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Copyright © 2015 G. Gautier et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A frequency-band subspace-based damage identificationmethod for fault diagnosis in roller bearings is presented. Subspace-based
damage indicators are obtained by filtering the vibration data in the frequency range where damage is likely to occur, that is, around
the bearing characteristic frequencies.The proposedmethod is validated by considering simulated data of a damaged bearing. Also,
an experimental case is considered which focuses on collecting the vibration data issued from a run-to-failure test. It is shown that
the proposed method can detect bearing defects and, as such, it appears to be an efficient tool for diagnosis purpose.

1. Introduction

Successfully implementing a condition monitoring proce-
dure allows a mechanical system to operate at full capacity
without the need of shutting down the process for periodic
inspections. In this context, vibration-based structural health
monitoring (SHM) techniques [1] can be considered which
involve measuring the vibration signals of a structure in the
time domain, as well as proposing damage indicators and
efficient statistical analysis for determining its current state
of structural health [2].

Vibration-based damage detection methods have gained
a large popularity over the last two decades, especially for
rotating machines [3]. Rolling element bearings are essen-
tial components of rotating machines, which constitute the
primary cause of breakdowns [4]. When a rolling element
moves through a faulty surface, an impact is induced which
in turn excites the resonance frequency of the bearing system.
As the bearing rotates, these impulses occur periodically at
the characteristic frequency of the defect. This explains why
the detection of faults in bearings is commonly achieved by
identifying those bearing characteristic frequencies (BCFs)
[5]. Notice however that these impulses are very weak at
the early stage of fault generation and are thus usually
overwhelmed by measurement noises and other vibration

sources such as rotor unbalance [6] or gear mesh, which
induce difficulties for detecting these emerging defects.

For the purpose of weak signature enhancement, a
variety of signal processing techniques have been proposed.
They mainly include scalar indicators [7], high frequency
resonance techniques [8], spectral kurtosis analysis [9, 10],
wavelet analysis [11, 12], empirical mode decomposition [13,
14], or PeakVue analysis [15].

The present work is concerned with the use of subspace
identification methods for damage diagnosis [16, 17]. The
originality of the present work is to assess the effectiveness
and applicability of suchmethods to identify damage in roller
bearing when the output signals are only considered, that
is, when the input data are not known a priori. To that
aim, vibration response data are periodically collected and
are used to obtain a so-called observability matrix which is
well suited for damage detection [18]. Here, a subspace-based
damage detection procedure is proposed which is combined
with a pass-band filtering approach [19]. Clearly speaking, the
output signals are filtered around the bearing characteristic
frequencies so as to provide efficient subspace-based damage
indicators.

The rest of the paper is organized as follows. The basics
of the subspace-based methods, for damage detection, are
recalled. Also a new subspace damage indicator is proposed.
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A presentation of roller bearings is proposed in Section 3
along with a damage identification strategy combined with
the aforementioned pass-band filtering procedure. A the-
oretical study of a damaged bearing and an experimental
validation based on a run-to-failure test are proposed in
Sections 4 and 5, respectively. This paper is an extended
version with several improvements of the scientific and
experimental contents of an earlier conference paper version
[20].

2. Subspace-Based Damage
Detection Procedure

2.1. Subspace-Based Methods. Consider the following 2𝑛th
order discrete-time linear state space system for 𝑘 =

0, 1, . . . , 𝑁 − 1 [21]:

x𝑘+1 = Ax𝑘 + w𝑘,

y𝑘 = Cx𝑘 + k𝑘,
(1)

where x𝑘 is a 2𝑛×1 state vector defined at the discrete time 𝑡𝑘
(𝑘 = 1, 2, . . . , 𝑁); y𝑘 is a 𝑙 × 1 vector of output data; also,A, B,
C, andD are systemmatrices of respective sizes 2𝑛×2𝑛, 2𝑛×𝑚,
𝑙×2𝑛, and 𝑙×𝑚. Besides, k𝑘 andw𝑘 are 2𝑛×1 and 𝑙×1 vectors
of process and measurement noises, respectively, which are
supposed to be white Gaussian with zero-mean distributions
and joint covariance matrix [22]

E[(
w𝑝
k𝑝
)(w𝑇
𝑞

k𝑇
𝑞
)] = (

Q S

S𝑇 R
)𝛿𝑝𝑞, (2)

where E[⋅] is the expectation operator, while 𝛿𝑝𝑞 is the
Kronecker delta.

Some notations used for the subspace algorithms are
introduced here. A block Hankel matrix of output data is first
considered, which can be partitioned into past (𝑝) and future
(𝑓) outputs as follows:
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=
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def
= [

Y0|𝑖−1
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]

def
= [

Y𝑝
Y𝑓

] .

(3)

Here, the number 𝑖 of block rows of Y𝑝 and Y𝑓 should be
greater than the order of the system—that is, 2𝑛—in order to

identify the system; also, the number 𝑗 of columns is usually
chosen so that it is equal to𝑁−2𝑖+1, where𝑁 is the number of
time samples. In the same way as (3), block Hankel matrices
of measurement noises can be defined as follows:

V0|2𝑖−1
def
= [

V𝑝
V𝑓

] ,

W0|2𝑖−1
def
= [

W𝑝
W𝑓

] .

(4)

Also, 2𝑛× 𝑗matrices of state sequencesX𝑝 andX𝑓 can be
defined as follows:

X𝑝
def
= [x0 x1 ⋅ ⋅ ⋅ x𝑗−1] ,

X𝑓
def
= [x𝑖 x𝑖+1 ⋅ ⋅ ⋅ x𝑖+𝑗−1] .

(5)

Consider now the following (𝑙𝑖) × 2𝑛 so-called extended
observability matrix Γ𝑖 and (𝑙𝑖) × (𝑙𝑖) block Toeplitz matrix
H𝑤
𝑖
:

Γ𝑖

def
=
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]
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𝑖

def
=
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. d d
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]

.

(6)

By considering (1) and (3)–(6), the following matrix
equations can be derived for the past and future parts, respec-
tively [16]:

Y𝑝 = Γ𝑖X𝑝 +H𝑤
𝑖
W𝑝 + V𝑝,

Y𝑓 = Γ𝑖X𝑓 +H𝑤
𝑖
W𝑓 + V𝑓.

(7)

The key idea behind subspace methods is to identify
the extended observability matrix Γ𝑖, and further the system
matrixA. The strategy consists in projecting the row space of
the future outputsY𝑓 on the row space of the past outputsY𝑝,
as follows:

Y𝑓
Y𝑝

= Y𝑓Y
𝑇

𝑝
(Y𝑝Y
𝑇

𝑝
)
+

Y𝑝, (8)

where (⋅)
+ denotes the Moore-Penrose pseudoinverse. By

considering (7), this yields

Y𝑓
Y𝑝

=

Γ𝑖X𝑓
Y𝑝

+

H𝑤
𝑖
W𝑓
Y𝑝

+

V𝑓
Y𝑝

. (9)
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The procedure enables one to remove the noise terms;
it is understood that the row spaces of W𝑓 and V𝑓 are
perpendicular to the row space of Y𝑝 when the number of
samples grows to infinity. A proof of this statement lies in the
consideration of (2) [22]. Hence, the vector of state sequence
X𝑓 belongs to the joint row space of Y𝑝; that is,

lim
𝑁→∞

1

𝑁
(

Y𝑓
Y𝑝

) =

Γ𝑖X𝑓
Y𝑝

. (10)

As a result, one has
Y𝑓
Y𝑝

≈

Γ𝑖X𝑓
Y𝑝

. (11)

In other words, there exists some direct connection
between the extended observability matrix Γ𝑖 and the matrix
Y𝑓 which is supposed to be known from measurement of
the output signals [23]. For practical purpose, a singular
value decomposition (SVD) of Y𝑓/Y𝑝 is usually considered
as follows:

Y𝑓
Y𝑝

= [U1 U2] [
S1 0
0 0

][

V𝑇
1

V𝑇
2

] ≃ U1S1V
𝑇

1
, (12)

where S1 is a 2𝑛 × 2𝑛 diagonal matrix whose components are
the 2𝑛 largest singular values of Y𝑓/Y𝑝, while U1 and V1 are
(𝑙𝑖) × 2𝑛 and 𝑗 × 2𝑛 matrices of orthogonal vectors. In other
words, it is assumed here that rank(Y𝑓/Y𝑝) = 2𝑛. Assume
that the matrix Γ𝑖 is full column rank; that is, rank(Γ𝑖) = 2𝑛,
which is certainly true because 𝑁 ≫ 2𝑛. Thus it turns out
that the column space of Γ𝑖 is almost the same as the space
spanned by the first 2𝑛 left singular vectors of the matrix
Y𝑓/Y𝑝, that is, those associated with its 2𝑛 largest singular
values.

From (11) and (12), one has Γ𝑖X𝑓/Y𝑝 ≈ U1S1V𝑇1 . This
particularly means that the column space of Γ𝑖 matches that
of U1; that is, ran(Γ𝑖) ≈ ran(U1). Hence an estimate of the
extended observability matrix can be defined as Γ𝑒 = U1. The
determination of the true observability matrix Γ𝑖 follows as

Γ𝑖 = Γ
𝑒T𝑖, (13)

whereT𝑖 is a 2𝑛×2𝑛 full rankmatrix, while Γ𝑒 is the so-called
experimental extended observability matrix that is built from
output measurements.

2.2. Subspace-Based Damage Indicator. The key idea behind
the proposed subspace-based damage detection procedure
consists in comparing the extended observability matrix of
the safe structure (say, Γ𝑖 = Γ

𝑠) with that of the structure in
an unknown health condition (say, Γ𝑖 = Γ

𝑢). This yields the
consideration of an error norm ‖Γ

𝑢
−Γ
𝑠
‖𝐹 = ‖Γ

𝑒𝑢T𝑢−Γ𝑒𝑠T𝑠‖𝐹,
where ‖ ⋅ ‖𝐹 is the Frobenius norm, while Γ𝑒𝑠 = U𝑠

1
and

Γ
𝑒𝑢
= U𝑢
1
are experimental extended observability matrices;

see (13).
Here, an alternative error norm is considered which

involves right-multiplying the residual Γ𝑒𝑢T𝑢 − Γ𝑒𝑠T𝑠 by
(T𝑢)−1; that is,

󵄩󵄩󵄩󵄩Γ
𝑒𝑢
− Γ
𝑒𝑠T󵄩󵄩󵄩󵄩𝐹 where T = T𝑠 (T𝑢)−1 . (14)

Besides, an approximate expression of the matrix T is con-
sidered which involves solving the following least squares
problem Γ𝑢 = Γ𝑠T, which leads to T = (Γ

𝑠
)
+
Γ
𝑢.The relevance

of this approximate expression can be justified in the sense
that the error norm ‖Γ

𝑢
− Γ
𝑠T‖𝐹 is supposed to be small.

Hence, (14) can be rewritten as
󵄩󵄩󵄩󵄩󵄩
Γ
𝑒𝑢
− Γ
𝑒𝑠
(Γ
𝑒𝑠
)
+
Γ
𝑒𝑢󵄩󵄩󵄩󵄩󵄩𝐹

. (15)

Assume that theQRdecomposition ofΓ𝑒𝑠 andΓ𝑒𝑢 is expressed
as

Γ
𝑒𝑠
= [Q1 Q2] [

R1
0
] = Q1R1,

Γ
𝑒𝑢
= [Q1 Q2] [

R1
R2
] = Q1R1 +Q2R2,

(16)

which appears to be consistent with the fact that the error
norm (15) is small (indeed, both QR decomposition types
are based on the same subspaces ran(Q1), while ‖R2‖𝐹 is
supposed to be small compared to ‖R1‖𝐹); this yields ‖Γ𝑒𝑢 −
Γ
𝑒𝑠
(Γ
𝑒𝑠
)
+
Γ
𝑒𝑢
‖𝐹 = ‖Q2(Q2)

𝑇
Γ
𝑒𝑢
‖𝐹. The proof of this result

lies in the fact that the pseudoinverse of Q1R1 is given by
(R1)
−1
(Q1)
𝑇, where (Q1)

𝑇
(Q1) = I. By considering the fact

that the Frobenius norm is unitarily invariant, this yields
‖Q2(Q2)

𝑇
Γ
𝑒𝑢
‖𝐹 = ‖(Q2)

𝑇
Γ
𝑒𝑢
‖𝐹. Hence, a subspace damage

indicator can be expressed as follows:

󵄩󵄩󵄩󵄩
Γ
𝑒𝑢
− Γ
𝑒𝑠T󵄩󵄩󵄩󵄩𝐹 ≈

󵄩󵄩󵄩󵄩󵄩󵄩
(Q2)
𝑇
Γ
𝑒𝑢
󵄩󵄩󵄩󵄩󵄩󵄩𝐹
. (17)

It is expected that structural damage is detected by an increase
of the subspace damage indicator in (17).The important point
is to identify the relevant changes of the damage indicator,
that is, those which are not due to noise. To address this issue,
it is proposed to normalize the damage indicator through the
consideration of 𝑛ref reference data sets for the safe structure.
Within this framework, a residual covariancematrix Σ can be
defined as follows:

Σ =
1

𝑛ref − 1

𝑛ref

∑

𝑘=1

r𝑘r
𝑇

𝑘
, (18)

where r𝑘 refers to the residual vector for a given data set 𝑘
(𝑘 = 1, . . . , 𝑛ref ):

r𝑘 = vec {(Q2)
𝑇
Γ
𝑒𝑢
}
𝑘
, (19)

where vec{⋅} denotes the column stacking operator. As a
result, a normalized damage indicator can be defined as
follows:

𝜁 = r𝑇Σ−1r, (20)

where r = vec{(Q2)
𝑇
Γ
𝑒𝑢
} is the residual vector that concerns

any arbitrary data set 𝑘 of the structure in an unknown health
condition.

Define 𝜁 and 𝜎 as the mean value and standard deviation
of the error indicator 𝜁 over the first 𝑛ref reference data sets
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Figure 1: Schematic representation of a roller bearing.

for the safe structure. Then, an X-bar control chart [24] can
be considered which consists in a centerline (CL) with upper
and lower control limits (UCL and LCL) as follows:

CL = 𝜁;

UCL = 𝜁 + 3𝜎;

LCL = 𝜁 − 3𝜎.

(21)

By considering such a control chart, this yields an efficient
means to assess the variation of a process and clearly identify
damage when the damage indicator 𝜁 exceeds the UCL [25].

3. Roller Bearing Damage Identification

3.1. Introduction. Rolling bearings are mechanical systems
whose components—that is, rolling elements, inner raceway,
outer raceway, and cage—usually induce a complex vibration
behavior [26].The vibration signature of a defective bearing is
characterized by harmonics at particular bearing frequencies
[27]. These harmonics can be identified from subspace
identification methods but can be blurred by higher energy
vibrations which are generated by other components of the
same machine. Therefore a signal processing technique is
required so as to clearly identify defects in rolling element
bearings. This consists in applying a pass-band filter, which
focuses on selecting a frequency region of interest.

3.2. Characteristic Frequencies. Generally, rolling bearings
consist of two concentric rings, called the inner and outer
races, with a set of rolling elements running on their tracks.
Standard shapes of rolling elements include the ball, cylin-
drical roller, tapered roller, needle roller, and symmetrical
and unsymmetrical barrel roller (see Figure 1). Typically, the
rolling elements in a bearing are guided in a cage that ensures
uniform spacing and prevents mutual contact.

There are four basic motions that are used to describe
the bearing dynamics whose corresponding frequencies are
called the bearing characteristic frequencies (BCFs). These
frequencies relate the fundamental train frequency (FTF), the
ball passing frequency inner race (BPFI), the ball passing
frequency outer race (BPFO), and the ball spin frequency
(BSF) and depend on the rotation speed. These are defined
as follows [28]:

(i) The fundamental train frequency is related to the
motion of the cage:

FTF =
𝑓𝑟

2
(1 −

𝑑𝐵

𝑑𝑃

cos (𝜃)) , (22)

where 𝑁𝐵, 𝑑𝑃, 𝑑𝐵, 𝜃, and 𝑓𝑟 are the number of balls,
the pitch diameter, the ball diameter, the contact
angle, and the rotation frequency of the bearing.

(ii) The ball passing frequency inner race indicates the
rate at which the balls pass a point on the track of the
inner race:

BPFI =
𝑁𝐵

2
𝑓𝑟 (1 +

𝑑𝐵

𝑑𝑃

cos (𝜃)) . (23)

(iii) The ball passing frequency outer race is defined as the
rate at which the balls pass a point on the track of the
outer race:

BPFO =
𝑁𝐵

2
𝑓𝑟 (1 −

𝑑𝐵

𝑑𝑃

cos (𝜃)) . (24)

(iv) The ball spin frequency is the rate of rotation of a ball
about its own axis in a bearing:

BSF =
𝑑𝑃

2𝑑𝐵

𝑓𝑟 [1 − (
𝑑𝐵

𝑑𝑃

cos (𝜃))
2

] . (25)

Those four bearing characteristic frequencies can be deter-
mined provided that the following assumptions are satisfied
[29]:

(1) The balls/rollers have the same diameter.
(2) The interactions between the balls, inner race, and

outer race are only due to rolling contacts.
(3) There is no slipping between the shaft and the bearing.
(4) The outer race is fixed, while the inner race is in

rotation.

3.3. Damage Identification Strategy. The subspace-based
damage detection method can be achieved by filtering the
vibration signals of a bearing around the BCFs. Here, a pass-
band filtering technique is considered [27], which focuses
on the consideration of narrow bands around the BCFs. The
method is detailed as follows:

(i) It includes determination of the center frequency of
each pass-band filter, defined as a specific BCF.

(ii) It includes determination of the bandwidth, around
each BCF. Notice that the bandwidths should not
overlap each other, that is, among the set of filters
which are considered.

(iii) It includes generation of the filtered data, for
each BCF.

(iv) It also includes calculation of the subspace-based
damage indicator (Section 2.2) for each BCF.

The flowchart depicted in Figure 2 summaries the proposed
methodology.
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Figure 2: Flowchart of the subspace-based damage identification strategy.

Table 1: Parameters related to the simulated test signal 𝑦1(𝑡).

Parameter Sinusoidal element (𝑁)
(𝑖) 1 2
𝐴1(𝑖) [m] 0.033 0.012
𝑓1(𝑖) [Hz] 250 40
𝜃1(𝑖) [rad] 0 0.32𝜋

4. Numerical Simulation

4.1. Roller Bearing Damaged Model. A number of well-
established models which describe the vibration signals pro-
duced by faulty bearings have already been proposed by using
finite element model updating [30] or analyzing different
physical effects [31–33]. In general, all of these models
simulate bearing signals as a series of exponentially decaying
high frequency oscillations, which appear repeatedly due to
the contact between a fault and the mating surface and low-
frequency phenomena which act as amplitude modulators.
These signals can be generally decomposed into three com-
ponents:

𝑦 (𝑡) = 𝑦1 (𝑡) + 𝑦2 (𝑡) + 𝑛 (𝑡) , (26)

where

(i) 𝑦1(𝑡) represents the periodic component in the signal,
given by

𝑦1 (𝑡) =

𝑁

∑

𝑖=1

𝐴1 (𝑖) sin [2𝜋𝑓1 (𝑖) 𝑡 + 𝜃1 (𝑖)] , (27)

where 𝐴1(𝑖), 𝜃1(𝑖), and 𝑓1(𝑖) are the amplitude, initial
phase, and frequency of the 𝑖th sinusoidal element,
respectively. Here, two frequencies 𝑓1(1) = 40Hz and
𝑓1(2) = 250Hz are chosen to construct the periodic
signal 𝑦1(𝑡). The values of the parameters used are
displayed in Table 1.

(ii) 𝑦2(𝑡) represents the transient component of the signal.
Physically, it reflects the evolution of the structural

Table 2: Parameters related to the simulated test signal 𝑦2(𝑡).

𝐴2 𝑓2 𝐶 BCF 𝜃2

(m) (Hz) (s−1) (Hz) (rad)
1.10−6 2000 500 150 0

defects within the bearing, such as spalling on the
surface of the bearing raceways or rolling elements.
The transient component is modeled as a series of𝑀
exponentially attenuated vibrations, given by

𝑦2 (𝑡)

=

𝑀

∑

𝑖=1

𝐴2 (𝑖) Θ (𝑡 − 𝑡𝑖) 𝑒
−𝐶(𝑡−𝑡𝑖) sin [2𝜋𝑓2 (𝑡 − 𝑡𝑖) + 𝜃2] ,

(28)

where𝐴2(𝑖), 𝐶, 𝑡𝑖, 𝜃2, and 𝑓2 are the amplitude, atten-
uation factor, time-delay, initial phase, and frequency
of the 𝑖th impact, respectively. 𝐴2(𝑖) is modeled as a
random variable that varies between 0 and 𝐴2, while
𝑡𝑖 is defined as 𝑡𝑖 = 𝑖 × 1/BCF, where BCF is the
monitored frequency. Also, Θ(𝑡 − 𝑡𝑖) in (28) is the
conventional Heaviside function:

Θ(𝑡 − 𝑡𝑖) =

{

{

{

1, 𝑡 − 𝑡𝑖 ≥ 0

0, 𝑡 − 𝑡𝑖 < 0.

(29)

The values of the parameters used are displayed in
Table 2.

(iii) 𝑛(𝑡) is a white Gaussian noise, with signal-to-noise
ratio (SNRdB) defined as

SNRdB = 10 × log
10
[(

𝐴 signal

𝐴noise
)

2

] , (30)

where 𝐴 is the root mean square amplitude of the
signal and the noise.

The signal depicted in Figure 3 is obtained from the chosen
parameters reported in Tables 1 and 2, with SNRdB = 100 dB
and a signal length and sampling frequencies of 0.5 s and
10000Hz, respectively.
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Figure 3: Vibration data of the damaged bearing.
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Figure 4: Evolution of the subspace-based damage indicator.

4.2. Damage Identification. To validate the proposed detec-
tion procedure, 500 samples of bearing fault data are simu-
lated. Every 50 samples, the amplitude of the fault𝐴2 in (28) is
increased, starting from 10

−7m (reference state) until 10−6m
(maximum damage).

The BCF subspace damage indicator is obtained from the
whole set of simulated data. Here, the number of reference
data sets is fixed to 𝑛ref = 50 and the filter bandwidth is
chosen as [BCF ± 0.1BCF]. The order of the observability
matrices is chosen as 𝑖 = 10.

The results are reported in Figure 4 regarding the damage
indicator 𝜁BSF; see (17). It is shown that the damage is
identified as soon as the amplitude of the fault increases from
10
−7m to 2 × 10−7m (i.e., from the undamaged state to the

first level of damage). The value of the damage indicator
𝜁BSF increases in good agreement with the evolution of the
amplitude of the fault, which fully gives credit to the proposed
methodology.

5. Experimental Validation

5.1. Preliminary Comments. Theproposed damage identifica-
tion procedure is applied to an experimental test rig which
hosts four bearings on one shaft as shown in Figure 5. The
shaft is driven by an AC motor and is connected to rubber
belts. A radial load of 6000 lbs is applied to the shaft and the
bearing by means of a spring mechanism. A magnetic plug is

Table 3: Geometric parameters of the roller bearing.

Pitch
diameter Roller diameter Contact angle Number of rollers

𝑑
𝑃
(mm) 𝑑

𝐵
(mm) (degree) 𝑁

𝐵

71.5 8.4 15.17 16

Table 4: Rexnord ZA-2115 BCFs for running speed 2000 RPM.

Bearing characteristic frequencies Theoretical values (Hz)
FTF 14.78

BSF 280.08

BPFO 236.43

BPFI 296.90

installed in the oil feedback pipe to collect debris, from the
oil, as an evidence of bearing degradation.

High sensitive ICP piezoaccelerometers sensors are
placed on the bearing housing, in radial horizontal direction
as shown in Figure 5. The vibration data are collected every
10minutes with a sampling rate of 20 kHz. Each data sample
contains 20480 points. Data collection is conducted by a
NI Labview program and is generated by IMS Center with
support from Rexnord Corp. in Milwaukee, WI [34].

The 984 data pieces are recorded during 7 days, by
considering sample of about 140 data pieces each day, until a
significant amount of metal debris is found on the magnetic
plug of the test bearing. The test stops until the accumulated
debris adherent to the magnetic plug exceeds a certain
threshold. At this time, a visual inspection is made. All
failures occurred once the designed lifetime of the bearing is
reached which is 100million revolutions.

Four Rexnord ZA-2115 double row bearings aremounted
on the shaft. According to the geometric parameters of the
bearing listed in Table 3, the nominal BCFs are calculated for
a constant rotation speed of 2000 RPM and listed in Table 4.

5.2. Run-to-Failure Test. From visual inspection, an outer
race defect is discovered in bearing 1. A sample of temporal
and frequency representations of the data set is shown in
Figure 6.

Subspace damage indicators are obtained for each acceler-
ometer and each BCF from the whole set of accelerometers
data. Here, the number of reference data sets is 𝑛ref = 140 and
the filter bandwidth is chosen as [BCF±0.1BCF].The order of
the observability matrices (3) is chosen as 𝑖 = 12 by analyzing
the singular values of Γ𝑖 (as shown in Figure 7).

Results of subspace damage indicators 𝜁FTF, 𝜁BSF, 𝜁BPFI,
and 𝜁BPFO are reported in Figures 8, 9, 10, and 11, respectively.
A comparison of results for each BCF and each accelerometer
position shows that the first bearing is identified as dam-
aged approximately between two and three days before the
experiment is stopped. It is seen that the subspace damage
indicator 𝜁BPFO on accelerometer 1 has highest level and
earliest sensitivity. According to this result, it is thus expected
that the outer ring of the first bearing is the most damaged
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Figure 7: Model order selection (here 2𝑛 = 6).

component, which is successfully demonstrated by visual
inspection.

It can be shown that 𝜁BPFO also increases on accelerom-
eters 3 and 4 probably because the dynamic behavior of
the damaged bearing in position 1 is also recorded on the
whole set of accelerometers or because bearings 3 and 4

start undergoing some deterioration, which seems to be the
most probable situation although it is not validated by visual
inspection at the end of the test.

6. Conclusion

A damage identification procedure has been proposed which
makes use of a subspace method combined with a pass-
band data filtering technique.Within this framework, several
damage indicators have been considered in the diagnosis
of faults in rotating machines. The present methodology
has been successfully applied to identify damage in a roller
bearing, by considering simulated data. Also, the efficiency of
the method has been highlighted regarding an experimental
test that consists in monitoring real bearings. It has been
shown that a roller bearing defect can be detected at an early
stage with accurate precision. Future works may concern the
comparison of this new indicator with other methods and
extend the diagnosis to other rotating machinery compo-
nents such as gearbox.



8 Shock and Vibration

Accelerometer 1

−1400
−1200
−1000
−800
−600
−400
−200

0
200
400
600 Accelerometer 1

0 1 2 3 4 5 6 7
Days

1 2 3 4 5 6 70
Days

×107

−4

−2

0

2

4

6

8

𝜁
F
T
F

𝜁
F
T
F

(a)

Accelerometer 2

−400
−300
−200
−100

0
100
200
300
400
500 Accelerometer 2

0 1 2 3 4 5 6 7
Days

1 2 3 4 5 6 70
Days

×107

−4

−2

0

2

4

6

8

𝜁
F
T
F

𝜁
F
T
F

(b)

Accelerometer 3

−50
0

50
100
150
200
250
300
350
400 Accelerometer 3

0 1 2 3 4 5 6 7
Days

1 2 3 4 5 6 70
Days

×107

−4

−2

0

2

4

6

8

𝜁
F
T
F

𝜁
F
T
F

(c)

Accelerometer 4

0 1 2 3 4 5 6 7

0

50

100

150

200
Accelerometer 4

Days

1 2 3 4 5 6 70
Days

×107

−4

−2

0

2

4

6

8

𝜁
F
T
F

𝜁
F
T
F

(d)

Figure 8: Damage indicators associated with the FTF frequency from each accelerometer.
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Figure 9: Damage indicators associated with the BSF frequency from each accelerometer.
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Figure 10: Damage indicators associated with the BPFI frequency from each accelerometer.
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Figure 11: Damage indicators associated with the BPFO frequency from each accelerometer.
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