mass of particle i, and its
formula is defined as

mi(t) �
fiti(t) − fitw(t)

fitb(t) − fitw(t)
, (5)

Massi(t) �
mi(t)


n
j�1 mi(t)

, (6)

where fitb(t) represents the best fitness value and fitw(t)

represents the worst fitness value.
*e formula for the velocity and position of the particle i

at the next moment is

v
d
i (t) � rand∗ v

d
i (t) + a

d
i (t),

x
d
i (t + 1) � x

d
i (t) + v

d
i (t + 1).

⎧⎨

⎩ (7)

Note 1:rand is a random variable which is uniformly
distributed among [0, 1].

2.2. DynamicAdjustment of Attenuation FactorGravitational
Search Algorithm. *e gravitational constant, G(t), has a
significant influence over the convergence speed and opti-
mization precision of the algorithm.*e αin formula (2) has
the effect of adjusting the convergence speed of the algo-
rithm. Aiming at the optimization efficiency and search
accuracy of GSA, this paper improves the GSA and proposes
the DGSA. Considering that the value of α in the GSA is a
constant, in the iterative process of the algorithm, regardless
of whether the particle is far from or near to the global
optimal solution, the particle moves with a fixed step size. As
a result, when the particle is far away from the optimal
solution, its step length is too small, it moves too slowly, and
it takes too long. Furthermore, when the particle is close to
the optimal solution, the step length is too large, which may
cause it to deviate from the optimal solution and fall into the
local optimal solution. *erefore, DGSA selects a smaller
attenuation factor α in the early stage of the search, and the
particles perform the global search with a larger step size,
which is beneficial in reducing the search time of the al-
gorithm and improving the overall optimization efficiency.

*e algorithm selects a larger attenuation factor α in the later
stage, and the particles employ a smaller step size to com-
plete the local search, so as to avoid the algorithm falling
upon the local extreme point. *e expression of adaptive
attenuation factor α is defined as

α(t) � β∗ e
− 1− t/Imax| |, (8)

where t represents the current number of iterations and β is
the initial parameter. According to experience, when β� 1,
the optimization effect of the algorithm is the best. *e
schematic diagram of the DGSA is shown in Figure 1.

Particle M1 generates resultant force F1 and acceleration
a1 under the action of universal gravitation of M2, M3, and
M4. *rough the adaptive mechanism of attenuation
factorα, particle M1 approaches the global optimal solution
with different steps.

3. Optimal Sensor Placement Based on
DGSA Method

In this section, the dual-structure coding method is used to
solve the problem of DGSA being unable to realize optimal
sensor placement, and the flow of optimal sensor placement
is shown in Figure 2. In the mode selection, by calculating
the effective modal mass participation ratio, the mode order
with a larger contribution value is selected.

3.1. Modal Assurance Criterion. *e existing sensor opti-
mization approaches, such as the modal kinetic energy
method, are highly dependent on the accuracy of the finite
element mesh, which will affect the reliability of the data. It is
easy to lose the mode to be measured when using the Guyan
reduction method, which increases the difficulty of identi-
fication. *e modal assurance criterion is one of the most
widely used evaluation criteria for optimal sensor placement.
It can enable the choosing of a larger space intersection angle
and can retain the characteristics of the original model as
much as possible.

3.1.1. Mode Selection. *e selection of mode is the premise
to determine the number of sensors and then determine the
location of sensor. If too many modes are selected, not only a
lot of calculation time and space will be consumed but also it
is difficult to accurately define the correctness of the cal-
culation results. If too few modes are selected, the reliability
of the optimal sensor placement results will be too small to
represent the complete information of the bridge. At
present, many scholars have applied the effective modal
mass participation factor to the selection of the modal order
and calculated it by using the ratio of the influence of the
current modal mass to the influence of all modal masses.

*e dynamic formula of n-DOF system is expressed as

M€u + C _u + Ku � −Me€ua(t), (9)

where M is the mass matrix, C is the damping matrix, K is
the stiffness matrix, e is the direction matrix under the
excitation force, €ua(t) is the acceleration produced by the
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excitation force, u, _u, and €u are modal displacement re-
sponses, velocity response, and acceleration response,
respectively.

*e relationship between the abovementioned response
and the mode shape matrix ϕ is as follows:

u � ϕ · q, _u � ϕ · _q, €u � ϕ · €q. (10)

Based on the orthogonality of M, C, and K, we can get
the following formula from (9) and (10):

€qi + 2ξiωi _qi + ω2
i qi � −

ϕT
i Me

ϕT
i Mϕi

€ua(t), (11)

where qi is the modal coordinates,ωi is the natural frequency
of the structure, and ξi is the modal damping ratio.

*e participation factor is defined by the following:

σi �
ϕT

i Me

ϕT
i Mϕi

. (12)

According to the principle of mass normalization of
mode shape matrix ϕi, the following formula is obtained:

ϕT
i Mϕ � 1. (13)

*en, formula (12) can be converted into the following:

σi � ϕT
i Me. (14)

*e effective modal mass expression of the ith mode is

Mi �
σ2i

ϕT
i Mϕi

. (15)

*erefore, the total modal mass is



n

i�1
Mi � 

n

i�1
σ2i � σTσ. (16)

*e expression of the ith order effective mode mass
participation ratio ri is

ri �
Mi

e
T

Me
. (17)

For the first m modes (m< n), the total modal mass
participation ratio R of the first m modes is

R � 
m

i�1
ri. (18)

According to the research, when the value of R is more
than 90%, it shows that the selected modal order contains
enough structural information, which can be used as the
mode shape of optimal sensor placement.

3.1.2. Fitness Function. *e most important step in the
problem of optimal sensor placement is to establish the
mathematical model of the structure and construct the objective
function. Actually, due to the external factors, the accuracy error
of the measuring instrument and the noise interference of the

test site, the included angle of the modal vector is too small, or
even 0, which leads to the loss of modal information.*erefore,
the optimal sensor placement should select the points with large
modal angle and be easy to identify. *e modal assurance
criterion (MAC) is usually used to compare the correlation and
independence of experimental modes [25–27], so MAC can be
used as the fitness function of optimal sensor placement to
evaluate the independence of each mode.

*e expression of MAC is as follows:

MACij �
ϕT

i · ϕj 
2

ϕT
i · ϕi  ϕT

j · ϕj 
, (19)

where ϕi and ϕj represent the ith and jth column vectors in
matrixϕ.

In the above formula, maximum off-diagonal element
ranges from 0 to 1. *e smaller the maximum off-diagonal
element means the larger the corresponding space angle and
the easier to distinguish the modal vectors. *e smaller the
value of the off-diagonal element of the MAC matrix, the
better the calculated modal vector independence and the
easier it is to identify the mode shape. *erefore, the
minimization of the maximum off-diagonal element of
MAC matrix can be taken as the fitness function of optimal
sensor placement of bridge, and the expression is as follows:

fit � minf(x), (20)

where f(x) � maxi≠j|MACij|. *e smaller the value of the
objective function, the better the independence of the tested
modal vector and the better the optimal sensor placement.

3.2. Method of Coding. *e binary coding method can be
used to solve the optimal sensor placement problem; 1
indicates the sensor is placed, and 0 indicates the sensor is
not placed, but this codingmethod will lead to changes in the
number of sensors. Here, dual-structure coding is adopted to
overcome this problem.*e dual-structure codingmethod is
shown in Table 1.

*e dual-structure coding method involves extra code
and variable code. *e extra code represents the position
vector of the individual, and the variable code represents
binary vector 0 or 1, where 0 means no sensor is placed, and
1 means placement of sensor. *is dual coding method
enables the DGSA to solve the problem of optimal sensor
placement. For example, there are known to be nine points
that must be selected. *e dual-structure coding results are
shown in Table 2. *e sensor arrangement we were able to
derive is s � (3, 4, 6, 8).

3.3. Optimal Sensor Placement Process Based on DGSA

Step 1. Select and import mode matrix. *e order choice of
the mode matrix has an important influence on the sensor
placement results. On the one hand, the appropriate mode
matrix can represent the overall performance of the struc-
ture and ensure the accuracy of the optimal sensor place-
ment. On the other hand, the optimal sensor placement is
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different with different modes. *e first and foremost, the
mode shape matrix of all nodes of the model is obtained by
mode analysis method, and the obtained mode shape matrix
is taken as the input value, and the degrees of freedom
corresponding to all nodes are used as the candidate points
of the optimal sensor placement. Secondly, assuming that
the number of candidate points is n and the number of
sensors ism, the n candidate positions are numbered from 1
to n successively.

Step 2. Taking the ith particle in the population as an ex-
ample, (i � 1, 2, . . . , N, in whichNis the number of pop-
ulation size), the corresponding solution to i can be
expressed as xs(i)�(xi,si)� {(xi1, si1)(xi2, si2),. . .,(xin, sin)}.
*e position vectors of xi are obtained by formula (21), and
the binary vectors of si are obtained by formula (22), where
xdown � −8, xup � 8,

xij � rand × xup − xdown  + xdown, (21)

where rand is a random number between 0 and 1.

sij �
xij

������
1 + x

2
ij







, (22)

In formula (22), the binary vectors calculated by different
position components xij are different, so a threshold δ needs
to be set to satisfy the following:

sij �
1, if V xij > δ,

0, else,

⎧⎨

⎩ (23)

wherej ∈ 1, 2, . . . , n{ }, δ � 0.5, and the components of each
position of xij are substituted into formula (23). If the
function value is greater than 0.5, the additional code value is
1, indicating that the sensor is placed at this candidate point.
If the function value is less than 0.5, the additional code value
is 0, indicating that the sensor is not placed at this candidate
point. It can be obtained by calculation that the value of xij is
taken as [−8, 8], and the value of sij is 0≤V(xij)≤ 0.9923. It
can be approximated instead of [0, 1].

Step 3. Repeat Steps 1 and 2 until N particles are generated;
during initialization, the total number of sensors in si is not
equal to the number of sensors arranged m. In order to
ensure that all possible solutions in the population meet the
requirements, when we encounter this problem, we should

reinitialize at this time, and repeat Step 2 until the initial
solution meets the requirements of coding.

Step 4. *e N particles in the population are substituted into
formula (20). *e best fitness value is labeled fitb(xsi), and
the worst fitness value is labeled fitw(xsi). *e optimal ar-
rangement corresponding to the fitness value is recorded as
pi(xsi), pi(xsi) represents the individual optimal solution of
particles in the population, and it is the optimal solution in
each particle iteration. pg(xsi) represents the global optimal
solution, which is the optimal solution among all particles in
the population.

Step 5. *e inertia mass of each particle is calculated using
formulas (5) and (6). Adaptively change the attenuation
factor α according to formula (2) and update the gravita-
tional constant G(t).

Step 6. Taking particle i as an example, the corresponding
position component is xi � xi1, xi2, · · · , xim , where m is the
number of sensors that need to be arranged, and the Eu-
clidean distance between the particle i and other particles is
calculated. Using formulas (1) and (3), the resultant force of
particle i under the action of other particles is obtained.
Using formula (4) to calculate the acceleration of particle i,
similarly, the gravitational and acceleration forces of other
particles in the population are calculated.

Step 7. In order to speed up the convergence of particles,
improve the optimization performance. *e mutation op-
erator is introduced into the velocity formula of the particle
to increase the guiding effect of the current optimal solution
and the global optimal solution on the particle and improve
the convergence speed of the algorithm. *e expression of
the mutation operator is as in formula (8). In the process of
updating the speed and position, the calculated acceleration
component and velocity component may appear as non-
integer. *erefore, we round the speed formula and the
position formula. *e specific expression is as follows:

η � rand p
d
g(t) − x

d
i (t) , (24)

v
d
i (t) � round rand × v

d
i (t) + a

d
i (t) + η ,

x
d
i (t + 1) � round x

d
i (t) + v

d
i (t + 1) ,

⎧⎪⎨

⎪⎩
(25)

where the round is a function to ensure that the updated
particle position component is an integer. *e positional
component of the particle is an integer randomly generated
from [−8, 8]. In Step 7, the particle may exceed the range of
values in the position update.*erefore, this paper stipulates
that when the position component is greater than 8, it takes
8; when the position component is less than −8, it takes −8.

Step 8. Substituting the mode displacement corresponding
to the updated particle into formula (20), if the updated
fitness value is less than before the update, the particle
position changes. Otherwise, the particle position remains
unchanged. *e optimal placement corresponding to the

Table 1: Dual-structure coding method.

Extra code x(1) x(2) · · · x(i) · · · x(f )
Variable code sx(1) sx(2) · · · sx(i) · · · sx(f )

Table 2: *e result of dual-structure coding method.

Extra code 5 3 6 1 4 7 2 8
Variable code 0 1 1 0 1 0 0 1
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updated optimal fitness value is denoted as pb(xsi). If the
updated optimal fitness value fit(pb(xsi)) is smaller than
the fitness value fit(pg(xsi)) corresponding to the global
optimal value pg(xsi) of the previous generation, the
current particle is used instead of the global optimal so-
lution. Otherwise, the global optimal solution remains
unchanged.

Step 9. Determine whether the algorithm reaches the preset
accuracy requirement or the maximum number of itera-
tions. If it is satisfied, stop the iteration and output the global
optimal solution, which is the required sensor placement; if
not, return to Step 6. *e flow chart based on DGSA is
shown in Figure 2.

4. Model Validation

In this section, the DGSA will be used in the optimal sensor
placement on the test object, so as to verify the feasibility and
effectiveness of this algorithm.

4.1. Modeling and Modal Analysis. *e example selected in
this paper is a single-tower cable-stayed bridge with a total
length of 264m. Its main components include a main
beam, a bridge tower, and a stay cable. ANSYS 19.2 was
used to establish the finite element model of the bridge, as
shown in Figure 3. *rough modal analysis, the model was
determined to have 1588 nodes and 2422 elements; each
node incorporates three degrees of freedom, corre-
sponding to the modal information of the x, y, and z
directions. Figures 4–6 show the effective modal mass
corresponding to the first 50 modes of the cable-stayed
bridge in the x, y, and z directions, respectively.

4.2.ModeNumber. Considering that the selection of mode is
very important in the optimal placement of sensors, a matrix
of the first 50 modes of the cable-stayed bridge is derived
through the modal analysis process. *e effective modal
mass participation ratio in three directions is calculated, and
the modal order with an R value greater than 90% is selected
as the mode to be used. *e effective mass corresponding to
the first 50 modes is shown. *e main modes are selected in
the x, y, and z directions, and the correspondingMi, ri, and R
are determined.

*ree and four modes with high effective participation
mass, and twelve modes in total, are selected in the x, y, and z
directions, respectively, and the corresponding values of R
and the other parameters are shown in the table. It can be
seen from Table 3 that the value of R for the 12 modes is
0.9235; the value of R for the first 8 modes is 0.8335, and the
value of R for the last 4 modes is 0.0900. *e R values of the
2nd, 3rd, 6th, 9th, 11th, 16th, 30th, and 48th modes occupy
the main part of the 12th mode in the table, which can be
used as the main mode to represent the information of the
cable-stayed bridge. *erefore, the 2nd, 3rd, 6th, 9th, 11th,
16th, 30th, and 48th modes are chosen as the initial modes of
the optimal sensor placement.

4.3. Analysis of the Sensor Placement Results

4.3.1. Number of Sensors. Generally speaking, the higher the
number of sensors arranged, the greater the amount of
obtainable information pertaining to structural arrange-
ment, and the better the reflection of the structure’s health
condition. However, in practical applications, because of the
high cost of sensors, having a very high number of sensors is
often impossible, so the selection of the number of sensors is
very important. *erefore, this paper takes the number of
sensors as the independent variable and formula (20) as the
objective function. Each group of variables is calculated 10
times, and the average value of the results of 10 operations is
the corresponding variable.

It can be seen that when the optimal sensors quantity is
between 1 and 11, the decline curve of the objective function
is steeper. When the number of sensors is 11, the value of the
objective function is the lowest. When the number of sensors
changes from 11 to 12, the value of the objective function
begins to increase. When the number is between 12 and 30,
the value of the objective function begins to decrease slowly
and tends to be stable. Considering the cost of the sensors,
m� 11 is selected as the optimal number of sensors.

4.3.2. Optimizing Performance Comparison. Optimal sensor
placement is performed according to the DGSA proposed in
this paper, with the following parameters: population size
N � 100, maximum iteration times Imax � 100, initial value of
gravitational constant G0 � 100, and attenuation factor β � 40.
When the number of sensor m is 7, 11, and 15, the algorithm
repeats 10 times to calculate the optimal solution, the worst
solution, and the average solution of the objective function.

Figure 7 shows the curve of the objective function
changing with the number of sensors when other parameters
are unchanged. It can be seen from Figures 8–10 that the
fitness function values corresponding to different numbers of
sensor are different. When the number of sensor m arranged
is 7, 11, and 15, respectively, the average values of the objective
function are 0.1866, 0.0526, and 0.0489. *e results show that
with the increase of m, the smaller the average value of the
objective function, the easier to identify the modal vector
obtained by the search, and the optimal value of the objective
function can reach 0.1815, 0.0410, and 0.0455 in turn. It shows
that within a certain value range, as the number of sensor
increases, the sensor placement results can be better.

In order to further highlight the advantages of the DGSA,
the results of the DGSA, the GA algorithm, and the PSO al-
gorithm are compared when 11 sensors are arranged. Figure 11
shows the performance curve comparison for the three algo-
rithms. In the case of 100 iterations of three algorithms, the
convergence speed and optimization accuracy of the DGSA are
better than those of the GA and PSO. Among them, GA, PSO,
andDGSA are different parameters, and the optimal solution is
obtained after many repetitions of the verification procedure.

Figures 12–14 show a bar chart of the MAC matrices for
the three algorithms. *e maximum values of the off-di-
agonal element of the MAC matrix obtained by the GA
algorithm and the PSO algorithm are 0.0741 and 0.0694,

Shock and Vibration 7



1

X
Y

Z

Figure 3: Cable-stayed bridge model.
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Figure 4: Effective modal mass in x direction.
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Figure 5: Effective modal mass in y direction.

8 Shock and Vibration



0 5 10 15 20 25 30
Sensor number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Be
st 

fit
ne

ss

Figure 7: Curve of sensor number.

0 5 10 15 20 25 30 35 40 45 50
Mode

0

1

2

3

4

5

6

7

8

9

10

Eff
ec

tiv
e m

od
al

 m
as

s

×106

Figure 6: Effective modal mass in z direction.

Table 3: Calculation results based on response of cable-stayed bridge.

Order Direction Natural
frequency

Modal participation
factor

Effective modal
mass

ri in corresponding
direction

R in three
directions

30 x 5.4742 3258.2 0.10616E+ 08 0.5661 0.1781
2 z 0.7627 3035.3 0.92131E+ 07 0.4477 0.3327
3 y 0.9631 2800.4 0.78423E+ 07 0.3869 0.4643
9 y 1.6349 2587.1 0.66931E+ 07 0.3302 0.5766
48 z 10.295 2257.7 0.50972E+ 07 0.2477 0.6621
6 z 1.2662 2215.5 0.49084E+ 07 0.2385 0.7445
11 x 1.8105 −1498.9 0.30582E+ 07 0.1631 0.7958
16 x 2.6809 −1498.9 0.22467E+ 07 0.1198 0.8335
7 y 1.3117 −1493.8 0.22314E+ 07 0.1101 0.8709
27 y 4.9842 1355.0 0.18360E+ 07 0.0906 0.9017
34 x 6.5904 925.95 0.85739E+ 06 0.0457 0.9161
8 z 1.5352 −662.25 0.43858E+ 06 0.0213 0.9235
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Figure 10: 15-sensor iteration curve.
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Figure 8: 7-sensor iteration curve.
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respectively. Although both values are less than 0.25, there
are still cases, wherein it is not possible to distinguish in-
dividual locations. However, the maximum value of the off-
diagonal element of the DGSA is 0.0410. Considering that
the off-diagonal elements of the MACmatrices in Figures 12
and 14 are too small, Figure 15 shows the maximum off-
diagonal element of each modal column vector of the MAC
matrices corresponding to the three algorithm optimization
schemes.We can see that the maximum nondiagonal element
in the MAC matrix of DGSA is obviously smaller than the

optimal sensor placement value of the GA algorithm and the
PSO algorithm. At the same time, from the variation of the
curve, we can see that the maximum nondiagonal element
variation range for each order mode of the DGSA is smaller,
and the result obtained is more stable. *is also verifies that
the modal vector corresponding to the DGSA offers greater
discrimination and a better optimization result.

Figures 16–18 and Tables 4–6 show the optimal sensor
placement results and scheme of the three algorithms on the
cable-stayed bridge.
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Figure 12: MAC matrix of GA.
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Figure 11: Performance curves of three algorithms.
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Figure 13: MAC matrix of PSO.
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Figure 14: MAC matrix of DGSA.
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Figure 15: Maximum off-diagonal term at each mode in MAC matrix.
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Figure 16: Optimal sensor placement of GA.

Table 6: Optimal sensor locations of DGSA.

Sensor number 1 2 3 4 5 6 7 8 9 10 11
Node 31 69 81 105 130 156 159 186 221 248 257
Direction z z x z z x z z z z y

y

x
z

Figure 17: Optimal sensor placement of PSO.
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Figure 18: Optimal sensor placement of DGSA.

Table 4: Optimal sensor locations of GA.

Sensor number 1 2 3 4 5 6 7 8 9 10 11
Node 27 27 53 88 109 156 158 186 220 235 240
Direction x z z z z z y z x z z

Table 5: Optimal sensor locations of PSO.

Sensor number 1 2 3 4 5 6 7 8 9 10 11
Node 42 45 80 103 103 137 156 167 179 196 204
Direction y z z x z z z x y z y
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5. Conclusions and Future Work

*is article presents an OSP method based on mode se-
lection and an improved DGSA to solve the sensor place-
ment optimization problem. In order to improve the
optimization ability of the algorithm, the DGSA proposed in
this paper dynamically adjusts the attenuation factor α.At
the beginning of the search, the attenuation factor is small,
and the global search step is large. In the later stage of the
search, the attenuation factor is larger, and the search step
size of the particle is smaller, which is conducive to the
algorithm’s local search. *e modal selection of the initial
sensor layout is determined by the experience of the engi-
neer. In this paper, through the calculation of the modal
mass participation ratio, the vibration mode, which has a
great influence on the bridge’s vibration response, is de-
termined, so as to ensure the effectiveness of the selected
vibration mode matrix.

*e validity and effectiveness of the proposed sensor
placement method with DGSA are both demonstrated using
the example of a cable-stayed bridge. Compared with the GA
algorithm and the PSO algorithm, the sensor placement
method based on the DGSA has a greater optimization
efficiency and a higher convergence speed, and the optimal
placement result is better. In addition, the concept of the
DGSA can be applied not only in sensor placement problems
but also in similar constrained optimization problems.
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