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Bearing is one of the most critical mechanical components in rotating machinery. To identify the running status of bearing
effectively, a variety of possible fault vibration signals are recorded under multiple speeds. However, the acquired vibration signals
have different characteristics under different speeds and environment interference, which may lead to different diagnosis results.
In order to improve the fault diagnosis reliability, a multidomain feature fusion for varying speed bearing diagnosis using broad
learning system is proposed. First, a multidomain feature fusion is adopted to realize the unified form of vibration characteristics
at different speeds. Time-domain and frequency-domain features are extracted from the different speeds vibration signals. +en,
the broad learning system is employed with the fused features for classification. Our experimental results suggest that, compared
with other machine learning models, the proposed broad learning system model, which makes full use of the fused feature, can
improve the diagnosis performance significantly in terms of both accuracy and robustness analysis.

1. Introduction

Rolling elements bearings are important machine elements
that are widely used in railway wheels, wind turbines,
gearboxes, pumps, and helicopter transmissions [1]. +e
running state of axle bearings, as the core component of
high-speed trains, plays an important role in the safe and
stable operation of the high-speed rail [2]. +e railway axle
bearings can support rotatingmachine elements and transfer
loads of machine components under the fast-running state
of a train. As the speed increases, the rolling bearings are
operated under harsh conditions like heavy loads, long-term
alternating stresses, and natural wear [3]. +e axle bearings
operating under these circumstances are prone to failures
such as pitting, spalls, and axle burn-off [4]. If these bearing
faults are ignored, this may lead to equipment damage and
even cause serious safety accidents [5]. +us, it is necessary
to detect the bearing fault and give early warning before

affecting daily operations. Effective fault diagnosis of
bearings can prevent potential accidents and reduce unex-
pected economic loss [4]. It has been found that bearing
faults are often accompanied by abnormal vibration signals,
such as outer ring inner surface faults, cage faults, roller
faults, and the compound faults [6]. +erefore, analyzing
and mining diagnostic information from vibration data have
important scientific significance and high application value.

At present, it is impossible to identify the faults from the
vibration signal directly.+e vibration signal is vulnerable to
the operating environment and unknown factors, such as the
track impact, speed change, and the vehicle body vibration
[7]. It is necessary to eliminate the interference and extract
useful information that can reflect the health of the bearing.
Feature extraction is a key step to solve this problem. It can
transform the original vibration signals onto the statistical
parameters reflecting diverse symptoms of bearing defects
[8]. Many methods have been developed, such as Fourier
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transform (FT), short-time Fourier transform (STFT),
wavelet transform (WT), and wavelet packet decomposition
(WPD) [9–15]. Bouzida et al. [16] employed discrete wavelet
transform to obtain information about the health state of a
system from stator signal over a wide range of frequencies. Li
et al. [17] proposed a feature extraction and evaluation
method based on statistical features. Zhang et al. [18]
proposed an ant colony algorithm for synchronous feature
selection in intelligent fault diagnosis of rotating machinery.
Cong et al. [19] used the slip matrix construction method to
extract features. However, the characteristics of vibration
signal of bearing under different rotating speeds are rarely
discussed. Some researchers have developed several fault
diagnosis methods according to different speeds, respec-
tively [2, 20]. +is method seems to work well dealing with
different speeds, but it lacks convenience in practice. In
addition, the characteristics of the vibration signal across
different speeds have not been studied.

+e vibration signal can be regarded as an expression of a
moving process in time domain and frequency domain [3].
Operating speed of the bearings will also impact the moving
process [21]. +erefore, the inherent characteristic of vibra-
tion signal of variable speed should be extracted from the time
and frequency domain together to achieve better fault di-
agnosis performance [22]. +us, a unified description of
multidomain fusion for varying speed should be studied [21].
+e accuracy of detection mainly depends on the quality of
features extracted from the vibration data. +erefore, a
multidomain features fusion is proposed to present the in-
herent characteristics of the vibration signal for varying speed
comprehensively. +e common time and frequency features
[20] involve mean value, variance, maximum, root mean
square, etc. +ey can capture intrinsic information about
bearing defects. For example, mean value in time domain
represents central trend, and the variance in frequency do-
main conveys message of signal changes. We chose STFT to
extract time domain features for its compatible imple-
mentation in the fast Fourier transform. Meanwhile, WPD
was one of themost widely used and advanced technologies to
analyze signal data in frequency domain. +ese two methods
were combined to extract time and frequency features.

In recent years, machine learning algorithms, such as
broad learning system (BLS), artificial neural network (ANN),
extreme learning machine (ELM), support vector machine
(SVM), and logistic regression (LR) have been applied suc-
cessfully in fault diagnosis of roller bearings [23–26]. Sobie
et al. [21] proposed a novel application of dynamic time
warping (DTW) to bearing fault classification. Toma et al. [27]
used KNN, decision tree, and random forest to evaluate the
bearing faults. Zhang et al. [28] proposed a novel hybridmodel
using permutation entropy (PE), ensemble empirical mode
decomposition (EEMD), and support vector machine (SVM)
to detect roller bearing faults. Recently, BLS has received a lot
of attention due to its outstanding performance in fault di-
agnosis. Zhao et al. [2] employed BLS as classifier to detect the
bearing faults. Zhao et al. [29] proposed semisupervised broad
learning system for fault diagnosis. However, these studies
either directly use BLS without considering the inherent
characteristics of the data or only consider the frequency-

domain characteristics of the signal. It seems that the present
work cannot make full use of BLS in fault diagnosis.

In this paper, we propose a multidomain feature fusion
for varying speed bearing diagnosis using BLS. +e diag-
nostic power of the method is attributable to two features:
First, we extract the intrinsic vibration characteristics at
multiple speeds. A multidomain fusion is adopted to realize
the unified form of vibration characteristics; second, the
kernel-based broad learning system has short computing
time and good generalization ability. Different from pre-
vious studies, the original vibration data at different speeds
are converted into unified time-domain and frequency-
domain data. As far as we know, few studies have adopted
this method to extract diagnostic information from different
speeds at one time. Obviously, with multidomain fusion, the
vibration data of different speeds can be explored thoroughly
under a unified framework to obtain more dynamic fault
information. +e experiment results illustrate that the
proposed method is significantly superior to some other
machine learning models. Meanwhile, the diagnostic power
of BLS with varying speed data is stronger than that with one
speed, which may provide solid evidence that varying speed
data are of great significance to fault diagnosis.

+e remainder of this paper is organized as follows.
Section 2 introduces the framework of the proposed diag-
nosis method.+e proposedmultidomain feature fusion and
BLS are provided in Section 2.+e empirical study is given in
Section 3. Finally, Section 4 offers concluding work and
implications for further research.

2. Methodology

2.1. Analytical Framework. +e general scheme of applying
the multidomain feature fusion for varying speed bearing
diagnosis is shown in Figure 1. +e proposed method in-
cludes three major steps:

(1) Obtain the Vibration Signals under Different Rotating
Speeds. +e raw data were collected from the sensors
and segmented into training dataset and testing
dataset.

(2) Multidomain Feature Fusion. +e acquired vibration
data were preprocessed with time-domain and fre-
quency-domain transformation. +e time statistical
characteristics and the frequency spectra of the vi-
bration signals provide potentially valuable fault
information.

(3) Fault Diagnosis Using BLS. +e obtained fused fea-
tures were utilized to train the BLS and other ma-
chine learning classification models. +en the testing
dataset is used to validate their performance.

2.2. Multidomain Feature Fusion for Varying Speed.
Feature extraction plays an important role in fault diagnosis.
In a condition monitoring system, the bearing is often
running under different speeds. +ese vibration signals of
varying speed contain a variety of possible fault information.
In particular, the dynamic characteristics of different speeds
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should be considered together. +e purpose of multidomain
fusion is to produce more reliable and more accurate in-
formation from varying speed.

In order to capture the diagnostic information, a total of
50 features are extracted from each speed vibration signal, 18
time-domain features, and 32 frequency-domain features as
listed in Tables 1 and 2, respectively. Table 1 presents the
description of 18 time-domain features, including mean
value, mean square, peak-to-peak value, impulse factor, and
crest factor. Table 2 presents the definition of 32 frequency-
domain features, including frequency center and RMS fre-
quency. Among them, p1 and p16 − p18 denote the ampli-
tude and energy of time-domain features. p7 and p11 − p12
reflect the time series distribution. p19 is the energy of
frequency-domain features. p21 − p24, p26, and p30 − p33 are
the spectrum power. p25 and p27 − p29 show the different
positions of the main frequencies. +e remaining features
are extracted by wavelet packet analysis and expressed as
equations p34 − p50.

2.3. Broad Learning System. Broad learning system (BLS)
was proposed by Professor Chen [30]. It is an incremental
learning algorithm based on the random vector function link
neural network (RVFLNN). For this method, firstly, the
original data are projected in the feature space using a linear

function and transformed into features notes of the BLS.
+en enhancement notes are generated by feature notes
randomly through a nonlinear activation function. Next, all
feature nodes and enhancement nodes are directly con-
nected to the output coefficients, which can be obtained by
the ridge regression. Finally, the structure of BLS is con-
structed after the output weight is obtained. Compared with
other deep networks, the structure of BLS is simple. +e BLS
establishes a flat network structure consisting of feature
nodes, enhancement nodes, and output coefficient matrix. It
can quickly extract features from new data and reduce
retraining time. +erefore, the flat network of BLS can be
more effective and efficient in classification and regression
problems without deep architecture [29]. +e BLS structure
is shown in Figure 2 [30].

(1) For the input data X, the linear transformation
function mapping is used to project data, which
become the ith mapped features Zi.

Zi � ∅i XWei + βei( 􏼁, (1)

where Wei and βei are the random weights with the
proper dimensions. Denote Zi ≡ [Z1, . . . , Zn], which
is the concatenation of all the first i groups of
mapping features and n is the number of groups of
feature nodes; i � 1, . . . , n.
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Figure 1: +e framework of the proposed method.
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(2) Similarly, the jth group of enhancement nodes Hj

can be generated using the nonlinear function
transformation

Hj � ξi ZnWhj + βhj􏼐 􏼑, (2)

where Whj and βhj are random weight coefficients
with appropriate dimensions. +e concatenation of
all the first j groups of enhancement nodes is
denoted as Hm ≡ [H1, . . . , Hm]. m is the total
number of enhancement nodes; j � 1, . . . , m.
Hence, the BLS can be represented as the equation of
the form
Y � Z1, . . . , Zn | ξ ZnWh1

+ βh1
􏼐 􏼑, . . . , ξ ZnWhm

+ βhm
􏼐 􏼑􏽨 􏽩W

m

� Z1, . . . , Zn | H1, . . . , Hm􏼂 􏼃W
m

� Z
n

| H
m

􏼂 􏼃W
m

,

(3)

where Wm � [Zn|Hm]+Y. Wm are the connecting
weights coefficients and can be easily computed
using the ridge regression.

3. Experiment and Analysis

3.1. Experiment Data and Environment. In order to verify
the effectiveness of the proposed method, the experiments
were carried out on a rotary machine experimental platform,
as shown in Figure 3. +e platform can simulate various
operating conditions of trains with infinite long rail through
double-wheel reverse scrolling. +e test rig can simulate
various operating conditions of trains. +e fault states of
train can be imitated through artificially seeded defects in
bench experiments. Experiments were designed with three
faulty bearings and one normal bearing. Under each type of
fault defects, the bearing was running at the speeds of 30 km/
h, 50 km/h, and 100 km/h for 2 minutes, respectively, and
the 10 seconds’ vibration data were collected with the
sampling frequency of 10 kHz. For each bearing defect in
certain speed, 10,000 pieces of data were sampled. +e fault
types and speeds are shown in Table 3. According to the
sampling frequency and rotating speed, the number of
sampling points included in a cycle during the bearing
rotation is calculated. +erefore, the original data were

Mapped 
feature 1

Mapped
feature 2

Mapped
feature n

Enhancement nodes

X

Wm

Y

ϕ (XWei + βei), i = 1, ..., n. ξ ([Z1, Z2, ..., Zn]Whj + βhj), j = 1, ..., m

Z1 Z2 Zn H1 Zm

Figure 2: +e BLS structure.

Table 1: Time-domain features.
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Note: xi denotes a signal data for i � 1, 2, . . . , N. N indicates the number of signal points.

Table 2: Frequency-domain features.
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Note: si shows a spectrum for i � 1, 2, . . . , K. K describes the number of spectrum lines. fi is the frequency value of the kth spectrum line.
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divided into smaller datasets according to different faults
and speeds.

In order to capture the dynamic diagnostic information,
there are 18 time-domain features and 32 frequency-domain
features extracted from each vibration signal, as listed in
Tables 1 and 2. +ese features are fused to form the mul-
tidomain features. +e obtained fused features can be uti-
lized to train the BLS for fault diagnosis.

3.2. Fault Classification. To further verify the effectiveness of
the proposed method, the multidomain fusion features are
used to train the BLS, ANN, SVM, ELM, and LR as the
classification model. +e SVM classifier is a margin-based
supervised machine learning method. SVM model can be
effectively applied in nonlinearly separable data. +e radial
basis function was used in SVM model. ELM is a single
hidden layer neural network algorithm and has been widely
used in many fields because of simple mathematical de-
scription, lower computational burden, and faster learning
speed [31]. ANN was inspired by biological nervous systems
function of the man brain. It is suitable for complex natural
systems by establishing relationships among highly anoma-
lous nonlinear variables and producing sophisticated, accu-
rate, and reliable results [32]. In this study, the number of
hidden neurons of ELM and ANNmodels was determined by

trial-and-error testing. LR is capable of bearing fault diagnosis
for its high accuracy in the nearly linearly separable data.

+e accuracy of each fault is used to evaluate the per-
formance of these classifiers. +e fault diagnosis perfor-
mances of these models are shown in Table 4. +e
comparison results of accuracy of each fault and average
accuracy are provided. +e proposed BLS model has the
highest average accuracy in testing compared to other
machine learning methods. Furthermore, BLS constantly
outperforms other methods for each fault, followed by SVM,
ANN, and ELM, whereas LR ranks last.

+e robustness of the proposed method is also assessed.
Due to the random variables in BLS model, we ran the ex-
periment ten times to obtain the average performance of BLS
and analyzed its robustness according to standard deviation of
accuracy. +e results are provided in Figure 4. +e standard
deviations of accuracy are as follows: 0.009 (ZC1), 0.007 (ZC2),
0.012 (ZC3), 0.005 (ZC4), and 0.002 (Average). Generally, the
performance of the BLS is stable, since the standard deviations
from the accuracy of each fault are small. +e standard de-
viation from average accuracy is smaller than others.

To further examine the effectiveness of the multidomain
fusion for varying speed, the training data are classified into
three types: “30 km/h,” “50 km/h,” and “100 km/h.” +ese
are vibration data under different speeds. When one dataset
is used to train the BLS, the other two datasets are tested. For

Table 3: Description of bearing dataset.

Name Fault type Speed (km/h) Fault classification
ZC1 Outer race defects 30, 50, 100 1
ZC2 Cage defect 30, 50, 100 2
ZC3 Pin roller defect 30, 50, 100 3
ZC4 Normal 30, 50, 100 4

Figure 3: Experimental setup.

Table 4: Comparison of classification accuracy.

Models ZC1 ZC2 ZC3 ZC4 Average accuracy (%)
BLS 96.23 97.60 94.49 98.74 96.2
ANN 87.28 83.17 86.59 89.68 86.68
ELM 73.47 92.15 84.21 88.92 84.69
SVM 92.99 94.34 97.97 88.86 93.54
LR 74.13 88.65 82.82 89.32 83.73
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comparison with the BLS, we conducted other experiments
using SVM, ANN, ELM, and LR to test the effectiveness of
different combinations. +e experimental results are

recorded in Table 5. Generally, the performance of the five
models with different combinations is not good. BLS is more
accurate, followed by SVM, ANN, LR, and ELM. When the

0 2 4 6 8 10
90

92

94

96

98

100

Trial number

Av
er

ag
e (

%
)

ZC1
ZC2
ZC3

ZC4
Averaged

Figure 4: Results of 10 trials using BLS.

Table 5: Classification comparison of different combinations.

Models Training dataset (km/h) Testing dataset (km/h) Average accuracy (%)

BLS

30 50 94.12
30 100 79.24
50 30 98.03
50 100 85.63
100 30 74.94
100 50 91.32

ANN

30 50 87.33
30 100 72.44
50 30 80.02
50 100 71.16
100 30 79.46
100 50 90.68

ELM

30 50 82.64
30 100 68.65
50 30 95.25
50 100 81.46
100 30 78.12
100 50 70.18

SVM

30 50 78.91
30 100 80.14
50 30 94.33
50 100 94.42
100 30 80.95
100 50 91.70

LR

30 50 83.05
30 100 64.28
50 30 95.51
50 100 87.98
100 30 63.35
100 50 83.37
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speed of training dataset is higher than that of the testing
dataset, the accuracy of the model seems better. For example,
when the training dataset is “50 km/h” and testing dataset is
“30 km/h,” the classification accuracy of five models is good.
In general, we can get some evidence that (1) there are
declines in diagnosis accuracy; (2) the training and testing
data with a large speed difference make the diagnosis more
difficult; (3) different speeds contain different dynamic
characteristics for fault diagnosis. It has been revealed that
the classifier developed on one speed data may not be ca-
pable of good diagnosis on other speed data On the contrary,
the method proposed in this paper has good performance of
fault diagnosis under multispeed with one classifier.

4. Conclusion

In this paper, we proposed a diagnosis framework using
multidomain feature fusion and machine learning to detect
faults from vibration data at different speeds. +e study
considers the dynamic characteristics of multiple speeds
together to obtain more comprehensive fault diagnosis in-
formation. Features extracted from time and frequency
domains are combined into one vector to present the
characteristics of multiple speeds. +en BLS is developed on
these fused features for fault diagnosis. +e experimental
results suggest that the proposed BLS models with multi-
domain features can significantly improve the forecasting
performance compared with other machine learning
methods. Beside the accuracy, the robustness of the pro-
posed BLS is also analyzed. Moreover, it is also verified that
the classifier developed on one speed data may not be able to
perform well on other speed data. However, this study does
have some limitations, mainly because we only solved this
problem at a certain level.+ere are still some problems to be
investigated. +e relationship between the vibration data of
different speeds is still unknown. How to develop a diag-
nostic model for all speeds is also a problem Furthermore,
the model could deal with multiple domain data such as
multiple sensors and speeds. +ese questions should be
studied in the future.

Data Availability

Data are available upon request to the corresponding author
by e-mail.
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