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Multiaxle steering is widely used in commercial vehicles. However, the mechanism of the self-excited shimmy produced by the
multiaxle steering system is not clear until now. This study takes a dual-front axle heavy truck as sample vehicle and considers the
influences of mid-shift transmission and dry friction to develop a 9 DOF dynamics model based on Lagrange’s equation. Based on
the Hopf bifurcation theorem and center manifold theory, the study shows that dual-front axle shimmy is a self-excited vibration
produced from Hopf bifurcation.The numerical method is adopted to determine how the size of dry friction torque influences the
Hopf bifurcation characteristics of the system and to analyze the speed range of limit cycles and numerical characteristics of the
shimmy system. The consistency of results of the qualitative and numerical methods shows that qualitative methods can predict
the bifurcation characteristics of shimmy systems. The influences of the main system parameters on the shimmy system are also
discussed. Improving the steering transition rod stiffness and dry friction torque and selecting a smaller pneumatic trail and caster
angle can reduce the self-excited shimmy, reduce tire wear, and improve the driving stability of vehicles.

1. Introduction

In recent years, with the rapid development of the trans-
portation industry, high-speed and multiaxle heavy trucks
with dual-front axles have become widely used for their load
capacity, high performance-price ratio, adaptability, and high
horsepower.The dual-front axle steering system is a relatively
advanced steering system given its low cost, simple handling,
steering safety and stability under heavy load, and the less
harm it causes on the road surface during driving. However,
the shimmy problem in its dual-front axle steering system
leads to abnormal tire wear (especially the tire on the second
axle), off-tracking, and shaking of the steering wheel [1–3].

Research on the shimmy of single-axle vehicles can be
traced back to 80 years ago and can be classified into forced
shimmy and self-excited shimmy, which is a Hopf bifurcation
phenomenon. Extensive research has been conducted on
this field and can be used to solve the shimmy problems
in engineering [4–7]. Given the growth in the demand for
multiaxle heavy trucks, current research on the dual-axle
steering system shimmy has demonstrated its significance.

Considering its sophisticated mechanism, the shimmy of
a dual-axle steering system differs from that of a single-
axle steering system. Therefore, many scholars have studied
the problem extensively. Watanabe et al. [1] studied the
effect of the number and position of driving wheels on the
steering performance of dual-axle steering vehicles. Gu et al.
[8] demonstrated the content and method in the design
of heavy trucks with a multiaxle steering system, analyzed
the main problems in this research field in China, and
proposed a design method for a steering system based on
integrated and optimized matching platform for a chassis
system. Hou et al. [9] established the kinematics model and a
mathematical optimization model for the multiaxle steering
system of 10 × 8 heavy-duty vehicle and designed a new
weight function considering the probability of steering angle.
The parameters of multiaxle steering system were optimized.
The result showed that the result with weight function
had better effect than other conditions. Wang et al. [10]
applied a robust design theory with design parameters and
noise factors following a normal distribution in a dual-front
axle steering system. He combined reliability optimization
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with robust design and built a mathematical model for
the robust reliability optimization of dual-front axles with
clearances. Xu et al. [11] developed a steering wheel shimmy
model for a four-axis steering crane without considering the
nonlinear factors and their impact on the four-axis steering
crane shimmy. Nisonger and Wormley [12] compared the
transverse dynamic characteristics of single- and dual-front
axle steering systems, using a nonlinear model with three
degrees of freedom. Wu and Lin [13] found that the double-
front axle can improve a car’s yaw stability. Williams [14]
extended the dual-axle model for vehicles to a multiaxle
model and analyzed its steering ability and handling stability.
By analyzing a linear dual-front axle yaw dynamics model,
Demić [15] analyzed the influence of structural parameters
on the front wheel shimmy of a heavy vehicle and found
that the vibration of suspension can cause front wheel
shimmy. Cole and Cebon [16] developed a vibration model
for the pneumatic suspension of a heavy truck to reduce
the vibration in and damage to the road surface caused by
trucks through suspension parameter optimization. Chen
[17] concluded that two reasons—internal and external—
account for abnormal tire wear, proposed improvement
measures based on his practical experience, and pointed out
directions for future research. Liao [18] and Li et al. [19]
explored the application of multirigid body theory in the
dynamic simulation of a dual-front axle steering system and
proposed the condition underwhich tires bear heavy load in a
dual-front axle vehicle. They also built a spatial model for the
dual-front axle based onADAMSand conducted a simulation
analysis. Using TruckSim, a dynamics analysis software for
vehicles, Li [20] studied how to determine and describe the
seven characteristic parameters of a heavy truck steering
system, namely, axle and suspension, transmission, tire, body,
brake system, and aerodynamics, and laid down a solid
foundation for the study ofmultiaxle steering technology and
the improvement of its handling stability.

Most of the aforementioned studies focus on the con-
structional parameter analysis and simulation of dual-front
axle steering system; however, there is little research on
steering system shimmy, especially there is little research on
the mechanism of Hopf bifurcation produce self-shimmy.
But it is not yet clear about Hopf bifurcation characteristic
of dual-front axle self-shimmy for heavy truck. Therefore,
the research in this area is very important. In this study,
we took a JAC heavy truck as an example and established
nine degrees of freedom equations for the dual-front axle
steering systembased onLagrange’s equation.Wedetermined
the existence and the value of Hopf bifurcation with the use
of the Hurwitz criterion [21] and Hopf bifurcation theorem.
To obtain the manifold for the system in two-dimensional
space, we reduced the dimension of the differential equations
of state using center manifold theory and found the Hopf
paradigm in the polar coordinates with the use of normative
theory so that the Hopf bifurcation characteristics of the
shimmy system of the dual-front axles can be fully analyzed.
Based on the above analysis, we then propose a method
of controlling such shimmy. As such, this study establishes
the theoretical foundation for research on the mechanism
of the dual-front axle self-excited shimmy and provides
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Figure 1: Schematic of dual-front axle steering system.
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Figure 2: Schematic of intermediate steering transmission mecha-
nism.

a reference on the design improvement of steering systems.
The contribution of this study is the finding that the self-
excited shimmy phenomenon of the dual-front axle of a
heavy truck is generated by Hopf bifurcation.

2. Dynamics Model for a Dual-Front Axle
Shimmy System

2.1. Mechanical Model. The schematic of the structure of
the widely used dual-front axle steering system is shown in
Figure 1; the diagram of the steering intermediate transmis-
sion is shown in Figure 2. To facilitate the development of
the mathematical model of the dual-front axle self-excited
shimmy system, the mechanics model of the dual-front axle
self-excited shimmy system is developed based on Figure 2,
with the dual-front axle steering system of a JAC heavy truck
as prototype, the schematics of which are shown in Figure 3.
Figure 3 illustrates the double-front axle steering principle:
the steering force exerted by the driver is passed through
the steering operating mechanism, which is composed of the
steering shaft, transmission shaft, and steering joints, towards
the steering gear (2).The torque is then transmitted to the first
rocker (3) after its torque increases and its speed decreases.
The first rocker (3) then drives the steering knuckle arm (5)

of the first steering bridge through the anterior longitudinal
rod (4) to turn the left wheel to rotate around the kingpin,
which is installed in the first steering bridge. At the same
time, the right wheel driven by the torque, which passes
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Figure 3: Dual-front axle shimmy system mechanics model.

through the left trapezoid arm (14) to the tie rod (8) to the
right trapezoid arm (15), rotates. The second bridge steering
is consistent with the first bridge steering, and the steering
force is passed through the first transition rod (6) to the
intermediate rocker (7) to the second transition rod (9) to the
second rocker (10) to the posterior longitudinal rod (12) and
to the second bridge.

In the mechanical model, the elasticity of the rod is
considered; it is equivalent to a spring-damper unit. In line
with the law of the right-hand coordinate system, the center
of the mass of the vehicle is deemed as the coordinate origin;
the vehicle forward direction is for 𝑥-axis, the vehicle left
direction is for 𝑦-axis, and perpendicular to the ground up
direction is for 𝑧-axis. Figure 3 shows that the system has
nearly 20 rotating hinges. To facilitate the dynamic analysis
and mathematical modeling and to highlight the effect of
multisport hinges, dry friction, and other parameters of
the self-excited shimmy system, as shown in Figure 3, the
following assumptions are made to establish a dynamics
model for the dual-front axle steering shimmy system: (1)
The steering wheel is immobile. (2) The impact of the force
of air is ignored. (3) The various parts associated with the
vibration and their couplings are simplified according to the
moments of inertia, springs, and dampers. (4) The angle
between the steering trapezoid plane and 𝑋𝑌 plane and the
angle between the steering linkage and the 𝑋𝑍 plane are
ignored. (5)Thedirection and speed of the vehicle is constant.
(6) Longitudinal and lateral slips do not occur in the vehicle.
(7)The dry friction in the kinematic pairs is equivalent to the
kingpin of the first or second bridge.

2.2. The Equation for the Motion of the Shimmy System.
According to the dynamics model in Figure 3, we established

the equations for the motion of the dual-front axle steering
shimmy system of heavy vehicles. The shimmy system has
nine degrees of freedom: 𝜃

1
is the swing angle at which the

left wheel of the first bridge rotates around the kingpin. 𝜃
2
is

the swing angle at which the right wheel of the first bridge
rotates around the kingpin. 𝜑

1
is the lateral swing angle of the

first bridge. 𝜃
3
is the swing angle at which the left wheel of

the second bridge rotates around the kingpin. 𝜃
4
is the swing

angle at which the right wheel of the second bridge rotates
around the kingpin. 𝜑

2
is the lateral swing angle of the second

bridge. 𝛿
1
is the swing angle of the first rocking arm. 𝛿

2
is the

swing angle of the intermediate steering arm. 𝛿
3
is the swing

angle of the second rocking arm.
In this study, the mathematical model of the shimmy

system of the sample vehicle is established using Lagrange’s
equations, which can be expressed as

𝑑

𝑑𝑡

(

𝜕𝑇

𝜕�̇�
𝑘

) −

𝜕𝑇

𝜕𝑞
𝑘

+

𝜕𝑈

𝜕𝑞
𝑘

+

𝜕𝐷

𝜕�̇�
𝑘

= 𝑄
𝑘

(𝑘 = 1, 2, 3, . . . , 9) ,

(1)

where 𝑞
𝑘
represents nine degrees of freedom of the system,

𝑇 represents the system’s kinetic energy, 𝑈 represents the
system’s potential energy,𝐷 represents the system’s dissipated
energy, and 𝑄

𝑘
represents the nine generalized forces to

which the system is subjected.
According to Figure 3, kinetic energy, potential energy,

dissipated energy, and the nine generalized forces of the dual-
front axle steering shimmy system are obtained as follows.
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The kinetic energy of the shimmy system is
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where 𝐼
𝑖
(𝑖 = 1, 2) is the moment of inertia of the wheel

around the kingpin in 𝑖th bridge, 𝐼
𝑐𝑖
(𝑖 = 1, 3) is the moment

of inertia of 𝑖th rocker, 𝐼
𝑐2

is the moment of inertia of the
intermediate rocker, and 𝐽

𝑖
(𝑖 = 1, 2) is the moment of inertia

of 𝑖th bridge around its side off-axis.
The potential energy of the shimmy system is
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where 𝑘
ℎ𝑖
(𝑖 = 1, 2) is the stiffness of the tie rod converted

into the stiffness around the kingpin; 𝑘
𝑛
is the equivalent

angle stiffness of the suspension converted into the side swing
center; 𝑘

𝑡
is the inverse stiffness of the first rocking arm

to the steering wheel; 𝑘
𝑡𝑖
(𝑖 = 1, 2) is the stiffness of 𝑖th

transition rod; 𝑘
𝑧𝑖
(𝑖 = 1, 2) is the stiffness of the front and rear

longitudinal rods; 𝑟
1
is the effective length of the first arm; 𝑟

2
is

the effective length of themiddle arm; 𝑟
3
is the effective length

of the second arm;𝑔
1
,𝑔
2
, and𝑔

3
are the distances between the

pivot point of the rocker and the transition lever and the fixed
end of the rocker arm; and 𝑎

𝑖
(𝑖 = 1, 2) is the distance between

the hinge point of 𝑖th bridge knuckle arm and vertical rod and
kingpin.

The dissipated energy of the shimmy system is
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where 𝑐
𝑙𝑖
(𝑖 = 1, 2) is the equivalent damping of 𝑖th wheel

around the kingpin, 𝑐
ℎ𝑖
(𝑖 = 1, 2) is the damping of the tie

rod converted into the damping around the kingpin, 𝑐
𝑛
is the

equivalent damping of the suspension converted into the side
swing center, 𝑐

𝑡
is the inverse damping of the first rocking

arm to the steering wheel, 𝑐
𝑡𝑖
(𝑖 = 1, 2) is the damping of

𝑖th transition rod, 𝑐
𝑧𝑖
(𝑖 = 1, 2) is the damping of the front

and rear longitudinal rods, 𝑀
11

is the equivalent friction
torque of the first bridge at the right wheel kingpin,𝑀

12
is the

equivalent friction torque of the first bridge at the left wheel
kingpin, 𝑀

21
is the equivalent friction torque of the second

bridge at the right wheel kingpin, and 𝑀
22

is the equivalent
friction torque of the second bridge at the left wheel kingpin.

The nine generalized forces of the shimmy system are as
follows; for details about the procedure for calculation of the
generalized forces see appendix:
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where 𝑖
𝑘𝑖
(𝑖 = 1, 2) is the moment of inertia of the wheel

around its own axis of rotation in 𝑖th bridge, V is the vehicle
speed, 𝑅 is the rolling radius of the tire, 𝐹

1
is the first bridge

right wheel subjected to lateral force, 𝐹
2
is the first bridge left

wheel subjected to lateral force, 𝐹
3
is the second bridge right

wheel subjected to lateral force, 𝐹
4
is the second bridge left

wheel subjected to lateral force, 𝛾 is the kingpin caster angle of
the wheel, 𝑒 is the pneumatic trail, 𝜌 is the tire lateral stiffness,
ℎ
𝑖
is the height of 𝑖th suspension roll center (𝑖 = 1, 2), 𝑘

𝑐

is the tire vertical stiffness, 𝐵
𝑖
(𝑖 = 1, 2) is the tread in 𝑖th

bridge, 𝑙
𝑖
(𝑖 = 1, 2) is the distance between the point of the

kingpin extension linewith the ground intersection and plane
of symmetry of thewheel,𝑓 is the friction coefficient between
the tire and the ground, and 𝜎 is the tire relaxation length.

According to (2) to (5), the kinetic equations for the
system are derived from Lagrange’s equations, as given by (1).
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Equations for the motion of the right wheel of the first
bridge around the kingpin are as follows:
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Equations for the motion of the left wheel of the first bridge
around the kingpin are as follows:
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Lateral swing equations for the motion of the first bridge are
as follows:
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Equations for the motion of the right wheel of the second
bridge around the kingpin are as follows:
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3
+ 𝑐
𝑙2

̇
𝜃
3
+ 𝑘
ℎ2
(𝜃
3
− 𝜃
4
) + 𝑐
ℎ2
(
̇
𝜃
3
−

̇
𝜃
4
) +

𝑖
𝑘2
V

𝑅

�̇�
2

+ (𝜌𝑅ℎ
2
𝛾 +

1

2

𝑘
𝑐
𝑙
2
𝐵
2
(𝛾 − 𝑓)) 𝜑

2
− 𝐹
3
(𝑅𝛾 + 𝑒)

+𝑀
21
= 0.

(9)

Equations for themotion of the leftwheel of the secondbridge
around the kingpin are as follows:

𝐼
2
̈
𝜃
4
+ 𝑐
𝑙2

̇
𝜃
2
+ 𝑘
ℎ2
(𝜃
4
− 𝜃
3
) + 𝑐
ℎ2
(
̇
𝜃
4
−

̇
𝜃
3
)

+ 𝑘
𝑧2
𝑎
2
(𝑟
3
𝛿
3
+ 𝑎
2
𝜃
4
) + 𝑐
𝑧2
𝑎
2
(𝑟
3
̇
𝛿
3
+ 𝑎
2
̇
𝜃
4
)

+

𝑖
𝑘2
V

𝑅

�̇�
2
+ (𝜌𝑅ℎ

2
𝛾 +

1

2

𝑘
𝑐
𝑙
2
𝐵
2
(𝛾 − 𝑓)) 𝜑

2

− 𝐹
4
(𝑅𝛾 + 𝑒) +𝑀

22
= 0.

(10)

Lateral swing equations for the motion of the second bridge
are as follows:

𝐽
2
�̈�
2
+ 𝑐
𝑛2
�̇�
2
+ (

1

2

𝑘
𝑐
𝐵
2

2
+ 𝑘
𝑛
+ 2𝜌𝑅ℎ

2
)𝜑
2

−

𝑖
𝑘2
V

𝑅

(
̇
𝜃
3
+

̇
𝜃
4
) + (𝐹

3
+ 𝐹
4
) ℎ
2
= 0.

(11)
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Figure 4: Curve of relationship between 𝐹
𝑖
and 𝛼

𝑖
.

Swing equations for the motion of the first rocking arm are as
follows:

𝐼
𝑐1

̈
𝛿
1
+ 𝑐
𝑡
̇
𝛿
1
+ 𝑘
𝑡
𝛿
1
+ 𝑐
𝑡1
𝑔
1
(𝑔
1
̇
𝛿
1
− 𝑟
2
̇
𝛿
2
)

+ 𝑘
𝑡1
𝑔
1
(𝑔
1
𝛿
1
− 𝑟
2
𝛿
2
) + 𝑐
𝑧1
𝑟
1
(𝑟
1
̇
𝛿
1
+ 𝑎
1
̇
𝜃
2
)

+ 𝑘
𝑧1
𝑟
1
(𝑟
1
𝛿
1
+ 𝑎
1
𝜃
2
) = 0.

(12)

Swing equations for the motion of the intermediate steering
arm are as follows:

𝐼
𝑐2

̈
𝛿
2
+ 𝑐
𝑡1
𝑟
2
(𝑟
2
̇
𝛿
2
− 𝑔
1
̇
𝛿
1
) + 𝑘
𝑡1
𝑟
2
(𝑟
2
𝛿
2
− 𝑔
1
𝛿
1
)

+ 𝑐
𝑡2
𝑔
2
(𝑔
2
̇
𝛿
2
− 𝑔
3
̇
𝛿
3
) + 𝑘
𝑡2
𝑔
2
(𝑔
2
𝛿
2
− 𝑔
3
𝛿
3
)

= 0.

(13)

Swing equations for themotion of the second rocking arm are
as follows:

𝐼
𝑐3

̈
𝛿
3
+ 𝑐
𝑡2
𝑔
3
(𝑔
3
̇
𝛿
3
− 𝑔
2
̇
𝛿
2
) + 𝑘
𝑡2
𝑔
3
(𝑔
3
𝛿
3
− 𝑔
2
𝛿
2
)

+ 𝑐
𝑧2
𝑟
3
(𝑟
3
̇
𝛿
3
+ 𝑎
2
̇
𝜃
4
) + 𝑘
𝑧2
𝑟
3
(𝑟
3
𝛿
3
+ 𝑎
2
𝜃
4
) = 0.

(14)

2.3. Tire Model Selection. Several nonlinear tire models are
commonly used in the simulation of vehicle dynamics, such
as Pacejka’s magic formula, cubemodel, Guo Konghui’s semi-
empirical tire theoretical model, and Gim’s tire models [22–
25]. Equations (15) and (16) are the mathematical expressions
of the cube and magic formula models, respectively. The
cornering force curves of these two tire models are shown
in Figure 4, which shows that two cornering force curves
have the same trend and that the cube model is similar to
the magic formula. Moreover, the cube model is simple; it
does not require a considerable amount of experimental data,
can precisely reveal the performance characteristic trends of
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Table 1: Parameters of tire model.

𝐶
1𝑓

𝐶
3𝑓

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

𝑎
8

32740 481770 −22.1 1011 1078 1.82 0.208 0 −0.354 0.707

the tire force, and does not contain trigonometric functions,
thereby facilitating qualitative analysis. As such, we choose
the cube model as the tire model in this study. The cube
model is the third-order truncation of themagic formula [23].
The coefficients (𝐵

𝑖
, 𝐷
𝑖
, and 𝐸

𝑖
) of magic formula take into

account the impact of the vertical load𝐹
𝑍𝑖
. So the cubemodel

cube considers the vertical force 𝐹
𝑍𝑖
:

𝐹
𝑖
= − (𝐶

1𝑓
𝛼
𝑖
− 𝐶
3𝑓
𝛼
𝑖

3
) , (𝑖 = 1, 2, 3, 4) , (15)

𝐹
𝑖
= 𝐷
𝑖
sin (𝐶

𝑖

× arctan (𝐵
𝑖
𝑎
𝑖
− 𝐸
𝑖
(𝐵
𝑖
𝑎
𝑖
− arctan (𝐵

𝑖
𝑎
𝑖
)))) .

(16)

In this model,

𝐵
𝑖
=

𝑎
3
⋅ sin (𝑎

4
⋅ (arctan (𝑎

5
⋅ 𝐹
𝑍𝑖
)))

𝐶
𝑖
⋅ 𝐷
𝑖

,

𝐶
𝑖
= 1.3,

𝐷
𝑖
= 𝑎
1
⋅ 𝐹
𝑍𝑖

2
+ 𝑎
2
⋅ 𝐹
𝑍𝑖
,

𝐸
𝑖
= 𝑎
6
⋅ 𝐹
𝑍𝑖

2
+ 𝑎
7
⋅ 𝐹
𝑍𝑖
+ 𝑎
8
,

(𝑖 = 1, 2, 3, 4) ,

(17)

where 𝐶
1𝑓

and 𝐶
3𝑓

are the fitting coefficients of the tire,
𝛼
𝑖
(𝑖 = 1, 2, 3, 4 denote the first bridge right wheel, the first

bridge left wheel, the second bridge right wheel, and the
second bridge left wheel, resp.) is the side-slip angle of the
tire; 𝐵

𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, and 𝐸

𝑖
denote the stiffness, shape, crest, and

curvature factors, respectively; 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
, 𝑎
7
, and 𝑎

8

are obtained by test fitting; 𝐹
𝑍𝑖

is the vertical forces on the
tires. For details see appendix about 𝐹

𝑍𝑖
, 𝐶
1𝑓
, and 𝐶

3𝑓
. The

required values [26, 27] are shown in Table 1.
The relationship curve between the tire force 𝐹

𝑖
and the

side-slip angle 𝛼
𝑖
is shown in Figure 4.

The following are the tire rolling nonholonomic con-
straint equations [28], namely, the relationship between slip
angle and the shimmy angle,

�̇�
𝑖
+

V
𝜎

𝛼
𝑖
+

V
𝜎

𝜃
𝑖
−

𝑒
𝑖

𝜎

̇
𝜃
𝑖
, 𝑖 = 1, 2, 3, 4. (18)

2.4. Dry Friction Model Selection. In this study, the dry
frictions in the suspension and steeringmechanism ball kine-
matic pairs and steering gear kinematic pairs are considered.
Suspension and steering systems are complex self-excited
shimmy systems; thus, we made the kinematic pairs dry
friction of the suspension and the steering system, except
for the dry friction in the kingpin, equivalent to that of
the kingpin because the dry friction in the kingpin is the
main component of sports vice dry friction. We studied only
the effect of the value of dry friction torque on the Hopf

bifurcation of the shimmy system and therefore we change
only the dry friction torque 𝑀, when making numerical
calculations.

We selected the Coulomb model as the ideal friction
model in this study. It has a constant value and is always
in the opposite direction of the relative motion. This kind
of friction always impedes movement and is always in the
opposite direction of the movement speed. Its mathematical
expression is

𝑀
𝑖𝑗
= 𝑀 sgn ( ̇

𝜃
𝑖𝑗
) (𝑖, 𝑗 = 1, 2) ,

|𝑀| =

{

{

{

𝜇
𝑠
𝑁𝑟 (

̇
𝜃
𝑖𝑗
= 0)

𝜇𝑁𝑟 (
̇
𝜃
𝑖𝑗

̸= 0)

(𝑖, 𝑗 = 1, 2) ,

(19)

where 𝜇 is the coefficient of sliding friction, 𝜇
𝑠
is the

coefficient of static friction, 𝑁 denotes a positive pressure,
and 𝑟 is the main pin radius.

The parameter values of the sample vehicle are shown in
Table 2.

3. Hopf Bifurcation Qualitative Analysis of
the Shimmy System

3.1. Existence Analysis of Hopf Bifurcation. The existence
analysis and stability assessment of Hopf bifurcation in a
nonlinear system are the most fundamental and important
assessments in studying the dynamics of a nonlinear system.
Hurwitz criterion is applied to investigate the existence of
Hopf bifurcation in the dual-front axle shimmy system. The
center manifold approach is applied to reduce and simplify
the nonlinear system and obtain a two-dimensional system.
The Hopf bifurcation paradigm is then applied to investigate
the stability of the bifurcation of limit cycles.

Make 𝑥
1
= 𝜃
1
, 𝑥
2
=

̇
𝜃
1
, 𝑥
3
= 𝜃
2
, 𝑥
4
=

̇
𝜃
2
, 𝑥
5
= 𝜑
1
, 𝑥
6
= �̇�
1
,

𝑥
7
= 𝜃
3
, 𝑥
8
=

̇
𝜃
3
, 𝑥
9
= 𝜃
4
, 𝑥
10

=
̇
𝜃
4
, 𝑥
11

= 𝜑
2
, 𝑥
12

= �̇�
2
,

𝑥
13

= 𝛿
1
, 𝑥
14

=
̇
𝛿
1
, 𝑥
15

= 𝛿
2
, 𝑥
16

=
̇
𝛿
2
, 𝑥
17

= 𝛿
3
, 𝑥
18

=
̇
𝛿
3
,

𝑥
19

= 𝛼
1
, 𝑥
20

= 𝛼
2
, 𝑥
21

= 𝛼
3
, and 𝑥

22
= 𝛼
4
. Assume 𝑋 =

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
, 𝑥
11
, 𝑥
12
, 𝑥
13
, 𝑥
14
, 𝑥
15
, 𝑥
16
,

𝑥
17
, 𝑥
18
, 𝑥
19
, 𝑥
20
, 𝑥
21
, 𝑥
22
); according to the theory of

nonlinear dynamics, the equilibrium point𝑋
0
is obtained by

solving the system static equations. Equations (6) to (14) can
be expressed as the following static equations:

�̇� = 𝐴𝑋 + 𝐹 (𝑋) , 𝑋 ∈ 𝑅
22
, (20)

where 𝐴 is the Jacobian matrix in the equilibrium point
vicinity of the system and 𝐹(𝑋) contains quadratic and cubic
nonlinear terms.

According to Hurwitz criterion, the equilibrium point of
the system is stable when V = V

1
or when V = V

2
, whereas

the equilibrium point of the system is unstable when V
1
≤

V ≤ V
2
and when the critical speeds are V

1
= 15.6 km/h and

V
2
= 40.8 km/h. The eigenvalues of the Jacobian matrix 𝐴 are

shown in Table 3.
According to Table 3, the Jacobian matrix𝐴 of the system

has a pair of purely imaginary eigenvalues when V = V
1
and

V = V
2
, and the other eigenvalues have negative real parts.
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Table 2: Sample car parameter values.

Parameter Value
𝐼
1
, 𝐼
2
/kg⋅m2⋅rad−1 16.8

𝐽
1
, 𝐽
2
/kg⋅m2⋅rad−1 210.8

𝐼
𝑐1
/kg⋅m2⋅rad−1 0.38

𝐼
𝑐2
/kg⋅m2⋅rad−1 0.22

𝐼
𝑐3
/kg⋅m2⋅rad−1 0.28

𝑖
𝑘1
, 𝑖
𝑘2
/kg⋅m2⋅rad−1 14.2

𝑘
ℎ1
, 𝑘
ℎ2
/N⋅rad−1 37790

𝑐
ℎ1
, 𝑐
ℎ2
/N⋅m⋅s⋅rad−1 25

𝑐
𝑙1
, 𝑐
𝑙2
/N⋅m⋅s⋅rad−1 42

𝑘
𝑛
/N⋅rad−1 31360

𝑐
𝑛
/N⋅m⋅s⋅rad−1 1027

𝛾
1
, 𝛾
2
/∘ 2.5

𝑙
1
, 𝑙
2
/m 0.07

𝑟
1
/m 0.34

𝑟
3
/m 0.47

𝑔
2
/m 0.26

𝑎
1
/m 0.21

𝑘
𝑧1
, 𝑘
𝑧2
/N⋅rad−1 36000

𝑐
𝑧1
, 𝑐
𝑧2
/N⋅m⋅s⋅rad−1 30

𝑘
𝑡1
, 𝑘
𝑡2
/N⋅m−1 37200

𝑐
𝑡1
, 𝑐
𝑡2
/N⋅s 15

𝑘
𝑐
/N⋅rad−1 1060000

𝑓 0.015
𝑘
𝑡
/N⋅rad−1 31000

𝑐
𝑡
/N⋅m⋅s⋅rad−1 10

𝜌/N⋅rad−1 765000
𝑅/m 0.51
𝑒
1
, 𝑒
2
/m 0.07

ℎ
1
, ℎ
2
/m 0.45

𝐵
1
, 𝐵
2
/m 2.06

𝑟
2
/m 0.42

𝑔
1
/m 0.17

𝑔
3
/m 0.22

𝑎
2
/m 0.21

Using theHopf bifurcation theorem as basis, we can conclude
that the critical speeds V

1
= 15.6 km/h and V

2
= 40.8 km/h are

the bifurcation points of the systems, and a two-dimensional
center manifold exists. When V

1
≤ V ≤ V

2
, positive real part

eigenvalues exist, and the original shimmy system has self-
excited vibrations and produces limit cycles. When V < V

1

or V > V
2
, all the eigenvalues of 𝐴 have negative real parts,

and the original shimmy system is stable asymptotically and
eventually becomes balanced.

3.2. Stability Analysis of Limit Cycles. The center manifold
approach is applied to determine the stability of the original
system in low-dimensional systems and to reduce the original
system. Assuming 𝜇

𝑘
= V−V

𝑘
(𝑘 = 1, 2), 𝜇

𝑘
is an increment in

the speed bifurcation parameter at the bifurcation point and
has a minimum value. Using the nonsingular transformation
𝑋 = 𝑃𝑌, where 𝑌 has the same dimensions as 𝑋, 𝑃

Table 3: Eigenvalues of Jacobian matrix 𝐴 corresponding to the
critical speed.

V
1
corresponding eigenvalues V

2
corresponding eigenvalues

𝜆
1

0 + 12.11𝑖 𝜆
1

0 + 14.56𝑖

𝜆
2

0 − 12.11𝑖 𝜆
2

0 − 14.56𝑖

𝜆
3

−165.44 + 780.83𝑖 𝜆
3

−165.44 + 780.83𝑖

𝜆
4

−165.44 − 780.83𝑖 𝜆
4

−165.44 − 780.83𝑖

𝜆
5

−71.40 + 549.08𝑖 𝜆
5

−71.40 + 549.08𝑖

𝜆
6

−71.40 − 549.08𝑖 𝜆
6

−71.40 − 549.08𝑖

𝜆
7

−4.37 + 63.15𝑖 𝜆
7

−4.25 + 63.16𝑖

𝜆
8

−4.37 − 63.15𝑖 𝜆
8

−4.25 − 63.16𝑖

𝜆
9

−4.34 + 61.78𝑖 𝜆
9

−4.22 + 61.79𝑖

𝜆
10

−4.34 − 61.78𝑖 𝜆
10

−4.22 − 61.79𝑖

𝜆
11

−2.18 + 26.88𝑖 𝜆
11

−1.62 + 27.73𝑖

𝜆
12

−2.18 − 26.88𝑖 𝜆
12

−1.62 − 27.73𝑖

𝜆
13

−2.24 + 26.81𝑖 𝜆
13

−1.79 + 27.46𝑖

𝜆
14

−2.24 − 26.81𝑖 𝜆
14

−1.79 − 27.46𝑖

𝜆
15

−1.22 + 16.21𝑖 𝜆
15

−0.98 + 17.65𝑖

𝜆
16

−1.22 − 16.21𝑖 𝜆
16

−0.98 − 17.65𝑖

𝜆
17

−243.78 + 911.55𝑖 𝜆
17

−243.78 + 911.55𝑖

𝜆
18

−243.78 − 911.55𝑖 𝜆
18

−243.78 − 911.55𝑖

𝜆
19

−8.92 𝜆
19

−15.14

𝜆
20

−6.64 𝜆
20

−13.58

𝜆
21

−3.55 𝜆
21

−9.09

𝜆
22

−3.54 𝜆
22

−9.10

is composed of the real and imaginary parts of all the
eigenvectors, andΛ = 𝑃

−1
𝐴𝑃 is 22×22 diagonal matrix; (20)

is converted into

�̇� = Λ𝑌 + 𝑃
−1
𝑔 (𝑌, 𝜇

𝑘
) . (21)

Using center manifold theory to reduce dimension, the
center manifold 𝑊

𝑐 of the expansion system represented by
(21) is tangent to the plane of (𝑦

1
, 𝑦
2
, 𝜇
𝑘
) at the singular point

(𝑋
0
, V
0
), assuming the center manifold

𝑦
𝑖
= ℎ
𝑖
(𝑦
1
, 𝑦
2
, 𝜇
𝑘
)

= ℎ
𝑖1
𝑦
1

2
+ ℎ
𝑖2
𝜇
𝑘
𝑦
1
+ ℎ
𝑖3
𝜇
𝑘
𝑦
2
+ ℎ
𝑖4
𝑦
2

2
,

𝑖 = 3, 4, . . . , 21, 22,

(22)

�̇�
𝑖
=

𝜕ℎ
𝑖
(𝑦
1
, 𝑦
2
, 𝜇
𝑘
)

𝜕𝑦
1

�̇�
1
+

𝜕ℎ
𝑖
(𝑦
1
, 𝑦
2
, 𝜇
𝑘
)

𝜕𝑦
2

�̇�
2

+

𝜕ℎ
𝑖
(𝑦
1
, 𝑦
2
, 𝜇
𝑘
)

𝜕𝜇
𝑘

𝜇
𝑘
.

(23)

Equation (22) is substituted into (21) and is then com-
bined with (23), after which the coefficients of the same item
on both sides of the equation are compared using the software
Maple. In solving the linear equations, the coefficients of
ℎ
𝑖
(𝑦
1
, 𝑦
2
, V) (𝑖 = 3, 4, . . . , 21, 22) can be obtained and brought

into the previous two equations of (21). After simplifying
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the equation, reduction equations can be obtained when V
1
=

15.6 km/h or V
2
= 40.8 km/h at the center manifold.

When V = V
1
= 15.6 km/h, the reduction equation is

�̇�
1
= 1.21 × 10𝑦

2
+ 0.762𝑦

2
𝜇
1
− 0.396𝑦

1
𝜇
1
− 0.169

× 10
−3
𝑦
2
𝜇
1

2
− 0.156 × 10

−4
𝑦
2

3
− 0.118

× 10
−3
𝑦
1
𝜇
1

2
− 0.556 × 10

−3
𝑦
1
𝑦
2

2
− 0.66

× 10
−2
𝑦
1

2
𝑦
2
− 0.261 × 10

−1
𝑦
1

3
+ 0.426

× 10
−4
𝑦
1

2
𝑦
2
𝜇
1
+ 0.464 × 10

−4
𝑦
1

3
𝜇
1
,

�̇�
2
= −1.21 × 10𝑦

1
− 0.148𝑦

1
𝜇
1
+ 0.853𝑦

2
𝜇
1
+ 0.998

× 10
−4
𝑦
1
𝜇
1

2
+ 0.113 × 10

−1
𝑦
1

3
+ 0.429

× 10
−4
𝑦
2
𝜇
1

2
+ 0.286 × 10

−2
𝑦
1

2
𝑦
2
+ 0.242

× 10
−3
𝑦
1
𝑦
2

2
− 0.201 × 10

−4
𝑦
1

3
𝜇
1
− 0.187

× 10
−4
𝑦
1

2
𝑦
2
𝜇
1
.

(24)

When V = V
2
= 40.8 km/h, the reduction equation is

�̇�
1
= 1.46 × 10𝑦

2
− 0.414 × 10

−2
𝑦
1
+ 0.522𝑦

2
𝜇
2

− 0.550𝑦
1
𝜇
2
− 0.784 × 10

−2
𝑦
2

3
+ 0.118

× 10
−4
𝑦
1
𝜇
2

2
− 0.487 × 10

−1
𝑦
2

2
𝑦
1

− 0.101𝑦
2
𝑦
1

2
− 0.697 × 10

−1
𝑦
1

3
− 0.259

× 10
−4
𝑦
2
𝑦
1

2
𝜇
2
− 0.231 × 10

−4
𝑦
1

3
𝜇
2
,

�̇�
2
= −1.46 × 10𝑦

1
− 0.414 × 10

−2
𝑦
2
+ 0.275

× 10
−1
𝑦
1
𝜇
2
+ 0.261𝑦

2
𝜇
2
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× 10
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𝑦
1
𝜇
2

2
+ 0.391 × 10

−1
𝑦
1

3
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× 10
−4
𝑦
2
𝜇
2

2
+ 0.565 × 10

−1
𝑦
2
𝑦
1

2
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× 10
−1
𝑦
2

2
𝑦
1
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𝑦
2
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𝑦
1

3
𝜇
2
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𝑦
2
𝑦
1

2
𝜇
2
.

(25)

According to the literature [29], the Hopf bifurcation
paradigm under the polar coordinates of (24) to (25) can be
obtained using Maple procedures:

̇𝑟 = dur + 𝑎𝑟
3
+ h.o.t.,

̇
𝜃 = 𝜔 + 𝑏𝑟

2
+ h.o.t.,

(26)

where h.o.t. represents infinitesimals of higher order.
According to (24)∼(28), we can obtain the following.

F

𝜇sN
𝜇N

	r

−𝜇N
−𝜇sN

Figure 5: Shimmy system friction with the change of velocity curve.

For V = V
1
= 15.6 km/h,

̇𝑟 = (−0.751 × 10
−4
𝜇
1
+ 0.229) 𝜇

1
𝑟 + (−0.193

× 10
−6

𝜇
1

2
+ 0.236 × 10

−4
𝜇
1
− 0.106 × 10

−1
) 𝑟
3

+ h.o.t.

(27)

For V = V
2
= 40.8 km/h,

̇𝑟 = (−0.413 × 10
−4

𝜇
2
− 0.145) 𝜇

2
𝑟 + (−0.495

× 10
−6

𝜇
2

2
− 0.133 × 10

−4

𝜇
2
− 0.476 × 10

−1

) 𝑟
3

+ h.o.t.

(28)

According to (27) and (28), we can obtain the bifurcation
diagram at equilibrium point𝑋

0
of each critical velocity. The

diagram is shown in Figure 6.
According to Figure 6, Hopf bifurcations are supercritical

at the critical speeds V
1
and V

2
. When V < V

1
= 15.6 km/h

(i.e., 𝜇
1
< 0), shimmy does not occur in the system; that is,

the system is stable and equilibrium point𝑋
0
is a stable focus.

When V
1
< V < V

2
(i.e., 𝜇

1
> 0 and 𝜇

2
< 0), shimmy occurs in

the system, equilibrium point 𝑋
0
is an unstable focus, and a

stable limit cycle appears. The phenomenon of the mutation
of a stable focus into a stable limit cycle is called the limit cycle
hard to produce or stable hard loss.When V > V

2
= 40.8 km/h

(i.e., 𝜇
2
> 0), the equilibrium point turns into a stable focus

again, the limit cycle disappears, the shimmy phenomenon
disappears, and the system tends to be stable.Thus, dual-front
axle shimmy is a typical self-excited vibration.

4. Calculation and Analysis of the Hopf
Bifurcation in the Shimmy System

4.1. Numerical Calculation and Analysis. Using the motion
equations of the sample vehicle shimmy system and the
Runge-Kutta method for the numerical calculation of
shimmy systems, the bifurcation diagrams in Figure 7 show
that the left wheel swing angles of the first and second bridges
vary with speed.



Shock and Vibration 9

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02−0.02

Bifurcation parameter 𝜇1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
H

op
f b

ifu
rc

at
io

n 
br

an
ch

r

(a) Bifurcation diagram at V1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02−0.02

Bifurcation parameter 𝜇2

H
op

f b
ifu

rc
at

io
n 

br
an

ch
r

(b) Bifurcation diagram at V2

Figure 6: Bifurcation diagram of𝑋
0
at two critical speeds.
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Figure 7: First and second bridge Hopf bifurcation with change of speed.

According to Figure 7, when V < 15.6 km/h and V >

40.8 km/h, the vibration of a dual-front axle system gradually
stabilizes, whereas when 15.6 km/h < V < 40.8 km/h periodic
oscillations occur in the dual-front axle steering system,
resulting in the limit cycle. These results are consistent with

the qualitative calculation results in Section 3.1, which in turn
show that the theoretical qualitative methods are consistent
with the numerical methods.

To better analyze the state changes in a dual-front axle
system within the shimmy speed range, we provide a swing
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(c) V = 30 km/h

Figure 8: Phase diagram of the two front wheels at different speed.

angle phase diagram of the left wheel of the first and second
bridges of heavy-duty vehicles under different speeds, as
shown in Figure 8.

The conclusions on the shimmy characteristics and laws
pertaining to the left wheel of the first and second bridges
under different speeds, as shown in Figures 8(a)–8(c), are
drawn. The results are summarized in Table 4.

(1) From Figures 8(a) to 8(c), in the bifurcation speed
range, the shimmy of the steering wheel is the limit
cycle vibration with a larger amplitude. When the
speed increases, the self-excited oscillation ampli-
tude of the swing angle increases initially and then
decreases, and the amplitude of the swing angle accel-
eration has the same trend. The maximum amplitude

Table 4: Shimmy characteristic at different speed.

V/km⋅h−1 20 25 30
𝜃
2
/∘ 3.73 3.81 3.28

𝜃
4
/∘ 10.55 10.92 9.47

Δ𝜃/∘ 6.82 7.11 6.19
̇
𝜃
2
/rad⋅s−1 0.83 0.86 0.76
̇
𝜃
4
/rad⋅s−1 2.31 2.46 2.21

Δ
̇
𝜃/rad⋅s−1 1.48 1.59 1.44

of the swing angle of the left wheel of the first bridge is
3.81∘, and the maximum amplitude of the swing angle
acceleration is 0.86 rad/s.Themaximum amplitude of
the swing angle of the left wheel of the second bridge
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Figure 9: Phase diagram of the two bridges side pendulum at different speed.

is 10.92∘, and the maximum amplitude of the swing
angle acceleration is 2.46 rad/s. This phenomenon
leads the vehicle to huntingmovement andmakes the
driver feel the tension and fatigue.

(2) According to Figures 8(a)–8(c) and Table 4, the vari-
ations in the left wheel swing angle differences and
angular acceleration differences of the first and the
second bridges are consistent with the variations
in the swing angles and angular accelerations. The
maximum difference between the left wheel swing
angles of the two bridges is 7.11∘, whereas the min-
imum difference is 6.19∘. The maximum difference
of the angular acceleration is 1.59 rad/s, whereas the
minimum difference is 1.44 rad/s. These results show
that the intensities of the tire shimmy of the first and

second bridges are in a state of serious imbalance.The
intensity of the tire shimmy at the second bridge is
significantly greater than that at the first bridge during
a shimmy. These results coincide with the actual use
of heavy-duty trucks, in which the tire of the second
bridge experiences more severe wear than the tire of
the first bridge.

(3) According to Figures 8(a)–8(c) and Table 4, speed is
an important bifurcation parameter in a dual-front
axle shimmy system.Thus, driving speed should avoid
the bifurcation range as much as possible.

Figure 9 shows the side pendulum phase diagrams of
the first and second bridges of heavy-duty vehicles under
different speeds.
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Figure 10: Continued.
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Figure 10: For V = 15.6 km/h comparison of limit cycle of original systems and limit cycle of dimensionality reduction system.

Figure 9 shows that the side pendulum phase diagram of
the first bridge is elliptically regular, indicating that the first
bridge side pendulum angle is at its maximum, when the
side pendulum angular velocity is at its minimum, the side
pendulum angle is at its minimum, and the side pendulum
angular velocity is at its maximum. The pendulum phase
diagram curve of the second bridge side is inwardly recessed
along 𝑦-axis direction, indicating that the second bridge side
pendulum angle is at its maximum, when the side pendulum
angular velocity is at its minimum and the side pendulum
angle is at its minimum, but the side pendulum angular
velocity is not at its maximum. Taking Figure 9(b) as an
example, when the angular velocity is less than 0, the slope of
the first bridge phase diagram trajectory only changes once
from negative to positive. By contrast, the slope of the second
bridge phase diagram trajectory changes twice from negative
to positive and then becomes positive. Figure 9 shows that

the value of the second bridge side pendulum is not only
greater than that of the first bridge but also more complex
than that of the first bridge.

4.2. Dimensionality Reduction System Limit Cycle Compared
with the Original Systems. When V = V

1
= 15.6 km/h, 𝜇

1
=

0.001V
1
, we generate the original system limit cycle phase

diagram with the use of the four- and five-order Runge-Kutta
method and the dimensionality reduction system limit cycle
phase diagram with the use of center manifold theory. These
diagrams are shown in Figure 10.

When V = V
2
= 40.8 km/h, 𝜇

2
= 0.001V

2
, we generate

the original system limit cycle phase diagram with the use
of the four- and five-order Runge-Kutta method and the
dimensionality reduction system limit cycle phase diagram
with the use of center manifold theory. These diagrams are
shown in Figure 11.
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Figure 11: Continued.
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Figure 11: For V = 40.8 km/h comparison of limit cycle of original systems and limit cycle of dimensionality reduction system.

As shown in Figures 10 and 11, the dimension reduction
system retains the bifurcation characteristics of the original
system at the bifurcation point. Thus, we can utilize the limit
cycle phase diagram of the bifurcation characteristics of the
dimensionality reduction system near the bifurcation point.

4.3. Effect of Dry Friction Torque on Hopf Bifurcation Char-
acteristics. We formulate the shimmy system differential
equations considering the impact of kingpin clearance dry
friction. Using the four- and five-order Runge-Kutta method,
we generate the bifurcation diagrams of the shimmy charac-
teristics of the first and second bridge wheels in the dual-
front axle system, showing that the shimmy characteristics
vary with velocity (see Figure 5). These diagrams are shown
in Figure 12.

Figures 12(a) to 12(d) show that, with an increase in dry
friction torque, the shimmy system speed bifurcation range,

bifurcation curve amplitude, and the peak corresponding to
the limit cycle all decrease.

Although increasing the dry friction can reduce the
shimmy speed range and the system shimmy amplitude,
it also reduces the steering performance and increases the
wear between parts. Therefore, in designing suspension
and steering systems, both steering agility and self-excited
shimmy characteristics of the vehicle should be considered,
aside from dry friction torque.

4.4. Effect of System Parameters on Shimmy. A heavy truck
usually works under the conditions of overload and poor
roads. Under these conditions, the dual-front axle steering
system is subjected to tens of thousands𝑁 force, and its lever
components are usually up to a few meters. If the stiffness
of the lever is designed unreasonably, the lever of a dual-
front axle steering system inevitably becomes significantly
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Figure 12: Influence of dry friction on the first and second bridge Hopf bifurcation characteristics.

deformed in the process of turning, and the deformation
results in the shimmy and wear of tires. This phenomenon
should not be ignored. The pneumatic trail 𝑒 and kingpin
caster angle 𝛾 are also important factors that affect shimmy.
Figure 13 illustrates the influence factor of the first transition
rod rigidity 𝑘

𝑡1
, second transition rod rigidity 𝑘

𝑡2
, pneumatic

trail 𝑒, and kingpin caster angle 𝛾 of the first and second
bridge wheel shimmy characteristics, when V = 30 km/h.

Figure 13(a) shows that when the first transition rod
stiffness increases from 20,000N/m to 100,000N/m, the first
bridge left wheel swing angle increases from 2.35∘ to 3.47∘,
Δ𝜃
2
= 1.12∘, the second bridge left wheel swing angle decreases

from 11.22∘ to 8.89∘, Δ𝜃
4

= −2.33
∘, the first bridge side

pendulum angle increases from 0.15∘ to 0.19∘, Δ𝜃
2
= 0.04∘,

the second bridge side pendulum angle decreases from 0.54∘

to 0.42∘, and Δ𝜃
4
= −0.12. Figure 13(b) shows that when the

second transition rod stiffness increases from 20,000N/m to
100,000N/m, the first bridge left wheel swing angle increases
from 3.61∘ to 1.58∘, Δ𝜃

2
= 2.03, the second bridge left wheel

swing angle decreases from 12.36∘ to 6.72∘, Δ𝜃
4
= −5.64∘, the

first bridge side pendulum angle increases from 0.11∘ to 0.18∘,
Δ𝜃
2
= 0.07∘, the second bridge side pendulum angle decreases

from0.63∘ to 0.32∘, andΔ𝜃
4
=−0.31∘.Thus, with an increase in

transition rod stiffness 𝑘
𝑡1
and transition rod stiffness 𝑘

𝑡2
, the

first bridge left wheel swing angle and side pendulum angle
increase, the second bridge left wheel swing angle and side
pendulum angle decrease, and the second bridge left wheel
swing angle and side pendulum angle significantly differ from
those of the first bridge left wheel in amplitude. In addition,
the effects of the second transition rod stiffness on the left
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Figure 13: Continued.
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Figure 13: Influence of system parameters.
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wheel swing angle and side pendulum angle magnitude of
both bridges are significantly greater than those of the first
transition rod stiffness.

Figure 13(c) shows that when the pneumatic trail 𝑒

increases from the minimum to 0.15, the dual-front axle
shimmy changes from steady into single-cycle limit cycle
oscillation and ultimately to chaos, and the vibration ampli-
tude becomes increasingly larger. Figure 13(d) shows that
when the caster angle, 𝛾, is less than 1.7, by the initial
excitation, the system eventually stabilizes; however, when 𝛾

increases to more than 1.7, the system state changes to the
limit cycle oscillation. As 𝛾 increases, the limit cycle increases.

Thus, to ensure that the tire wear in the two bridges
is small and uniform, the stiffness of the first transition
and second transition rods should be enhanced. However,
considering the production process and production costs,
designing a system with large transition rod stiffness is
impossible.We can reduce or even eliminate, however, system
shimmy by choosing a smaller pneumatic trail and kingpin
caster angle.

5. Conclusions

(1) Based on the current widely used dual-front axle
steering system in heavy trucks, we established a
mechanics model for its dual bridge shimmy system
mechanics and equations for its differential motion.

(2) Using Hopf bifurcation theorem and center manifold
theory, we were able to determine the existence and
stability of the shimmy system limit cycle. Using
numerical method analysis, stable limit cycle char-
acteristics at the critical speed point and bifurcation
range were also determined. In conclusion, the sam-
ple vehicle dual-front axle shimmy is a self-excited
vibration generated by Hopf bifurcation.

(3) In the dual-front axle shimmy system of heavy trucks,
the shimmy intensities of the wheels of the first and
second bridges are in a state of serious imbalance: the
shimmy intensity at the second bridge is significantly
greater than that at the first bridge. These findings
coincide with the fact that the tire wear of the second
bridge is always more severe than that of the first
bridge in practice.Therefore, themechanicsmodel for
the dual-axle shimmy system has high credibility and
can simulate the sample vehicle during actual driving.

(4) The results of the methods of qualitative theory
and those of the numerical methods have good
consistency. The bifurcation characteristics of the
shimmy system can be predicted using the methods
of qualitative theory and can provide a theoretical
reference for improving the design of a double-front
axle vehicle.

(5) Speed is a bifurcation parameter of the vibration
system, and dual-front axle steering transition rod
stiffness is a sensitive parameter that affects sys-
tem shimmy. Improving transition rod stiffness and
selecting a smaller pneumatic trail and kingpin caster

angle can reduce self-excited shimmy, reduce tire
wear, and improve the driving stability and ride
comfort of a dual-front axle vehicle.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This project is supported by the National Natural Science
Foundation of China (Grant no. 51375130).

References

[1] K. Watanabe, J. Yamakawa, M. Tanaka, and T. Sasaki, “Turning
characteristics of multi-axle vehicles,” Journal of Terramechan-
ics, vol. 44, no. 1, pp. 81–87, 2007.

[2] C. Mu, J. Yu, Y. Yang, and K. Wu, “Design for dual-front axle
steering angle of the heavy truck,” in Proceedings of the Inter-
national Conference on Educational and Network Technology
(ICENT ’10), pp. 185–187, June 2010.

[3] J. Stuart, S. Cassara, B. Chan, and N. Augustyniak, “Recent
experimental and simulation efforts to mitigate wobble and
shimmy in commercial line haul vehicles,” SAE International
Journal of Commercial Vehicles, vol. 7, no. 2, pp. 366–380, 2014.

[4] H. B. Pacejka, Analysis of the Shimmy Phenomenon, Technische
Hogeschool Delft, 1966.

[5] G. Dihua, H. Zeming, S. Jian et al., “Study on the vibration of
vehicle’s steering wheels,” Automotive Engineering, vol. 2, pp.
29–40, 1984 (Chinese).

[6] S. Li and Y. Lin, “Study on the bifurcation character of steering
wheel self-excited shimmy of motor vehicle,” Vehicle System
Dynamics, vol. 44, supplement 1, pp. 115–128, 2006.

[7] G. Jiang, Study of the Effect of Dry Friction on Multiple Limit
Cycles in Shimmy, Hefei University of Technology, Hefei, China,
2012 (Chinese).

[8] Y. Gu, Z. Fang, G. Zhang, and Y. Qi, “Design of Heavy—duty
truck multi-axle steering system,” Automobile Technology, vol.
1, pp. 1–5, 2009 (Chinese).

[9] Y. Hou, Y. Hu, D. Hu, C. Li, and Y. Hou, “Synthesis of multi-axle
steering system of heavy duty vehicle based on probability of
steering angle,” SAE Technical Paper 2000-01-3434, 2000.

[10] L. Wang, X. Liang, and P. Ji, “Reliability-based robust opti-
mization on double-front-axle steering mechanism of trucks
with clearances,”Automobile Engineering, vol. 1, pp. 90–93, 2014
(Chinese).

[11] Z. Xu, Y. He, H. Yin et al., “Study of steering wheel shimmy
of LT1080 truck crane,” Engineering Machinery, vol. 3, pp. 7–11,
1994 (Chinese).

[12] R. L. Nisonger and D. N. Wormley, “Dynamic performance of
automated guideway transit vehicles with dual-axle steering,”
IEEE Transactions on Vehicular Technology, vol. 28, no. 1, pp.
88–94, 1979.

[13] D.H.Wu and J. H. Lin, “Analysis of dynamic lateral response for
a multi-axle-steering tractor and trailer,”Heavy Vehicle Systems,
vol. 10, no. 4, pp. 281–294, 2003.

[14] D. E. Williams, “Generalised multi-axle vehicle handling,”
Vehicle System Dynamics, vol. 50, no. 1, pp. 149–166, 2012.



20 Shock and Vibration
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