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To improve the efficiency of midfrequency analysis of built-up structure systems with interval parameters, the second-order
interval and subinterval perturbation methods are introduced into the hybrid finite element/statistical energy analysis (FE/SEA)
framework in this paper. Based on the FE/SEA for built-up structure systems and the second-order interval perturbation method,
the response variables are expanded with the second-order Taylor series and nondiagonal elements of the Hessian matrices are
neglected. Extreme values of the expanded variables are searched by using efficient search algorithm. For large parameter intervals,
the subinterval perturbation method is introduced. Numerical results verify the effectiveness of the proposed methods.

1. Introduction

In the last two decades, predicting the response of a system
with uncertainties has got more and more attention in
the engineering design. There are several ways to describe
the parametric uncertainties of a system, such as random
variables and intervals [1–3]. If the objective information
about the uncertain parameters is adequate to establish the
probability density functions of them, the random variable
model can be the prior way to describe the uncertainties.
Many approaches have been proposed to deal with the
probabilistic uncertainty recently, such as the Monte Carlo
method, the spectral stochasticmethod, and the perturbation
stochastic method [4, 5]. Unfortunately, in the early stage of
design, there may be no sufficient statistical information to
establish the probability density functions of the uncertain
parameters. Under this circumstance, the nonprobabilistic
model, such as the interval model, may be an advisable
model to represent the uncertain parameters. In this paper,
the interval model is selected to describe the parametric
uncertainty.

Before performing the uncertain analysis, we must select
an approach to model the system.The finite element method
(FEM) [6] is the most commonly used technique to model
a system in engineering practice, owing to its simplicity and

accuracy. However, because the computational efficiency of
FEM typically decreases exponentially with the increase of
frequency, it is improper to analyze mid- to high-frequency
system by using FEM.Thus, the application of FEM is limited
to the so-called low-frequency range [7]. Statistical energy
analysis (SEA) [8] is a statistical technique that was developed
specifically to solve high-frequency problems. This approach
is established on the assumption that the system is highly
random. In contrast with FEM, the computational efficiency
of SEA model is much better due to the much fewer degrees
of freedom of it.

As stated above, the low- and high-frequency problems
can be efficiently solved by using FEM and SEA, respectively.
But for a system consisting of both the low- and high-
frequency subsystems, which is the so-called “midfrequency”
system, neither method is suitable: for pure FEM, the system
must be modeled by lots of degrees of freedom and the
computational efficiency is too low; for pure SEA, the tenets
that the system must be “highly random” may not be met.
In recent years, a variety of methods have been proposed
for the analysis of midfrequency system. The variational
theory of complex rays (VTCR) [9, 10] and the wave based
method (WBM) [11] are deterministic methods based on the
Trefftz approach [12] for midfrequency analysis, and they
are both aiming to improve the computational efficiency by
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modeling the system with fewer degrees of freedom than that
of FEM. Another method for midfrequency analysis is the
hybrid approach by dividing the system into deterministic
subsystems and highly random subsystems, such as the fuzzy
structure theory [13]. Based on this deterministic/random
partitioning idea, Langley and coworkers have recently
developed a hybrid finite element/statistical energy method
(FE-SEA) [14]. In this proposed method, the deterministic
subsystem is called the “master system” andmodeled by FEM;
the random subsystem is called the “subsystem” andmodeled
by SEA. The randomness of the “subsystem” is modeled as
nonparametric uncertainty. The coupling of the two systems
is achieved by using a diffuse field reciprocity relation [15].
A lot of research works about FE-SEA have been done by
Langley and coworkers [16–19].

As previously mentioned, the SEA subsystems of the FE-
SEA model are assumed to be highly random, and the ran-
domness of them is modeled as nonparametric uncertainty,
while the FE components are assumed to be fully determin-
istic; in other words, the uncertainties of the FE components
are ignored. However, uncertainties in properties caused by
manufacturing imperfections or aggressive environmental
factors are unavoidable, and it is important to take the
uncertainties of the FE components into consideration in
engineering design. Recently, Cicirello and Langley have
introduced parametric uncertainty into the FE components
by considering the parameters of them as probabilistic or
interval rather than deterministic [20]. Thus, a hybrid uncer-
tain model with parametric and nonparametric uncertainties
is yielded. The distribution of the response of this hybrid
model can be obtained by dealing with the parametric uncer-
tainty with Monte Carlo simulations and the nonparametric
uncertainty analytically. This method will be efficient when
the FE components have few uncertain parameters and
degrees of freedom. However, for large scale engineering sys-
tems with many uncertain parameters, it is computationally
intensive to employ the Monte Carlo simulations to deal
with the parametric uncertainty. Developing efficient MCS
techniques [21] or alternative algorithms [22, 23] is a direction
to improve the efficiency of the analysismethod for the hybrid
model with parametric and nonparametric uncertainties.
Recently, Cicirello and Langley [24] have proposed two dif-
ferent asymptotic statistical techniques to target this problem,
namely, the hybrid FE/SEA method combined with the first-
order reliability method and the hybrid FE/SEA method
combined with Laplace’s method, which allow the evaluation
of the failure probability of a complex built-up system with
probabilistic input parameters of the FE components.The two
methods are much more efficient than the FE Monte Carlo
simulations and the accuracy of them was good. Another
powerful tool for solving the stochastic problems is the
stochastic finite element method (SFEM) [2], which mainly
includes the perturbation stochastic finite element method
(PSFEM) [25–27] and the spectral stochastic finite element
method (SSFEM) [28].These numerical analysis methods are
all probabilistic techniques for propagating the probabilistic
parametric uncertainty, while for the interval analysis, many
other approaches have been proposed, such as the Gaus-
sian elimination scheme [29], the vertex method [30], and

the interval perturbation method (IPM) [31]. IPM is an
efficient technique for interval analysis proposed by Qiu et al.
In this method, the interval matrices and the interval vectors
were expanded to a first-order Taylor series. To improve
the accuracy of the IPM, an interval perturbation method
based on the second-order Taylor expansion (SIPM) [32, 33]
was recently developed. Because of the neglect of the higher
order terms of Taylor series, IPM is limited to the interval
analysis with narrow parameter intervals. To release this
restriction, the subinterval analysis techniquewas introduced
into the interval perturbation method [34]. The interval and
subinterval perturbation methods have been widely applied
to the interval analysis of vibroacoustic response due to their
simplicity and efficiency [35–37].

In this paper, to improve the efficiency of the midfre-
quency analysis of built-up structure systems with inter-
val parametric uncertainty, the second-order interval per-
turbation method and subinterval analysis technique are
introduced into the hybrid FE-SEA framework. Firstly, the
second-order interval perturbation method combined with
FE-SEA (SIPFEM/SEA) is proposed for the response predic-
tion of the built-up structure systems with nonparametric
and small interval parametric uncertainties; secondly, the
subinterval perturbation method based on the SIPFEM/SEA
is introduced to predict the response of the built-up structure
systems with nonparametric and large interval parametric
uncertainties. The procedure of the SIPFEM/SEA method
is as follows: at first, the ensemble averaged energy of the
SEA components and the cross-spectrum of the response
of the FE components are expanded with the second-order
Taylor series; for the sake of simplicity and efficiency, the
nondiagonal elements of the Hessian matrices are neglected;
then, by searching the target positions of interval parameters
that maximize or minimize the objective functions, the
bounds of the expanded responses can be obtained. For large
parameter intervals, the subinterval perturbation method
based on the SIPFEM/SEA is introduced. Effectiveness of
the proposed methods is verified by the numerical results of
two built-up structure models. Benchmark comparisons are
madewith theMonte Carlo simulations of the hybrid FE/SEA
models.

2. Basic Principle of the Hybrid FE/SEA
Theory for Built-Up Structure Systems with
Fixed FE Properties

This section is intended to summarize the hybrid FE/SEA
equations for built-up structure systems with fixed FE prop-
erties as presented by Langley et al. The main procedure for
the hybrid FE/SEA method for built-up structure systems
can be summarized as follows. At first, a built-up structure
system is partitioned into the long-wavelength subsystems
and the short-wavelength subsystems, which are modeled by
the FEM and the SEA, respectively. Secondly, the response
of each SEA subsystem is described as the superposition of a
series of ingoing waves and reflection waves, which are called
the “direct field” and “reverberant field,” respectively. Finally,
a diffuse field reciprocity relation between the reverberant
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force loading and the energy responses of the SEA subsystems
are established for the coupling of the FE components and
SEA subsystems.Thedetailed equations of the hybrid FE/SEA
method will be presented in the following sections.

2.1.TheDynamic EquilibriumEquation of the FEComponents.
Themaster system consists of the FE components which can
be described by a set of degrees of freedom q. For a specific
frequency 𝜔, the equations of motion for the FE components
can be written as

D𝑑q = f +∑
𝑘

f𝑘, (1)

where D𝑑 is the dynamic stiffness matrix of the FE compo-
nents which can be obtained by FEM, f is the external force
vector applied directly to the FE components, and f𝑘 is the
force vector exerted on the FE components by the subsystem
𝑘. f𝑘 is considered to be the sum of two parts and can be
written as

f𝑘 = f(𝑘)rev −D
(𝑘)

dirq (2)

with f(𝑘)rev the “reverberant field force vector” arising from
the reflected waves and D(𝑘)dir being the “direct field dynamic
stiffness matrix” for subsystem 𝑘.

By combining (1) and (2), one can get

Dtotq = f +∑
𝑘

f(𝑘)rev , (3)

whereDtot can be expressed as

Dtot = D𝑑 +∑
𝑘

D(𝑘)dir . (4)

2.2. The Power Balance Equation of the SEA Subsystems. The
SEA subsystem is described by the ensemble averaged energy
𝐸, which can be calculated via the power balance equation
expressed as

𝜔 (𝜂𝑗 + 𝜂𝑑,𝑗) 𝐸𝑗 +∑

𝑘

𝜔𝜂𝑗𝑘𝑛𝑗 (

𝐸𝑗

𝑛𝑗

−

𝐸𝑘

𝑛𝑘

) = 𝑃
ext
in,𝑗 + 𝑃in,𝑗,

𝑗 = 1, 2, . . . , 𝑁𝑠,

(5)

where 𝑛𝑗, 𝐸𝑗, and 𝜂𝑗 are the modal density, the ensemble
averaged energy, and the loss factor of the subsystem 𝑗,
respectively, 𝜂𝑑,𝑗 is the coupling loss factor between the
subsystem 𝑗 and the master system, 𝜂𝑗𝑘 is the coupling loss
factor between the subsystem 𝑗 and the subsystem 𝑘, and
𝑁𝑠 is the number of the SEA subsystems. 𝑃extin,𝑗 and 𝑃in,𝑗 are
the power input to the subsystem 𝑗 arising from the forces
applied to the master system and directly to the subsystem 𝑗,

respectively. 𝑃in,𝑗 can be calculated by the conventional SEA
method, and other terms in (5) can be calculated by

𝜔𝜂𝑑,𝑗 = (

2𝛼𝑗

𝜋𝑛𝑗

)∑

𝑟𝑠

Im {𝐷𝑑,𝑟𝑠} (D
−1

tot Im {D
(𝑗)

dir}D
−𝐻

tot )𝑟𝑠 (6)

𝜔𝜂𝑗𝑘 = (

2𝛼𝑘

𝜋𝑛𝑗

)∑

𝑟𝑠

Im {𝐷(𝑗)dir,𝑟𝑠} (D
−1

tot Im {D
(𝑘)

dir}D
−𝐻

tot )𝑟𝑠 (7)

𝑃
ext
in,𝑗 = (

𝜔

2

)∑

𝑟𝑠

Im {𝐷(𝑗)dir,𝑟𝑠} (D
−1

totS𝑓𝑓D
−𝐻

tot )𝑟𝑠
, (8)

where the superscript𝐻 stands for the Hermitian transpose,
S𝑓𝑓 is the cross-spectral matrix of the external loadings f , and
S𝑓𝑓 = 𝐸[ff𝐻] with 𝐸[⋅] being the ensemble average. 𝛼𝑗 is
a factor in consideration of the local concentrations in the
wavefield, and the details about it are discussed in [38]. If
the subsystem is excited predominantly through the master
system, the value of 𝛼𝑘 is close to 2; in other cases, 𝛼𝑗 equals
1.

According to [15], there is a relationship between 𝜂𝑗𝑘 and
𝜂𝑘𝑗, which can be expressed as

𝜂𝑗𝑘𝑛𝑗 = 𝜂𝑘𝑗𝑛𝑘. (9)

Thus, (5) can be rewritten as the following matrix form:

CΕ = Pext
in + Pin, (10)

where Ε, Pext
in , and Pin are the vectors made up of 𝐸𝑗, 𝑃

ext
in,𝑗, and

𝑃in,𝑗 (𝑗 = 1, 2, . . . , 𝑁𝑠), respectively, and C is the coefficient
matrix, the 𝑗𝑘th element of which can be written as

𝐶𝑗𝑘 =

{
{
{

{
{
{

{

𝜔(𝜂𝑗 + 𝜂𝑑,𝑗 +

𝑁
𝑠

∑

𝑘=1, 𝑘 ̸=𝑗

𝜂𝑗𝑘) , 𝑗 = 𝑘

−𝜔𝜂𝑗𝑘, 𝑗 ̸= 𝑘

(𝑗, 𝑘 = 1, 2, . . . , 𝑁𝑠) .

(11)

2.3. The Coupling between the FE and SEA Components. As
previously mentioned, the coupling between the FE and SEA
components is achieved by using the diffuse field reciprocity
relation, which can be expressed as

S(𝑗)
𝑓𝑓,rev = 𝐸 [f

(𝑗)

revf
(𝑗)𝐻

rev ] =
4𝐸𝑗

𝜋𝜔𝑛𝑗

Im {D(𝑗)dir} . (12)

By combining (3) and (12), the cross-spectrum of the
response of the FE components can be calculated by

S𝑞𝑞 = 𝐸 [qq
𝐻
]

= D−1tot [
[

S𝑓𝑓 +∑
𝑗

4𝛼𝑗𝐸𝑗

𝜋𝜔𝑛𝑗

Im {D(𝑗)dir}]
]

D−𝐻tot .
(13)

It can be seen from (13) that the response of the FE
components is controlled by both the forces applied directly
to the FE components and the reverberant forces arising from
the SEA subsystems.
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3. Introducing Interval Parametric
Uncertainty into the FE Components within
the Hybrid FE–SEA Model for Built-Up
Structure Systems

In this section, the interval parametric uncertainty is intro-
duced into the FE components within the hybrid FE–SEA
model for built-up structure systems, and the interval formu-
lations for the responses of the built-up structure systems are
discussed as follows.

Assume that the parameter vector a𝐼 stands for the set of
the interval parameters of the FE components, and it can be
written as

a𝐼 = [a𝐿, a𝑅] = (𝑎𝐼
𝑖
) ,

𝑎
𝐼

𝑖
= [𝑎
𝐿

𝑖
, 𝑎
𝑅

𝑖
] ,

𝑖 = 1, 2, . . . , 𝑁,

(14)

where the subscripts 𝐿 and 𝑅 stand for the lower and upper
bounds of the interval parameters, respectively. 𝑁 is the
number of the interval parameters. Because of the interval
description of the input parameters, the responses of the
built-up structure systems in (5) and (13) become interval
variables, which can be expressed as

𝐸
𝐼

𝑗
= [𝐸
𝐿

𝑗
, 𝐸
𝑅

𝑗
] = 𝐸𝑗 (a

𝐼
)

S𝐼
𝑞𝑞
= [S𝐿
𝑞𝑞
, S𝑅
𝑞𝑞
] = S𝑞𝑞 (a

𝐼
) ,

(15)

where

𝐸
𝐿

𝑗
= min {𝐸𝑗 | 𝐸𝑗 = 𝐸𝑗 (a) , a ∈ a

𝐼
}

𝐸
𝑅

𝑗
= max {𝐸𝑗 | 𝐸𝑗 = 𝐸𝑗 (a) , a ∈ a

𝐼
}

S𝐿
𝑞𝑞
= min {S𝑞𝑞 | S𝑞𝑞 = S𝑞𝑞 (a) , a ∈ a

𝐼
}

S𝑅
𝑞𝑞
= max {S𝑞𝑞 | S𝑞𝑞 = S𝑞𝑞 (a) , a ∈ a

𝐼
} .

(16)

The bounds in (15) can be obtained by using the mini-
mization/maximization analysis shown in (16), which can be
implemented by the Monte Carlo simulations of the hybrid
FE-SEA model. Also, the Monte Carlo simulations will be
used to verify the effectiveness of the proposed methods
discussed in the following sections.

4. SIPFEM/SEA for the Midfrequency
Analysis of Built-Up Structure Systems with
Interval Parameters

In this section, the second-order interval perturbation
method is introduced into the hybrid FE-SEA framework,
and the SIPFEM/SEA method is proposed for the midfre-
quency analysis of built-up structure systems with small
interval parametric uncertainty.

4.1. Basic Formulation for SIPFEM/SEA. For the sake of
convenience, (14) can be rewritten as

a𝐼 = [a𝑚 − Δa, a𝑚 + Δa] = a𝑚 + Δa𝐼 = a𝑚 + Δa𝑒𝐼,

𝑎
𝐼

𝑖
= [𝑎
𝑚

𝑖
− Δ𝑎𝑖, 𝑎

𝑚

𝑖
+ Δ𝑎𝑖] = 𝑎

𝑚

𝑖
+ Δ𝑎
𝐼

𝑖
= 𝑎
𝑚

𝑖
+ Δ𝑎𝑖𝑒

𝐼
,

(𝑖 = 1, 2, . . . , 𝑁) ,

(17)

where

a𝑚 = (𝑎𝑚
𝑖
) =

(a𝐿 + a𝑅)
2

,

𝑎
𝑚

𝑖
=

(𝑎
𝐿

𝑖
+ 𝑎
𝑅

𝑖
)

2

,

△a = (Δ𝑎𝑖) =
(a𝑅 − a𝐿)

2

,

Δ𝑎𝑖 =

(𝑎
𝑅

𝑖
− 𝑎
𝐿

𝑖
)

2

,

△a𝐼 = [−Δa, △a] ,

Δ𝑎
𝐼

𝑖
= [−Δ𝑎𝑖, Δ𝑎𝑖] ,

𝑒
𝐼
= [−1, 1] .

(18)

Based on the second-order Taylor expansion, the interval
response variables in (15) can be expanded about the mean
value vector a𝑚 and expressed as

𝐸
𝐼

𝑗
= 𝐸𝑗 (a

𝐼
)

= 𝐸𝑗 (a
𝑚
) +

𝑁

∑

𝑖=1

𝜕𝐸𝑗 (a𝑚)
𝜕𝑎𝑖

Δ𝑎
𝐼

𝑖

+

1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑙=1

𝜕
2
𝐸𝑗 (a𝑚)
𝜕𝑎𝑖𝜕𝑎𝑙

Δ𝑎
𝐼

𝑖
Δ𝑎
𝐼

𝑙
,

(19)

S𝐼
𝑞𝑞
= S𝑞𝑞 (a

𝐼
)

= S𝑞𝑞 (a
𝑚
) +

𝑁

∑

𝑖=1

𝜕S𝑞𝑞 (a𝑚)
𝜕𝑎𝑖

Δ𝑎
𝐼

𝑖

+

1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑙=1

𝜕
2S𝑞𝑞 (a𝑚)
𝜕𝑎𝑖𝜕𝑎𝑙

Δ𝑎
𝐼

𝑖
Δ𝑎
𝐼

𝑙

(20)

with 𝐸𝑗(a𝑚) and S𝑞𝑞(a𝑚) being the values of 𝐸𝐼𝑗 and S
𝐼

𝑞𝑞
at the

mean value vector a𝑚.
Equation (19) can be rewritten as

𝐸
𝐼

𝑗
= 𝐸𝑗 (a

𝐼
)

= 𝐸𝑗 (a
𝑚
) + (E󸀠

𝑗
(a𝑚))

𝑇

Δa𝐼

+

1

2

(Δa𝐼)
𝑇

E󸀠󸀠
𝑗
(a𝑚) Δa𝐼,

(21)
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where E󸀠
𝑗
(a𝑚) and E󸀠󸀠

𝑗
(a𝑚) are the gradient vector and the

Hessian matrix at the mean value vector a𝑚, respectively, and
they can be expressed as

E󸀠
𝑗
(a𝑚) = [

𝜕𝐸
󸀠

𝑗
(a𝑚)
𝜕𝑎1

,

𝜕𝐸
󸀠

𝑗
(a𝑚)
𝜕𝑎2

, . . . ,

𝜕𝐸
󸀠

𝑗
(a𝑚)
𝜕𝑎𝑁

] ,

E󸀠󸀠
𝑗
(a𝑚)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎1𝜕𝑎1

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎1𝜕𝑎2

⋅ ⋅ ⋅

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎1𝜕𝑎𝑁

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎2𝜕𝑎1

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎2𝜕𝑎2

⋅ ⋅ ⋅

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎2𝜕𝑎𝑁

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎𝑁𝜕𝑎1

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎𝑁𝜕𝑎2

⋅ ⋅ ⋅

𝜕
2
𝐸
󸀠󸀠

𝑗
(a𝑚)

𝜕𝑎𝑛𝜕𝑎𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(22)

Similarly, the 𝑟𝑠th element of S𝐼
𝑞𝑞
can be written as

𝑆
𝐼

𝑞𝑞,𝑟𝑠
= 𝑆𝑞𝑞,𝑟𝑠 (a

𝐼
)

= 𝑆𝑞𝑞,𝑟𝑠 (a
𝑚
) + (S󸀠

𝑞𝑞,𝑟𝑠
(a𝑚))

𝑇

Δa𝐼

+

1

2

(Δa𝐼)
𝑇

S󸀠󸀠
𝑞𝑞,𝑟𝑠

(a𝑚) Δa𝐼,

(23)

where

S󸀠
𝑞𝑞,𝑟𝑠

(a𝑚)

= [

𝜕𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎1

,

𝜕𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎2

, . . . ,

𝜕𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑁

] ,

S󸀠󸀠
𝑞𝑞,𝑟𝑠

(a𝑚)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎1𝜕𝑎1

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎1𝜕𝑎2

⋅ ⋅ ⋅

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎1𝜕𝑎𝑁

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎2𝜕𝑎1

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎2𝜕𝑎2

⋅ ⋅ ⋅

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎2𝜕𝑎𝑁

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑁𝜕𝑎1

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑁𝜕𝑎2

⋅ ⋅ ⋅

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑁𝜕𝑎𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(24)

If 𝑁 is large, the computation of the Hessian matrices in
(19) and (21) will be intensive. Thus, for the sake of compu-
tational efficiency, the nondiagonal elements of the Hessian
matrices are neglected, and (21) and (23) are simplified as

𝐸
𝐼

𝑗
= 𝐸𝑗 (a

𝐼
)

= 𝐸𝑗 (a
𝑚
) + (E󸀠

𝑗
(a𝑚))

𝑇

Δa𝐼

+

1

2

(Δa𝐼)
𝑇

Ê󸀠󸀠
𝑗
(a𝑚) Δa𝐼,

𝑆
𝐼

𝑞𝑞,𝑟𝑠
= 𝑆𝑞𝑞,𝑟𝑠 (a

𝐼
)

= 𝑆𝑞𝑞,𝑟𝑠 (a
𝑚
) + (S󸀠

𝑞𝑞,𝑟𝑠
(a𝑚))

𝑇

Δa𝐼

+

1

2

(Δa𝐼)
𝑇

𝑆
󸀠󸀠

𝑞𝑞,𝑟𝑠
(a𝑚) Δa𝐼,

(25)

where

Ê󸀠󸀠
𝑗
(a𝑚) = diag[

𝜕
2
𝐸𝑗 (a𝑚)
𝜕𝑎1𝜕𝑎1

,

𝜕
2
𝐸𝑗 (a𝑚)
𝜕𝑎2𝜕𝑎2

, . . . ,

𝜕
2
𝐸𝑗 (a𝑚)
𝜕𝑎𝑁𝜕𝑎𝑁

] ,

Ŝ󸀠󸀠
𝑞𝑞,𝑟𝑠

(a𝑚) = diag[
𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎1𝜕𝑎1

,

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎2𝜕𝑎2

, . . . ,

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑁𝜕𝑎𝑁

] .

(26)

4.2. Algorithm for Calculating the Extreme Values of the
Expanded Response Variables. For the purpose of calculating
the extreme values of the expanded response variables, (25)
are rewritten as

𝐸
𝐼

𝑗
= 𝐸𝑗 (a

𝐼
) = 𝐸𝑗 (a

𝑚
) +

𝑁

∑

𝑖=1

Δ𝐸
𝑖

𝑗
(27)

𝑆
𝐼

𝑞𝑞,𝑟𝑠
= 𝑆𝑞𝑞,𝑟𝑠 (a

𝐼
) = 𝑆𝑞𝑞,𝑟𝑠 (a

𝑚
) +

𝑁

∑

𝑖=1

Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
, (28)

where

Δ𝐸
𝑖

𝑗
=

𝜕𝐸𝑗 (a𝑚)
𝜕𝑎𝑖

Δ𝑎𝑖 +

1

2

𝜕
2
𝐸𝑗 (a𝑚)
𝜕𝑎
2

𝑖

(Δ𝑎𝑖)
2
,

Δ𝑎𝑖 ∈ Δ𝑎
𝐼

𝑖
= [−Δ𝑎𝑖, Δ𝑎𝑖] ,

Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
=

𝜕𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑖

Δ𝑎𝑖 +

1

2

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎
2

𝑖

(Δ𝑎𝑖)
2
,

Δ𝑎𝑖 ∈ Δ𝑎
𝐼

𝑖
= [−Δ𝑎𝑖, Δ𝑎𝑖] .

(29)

It can be seen from (29) that the expanded equations can
be treated as the sum of a series of quadratic functions with
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respect toΔ𝑎𝑖.Therefore, we can calculate themax/min values
of 𝐸𝐼
𝑗
and 𝑆𝐼

𝑞𝑞,𝑟𝑠
at the points −Δ𝑎𝑖, Δ𝑎𝑖, or 𝑎

𝑠

𝑖
, the values of

which can be calculated by

𝑎
𝑠

𝑖
= −

𝜕
2
𝐸𝑗 (a𝑚) /𝜕𝑎2𝑖
𝜕𝐸𝑗 (a𝑚) /𝜕𝑎𝑖

(30)

for (27) and

𝑎
𝑠

𝑖
= −

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚) /𝜕𝑎2𝑖
𝜕𝑆𝑞𝑞,𝑟𝑠 (a𝑚) /𝜕𝑎𝑖

(31)

for (28).
Thedetailed searching algorithm for the calculation of the

extreme values of Δ𝐸𝑖
𝑗
and Δ𝑆𝑖

𝑞𝑞,𝑟𝑠
is discussed as follows.

If Δ𝑎𝑖 < |𝑎
𝑠

𝑖
|, the max/min values of Δ𝐸𝑖

𝑗
(Δ𝑎𝑖) and Δ𝑆

𝑖

𝑞𝑞,𝑟𝑠

can be calculated by

(Δ𝐸
𝑖

𝑗
)

𝐿

= min {Δ𝐸𝑖
𝑗
(−Δ𝑎𝑖) , Δ𝐸

𝑖

𝑗
(Δ𝑎𝑖)} ,

(Δ𝐸
𝑖

𝑗
)

𝑅

= max {Δ𝐸𝑖
𝑗
(−Δ𝑎𝑖) , Δ𝐸

𝑖

𝑗
(Δ𝑎𝑖)} ,

(Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
)

𝐿

= min {Δ𝑆𝑖
𝑞𝑞,𝑟𝑠

(−Δ𝑎𝑖) , Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
(Δ𝑎𝑖)} ,

(Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
)

𝑅

= max {Δ𝑆𝑖
𝑞𝑞,𝑟𝑠

(−Δ𝑎𝑖) , Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
(Δ𝑎𝑖)} .

(32)

If Δ𝑎𝑖 ≥ |𝑎
𝑠

𝑖
|, the max/min values of Δ𝐸𝑖

𝑗
(Δ𝑎𝑖) and Δ𝑆

𝑖

𝑞𝑞,𝑟𝑠

can be calculated by

(Δ𝐸
𝑖

𝑗
)

𝐿

= min {Δ𝐸𝑖
𝑗
(−Δ𝑎𝑖) , Δ𝐸

𝑖

𝑗
(Δ𝑎𝑖) , Δ𝐸

𝑖

𝑗
(𝑎
𝑠

𝑖
)} ,

(Δ𝐸
𝑖

𝑗
)

𝑅

= max {Δ𝐸𝑖
𝑗
(−Δ𝑎𝑖) , Δ𝐸

𝑖

𝑗
(Δ𝑎𝑖) , Δ𝐸

𝑖

𝑗
(𝑎
𝑠

𝑖
)} ,

(Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
)

𝐿

= min {Δ𝑆𝑖
𝑞𝑞,𝑟𝑠

(−Δ𝑎𝑖) , Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
(Δ𝑎𝑖) , Δ𝑆

𝑖

𝑞𝑞,𝑟𝑠
(𝑎
𝑠

𝑖
)} ,

(Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
)

𝑅

= max {Δ𝑆𝑖
𝑞𝑞,𝑟𝑠

(−Δ𝑎𝑖) , Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
(Δ𝑎𝑖) , Δ𝑆

𝑖

𝑞𝑞,𝑟𝑠
(𝑎
𝑠

𝑖
)} .

(33)

Thus, the upper and lower bounds of 𝐸𝑗(a𝐼) and 𝑆𝑞𝑞,𝑟𝑠(a𝐼)
can be calculated by

𝐸
𝐿

𝑗
= 𝐸𝑗 (a

𝑚
) +

𝑁

∑

𝑖=1

(Δ𝐸
𝑖

𝑗
)

𝐿

,

𝐸
𝑅

𝑗
= 𝐸𝑗 (a

𝑚
) +

𝑁

∑

𝑖=1

(Δ𝐸
𝑖

𝑗
)

𝑅

,

𝑆
𝐿

𝑞𝑞,𝑟𝑠
= 𝑆𝑞𝑞,𝑟𝑠 (a

𝐼
) = 𝑆𝑞𝑞,𝑟𝑠 (a

𝑚
) +

𝑁

∑

𝑖=1

(Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
)

𝐿

,

𝑆
𝑅

𝑞𝑞,𝑟𝑠
= 𝑆𝑞𝑞,𝑟𝑠 (a

𝐼
) = 𝑆𝑞𝑞,𝑟𝑠 (a

𝑚
) +

𝑁

∑

𝑖=1

(Δ𝑆
𝑖

𝑞𝑞,𝑟𝑠
)

𝑅

.

(34)

4.3. Computation of the First- and Second-Order Partial
Derivatives of the Interval Response Variables. It can be seen
from (27) and (28) that the key to establish the expanded
equations is the first- and the second-order partial derivatives
of the response variables. To compute the partial derivatives
of 𝐸𝑗 with respect to 𝑎𝑖, we apply the first- and second-order
partial differential operators to (10):

𝜕C
𝜕𝑎𝑖

E + C 𝜕E
𝜕𝑎𝑖

=

𝜕Pext
in
𝜕𝑎𝑖

+

𝜕Pin
𝜕𝑎𝑖

𝜕
2C
𝜕𝑎
2

𝑖

E + 2𝜕C
𝜕𝑎𝑖

𝜕E
𝜕𝑎𝑖

+ C𝜕
2E
𝜕𝑎
2

𝑖

=

𝜕
2Pext

in
𝜕𝑎
2

𝑖

+

𝜕
2Pin
𝜕𝑎
2

𝑖

.

(35)

Given that the term Pin is independent of 𝑎𝑖, that is to say,
both 𝜕Pin/𝜕𝑎𝑖 and 𝜕

2Pin/𝜕𝑎
2

𝑖
equal zero, thus, the first- and

second-order partial derivatives of the energy response vector
with respect to 𝑎𝑖 can be calculated by

𝜕E
𝜕𝑎𝑖

= C−1 (
𝜕Pext

in
𝜕𝑎𝑖

−

𝜕C
𝜕𝑎𝑖

E) ,

𝜕
2E
𝜕𝑎
2

𝑖

= C−1 (
𝜕
2Pext

in
𝜕𝑎
2

𝑖

−

𝜕
2C
𝜕𝑎
2

𝑖

E − 2𝜕C
𝜕𝑎𝑖

𝜕E
𝜕𝑎𝑖

) .

(36)

By combining (6)∼(7) and (10), the 𝑗𝑘th element of 𝜕C/𝜕𝑎𝑖
and 𝜕2C/𝜕𝑎2

𝑖
can be expressed as

(

𝜕C
𝜕𝑎𝑖

)

𝑗𝑘

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝜕 (𝜔𝜂𝑑,𝑗)

𝜕𝑎𝑖

+

𝑁
𝑠

∑

𝑘=1, 𝑘 ̸=𝑗

𝜕 (𝜔𝜂𝑗𝑘)

𝜕𝑎𝑖

, 𝑗 = 𝑘,

−

𝜕 (𝜔𝜂𝑗𝑘)

𝜕𝑎𝑖

, 𝑗 ̸= 𝑘,

(𝑗, 𝑘 = 1, 2, . . . , 𝑁𝑠) ,

(

𝜕
2C
𝜕𝑎
2

𝑖

)

𝑗𝑘

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝜕
2
(𝜔𝜂𝑑,𝑗)

𝜕𝑎
2

𝑖

+

𝑁
𝑠

∑

𝑘=1, 𝑘 ̸=𝑗

𝜕
2
(𝜔𝜂𝑗𝑘)

𝜕𝑎
2

𝑖

, 𝑗 = 𝑘,

−

𝜕
2
(𝜔𝜂𝑗𝑘)

𝜕𝑎
2

𝑖

, 𝑗 ̸= 𝑘,

(𝑗, 𝑘 = 1, 2, . . . , 𝑁𝑠) ,

(37)
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where

𝜕 (𝜔𝜂𝑑,𝑗)

𝜕𝑎𝑖

= (

2𝛼𝑗

𝜋𝑛𝑗

)

⋅ ∑

𝑟𝑠

𝜕 (Im {𝐷𝑑,𝑟𝑠} (D−1tot Im {D
(𝑗)

dir}D
−𝐻

tot )𝑟𝑠
)

𝜕𝑎𝑖

,

𝜕 (𝜔𝜂𝑗𝑘)

𝜕𝑎𝑖

= (

2𝛼𝑘

𝜋𝑛𝑗

)

⋅ ∑

𝑟𝑠

Im {𝐷(𝑗)dir,𝑟𝑠}
𝜕 (D−1tot Im {D

(𝑘)

dir}D
−𝐻

tot )𝑟𝑠
𝜕𝑎𝑖

,

𝜕
2
(𝜔𝜂𝑑,𝑗)

𝜕𝑎
2

𝑖

= (

2𝛼𝑗

𝜋𝑛𝑗

)

⋅ ∑

𝑟𝑠

𝜕
2
(Im {𝐷𝑑,𝑟𝑠} (D−1tot Im {D

(𝑗)

dir}D
−𝐻

tot )𝑟𝑠
)

𝜕𝑎
2

𝑖

,

𝜕
2
(𝜔𝜂𝑗𝑘)

𝜕𝑎
2

𝑖

= (

2𝛼𝑘

𝜋𝑛𝑗

)

⋅ ∑

𝑟𝑠

Im {𝐷(𝑗)dir,𝑟𝑠}
𝜕
2
(D−1tot Im {D

(𝑘)

dir}D
−𝐻

tot )𝑟𝑠
𝜕𝑎
2

𝑖

.

(38)

From (8), we can see that the 𝑗th element of 𝜕Pext
in /𝜕𝑎𝑖 and

𝜕
2Pext

in /𝜕𝑎
2

𝑖
can be expressed as

𝜕𝑃
ext
in,𝑗

𝜕𝑎𝑖

= (

𝜔

2

)∑

𝑟𝑠

Im {𝐷(𝑗)dir,𝑟𝑠}
𝜕 (D−1totS𝑓𝑓D

−𝐻

tot )𝑟𝑠
𝜕𝑎𝑖

𝜕
2
𝑃
ext
in,𝑗

𝜕𝑎
2

𝑖

= (

𝜔

2

)∑

𝑟𝑠

Im {𝐷(𝑗)dir,𝑟𝑠}
𝜕
2
(D−1totS𝑓𝑓D

−𝐻

tot )𝑟𝑠
𝜕𝑎
2

𝑖

.

(39)

It can be seen from (38)∼(39) that the key to calculating
the first- and the second-order partial derivatives of the
energy response vector is the first- and second-order partial
derivatives ofD−1tot, which can be calculated by

𝜕D−1tot
𝜕𝑎𝑖

= −D−1tot
𝜕Dtot
𝜕𝑎𝑖

D−1tot

𝜕
2D−1tot
𝜕𝑎
2

𝑖

= −(

𝜕D−1tot
𝜕𝑎𝑖

𝜕Dtot
𝜕𝑎𝑖

D−1tot +D
−1

tot
𝜕
2Dtot
𝜕𝑎
2

𝑖

D−1tot

+D−1tot
𝜕Dtot
𝜕𝑎𝑖

𝜕D−1tot
𝜕𝑎𝑖

) .

(40)

Thus, by submitting the mean value vector a𝑚 into (36),
the partial derivatives of 𝐸𝑗 with respect to 𝑎𝑖 can be written
as

𝜕𝐸𝑗 (a𝑚)
𝜕𝑎𝑖

= (C−1 (a𝑚) (
𝜕Pext

in (a𝑚)
𝜕𝑎𝑖

−

𝜕C (a𝑚)
𝜕𝑎𝑖

E (a𝑚)))
𝑗

,

(41)

𝜕
2
𝐸𝑗 (a𝑚)
𝜕𝑎
2

𝑖

= (C−1 (a𝑚) (
𝜕
2Pext

in (a𝑚)
𝜕𝑎
2

𝑖

−

𝜕
2C (a𝑚)
𝜕𝑎
2

𝑖

E (a𝑚) − 2
𝜕C (a𝑚)
𝜕𝑎𝑖

𝜕E (a𝑚)
𝜕𝑎𝑖

))

𝑗

.

(42)

Similarly, by applying the first- and second-order partial
differential operators to (13), we get

𝜕S𝑞𝑞 (a𝑚)
𝜕𝑎𝑖

=

𝜕 (D−1totS𝑓𝑓D
−𝐻

tot )

𝜕𝑎𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

+∑

𝑗

4𝛼𝑗

𝜋𝜔𝑛𝑗

𝜕 (D−1tot𝐸𝑗 Im {D
(𝑗)

dir}D
−𝐻

tot )

𝜕𝑎𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

,

𝜕
2S𝑞𝑞 (a𝑚)
𝜕𝑎
2

𝑖

=

𝜕
2
(D−1totS𝑓𝑓D

−𝐻

tot )

𝜕𝑎
2

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

+∑

𝑗

4𝛼𝑗

𝜋𝜔𝑛𝑗

𝜕
2
(D−1tot𝐸𝑗 Im {D

(𝑗)

dir}D
−𝐻

tot )

𝜕𝑎
2

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

.

(43)

It can be seen from (43) that the key to calculating the
first- and the second-order partial derivatives of the response
cross-spectrum matrix is the first- and second-order partial
derivatives of D−1tot and 𝐸𝑗, and they can be calculated by
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combining (40)∼(42).Thus, the 𝑟𝑠th element of 𝜕S𝑞𝑞(a𝑚)/𝜕𝑎𝑖
and 𝜕2S𝑞𝑞(a𝑚)/𝜕𝑎2𝑖 can be expressed as

𝜕𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎𝑖

= (

𝜕 (D−1totS𝑓𝑓D
−𝐻

tot )

𝜕𝑎𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

+∑

𝑗

4𝛼𝑗

𝜋𝜔𝑛𝑗

𝜕 (D−1tot𝐸𝑗 Im {D
(𝑗)

dir}D
−𝐻

tot )

𝜕𝑎𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

)

𝑟𝑠

,

𝜕
2
𝑆𝑞𝑞,𝑟𝑠 (a𝑚)
𝜕𝑎
2

𝑖

= (

𝜕
2
(D−1totS𝑓𝑓D

−𝐻

tot )

𝜕𝑎
2

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

+∑

𝑗

4𝛼𝑗

𝜋𝜔𝑛𝑗

𝜕
2
(D−1tot𝐸𝑗 Im {D

(𝑗)

dir}D
−𝐻

tot )

𝜕𝑎
2

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨a=a
𝑚

)

𝑟𝑠

.

(44)

4.4. The Procedure of the SIPFEM/SEA Method for the
Midfrequency Analysis of Built-Up Structure Systems with
Interval Parameters. The main steps of SIPFEM/SEA for the
midfrequency analysis of built-up structure systems with
interval parameters are summarized as follows.

Step 1. Partition the built-up structure system into a combi-
nation of the master system and the subsystem and establish
the equations of FE-SEA (equations (5) and (13)).

Step 2. Introduce interval parametric uncertainty into the
master system within the hybrid FE–SEA framework and
establish the interval equations (equations (15) and (16)).

Step 3. Expand the interval response variables (𝐸𝐼
𝑗
and S𝐼

𝑞𝑞
)

of the built-up structure systemwith the second-order Taylor
series at the mean values of interval parameters, and for the
sake of simplicity and efficiency, the nondiagonal elements of
the Hessian matrices are neglected (equations (25)∼(26)).

Step 4. Calculate the first- and second-order partial deriva-
tives of the interval response variables (equations (41)∼(43)).

Step 5. Search the target positions of interval parameters that
maximize or minimize the objective functions, and calculate
the bounds of the expanded responses by submitting the
target values into the objective functions (equations (32)∼
(34)).

5. The Formulation of the Subinterval
Perturbation Method Based on SIPFEM/SEA
for the Midfrequency Analysis of Built-Up
Structure Systems with Interval Parameters

Because of the neglect of the higher order terms of Taylor
series, SIPFEM/SEA is limited to the midfrequency anal-
ysis of the built-up structure systems with small interval
parametric uncertainty. In order to predict the response of
the built-up structure systems with large interval parametric

uncertainty, the subinterval perturbation method based on
SIPFEM/SEA is introduced in this section.

By dividing the large interval parameters 𝑎𝐼
𝑖
(𝑖 =

1, 2, . . . , 𝑁) into 𝐿 𝑖 small subintervals, one can get

𝑎
𝐼

𝑟
𝑖
,𝑖
= [𝑎
𝐿

𝑖
+

2 (𝑟𝑖 − 1) Δ𝑎𝑖

𝐿 𝑖

, 𝑎
𝐿

𝑖
+

2𝑟𝑖Δ𝑎𝑖

𝐿 𝑖

] ,

𝑟𝑖 = 1, 2, . . . , 𝐿 𝑖,

(45)

where 𝑎𝐼
𝑟
𝑖
,𝑖
is the 𝑟𝑖th subinterval of the 𝑖th interval parameter

𝑎
𝐼

𝑖
. According to permutation and combination theory, we

can see that the number of the subinterval combinations is
∏
𝑁

𝑖=1
𝐿 𝑖, and each subinterval combination can be expressed

as

a𝐼
𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

= (𝑎
𝐼

𝑟
1
,1
, 𝑎
𝐼

𝑟
2
,2
, . . . , 𝑎

𝐼

𝑟
𝑁
,𝑁
) ,

(𝑟𝑖 = 1, 2, . . . , 𝐿 𝑖, 𝑖 = 1, 2, . . . , 𝑁) .

(46)

By applying the SIPFEM/SEAmethod to each subinterval
combination, the corresponding subintervals of the response
variables can be obtained and expressed as

𝐸
𝐼

𝑗,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

= [𝐸
𝐿

𝑗,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

, 𝐸
𝑅

𝑗,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

] ,

S𝐼
𝑞𝑞,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

= [S𝐿
𝑞𝑞,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

, S𝑅
𝑞𝑞,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

] ,

(𝑟𝑖 = 1, 2, . . . , 𝐿 𝑖, 𝑖 = 1, 2, . . . , 𝑁) .

(47)

By assembling the subintervals of the response variables
with the interval union operation, the global intervals of the
response variables can be obtained and expressed as

𝐸𝑗 (a
𝐼
) = [min (𝐸𝐿

𝑗,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

) , max (𝐸𝑅
𝑗,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

)] ,

S𝑞𝑞 (a
𝐼
) = [min (S𝐿

𝑞𝑞,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

) , max (S𝑅
𝑞𝑞,𝑟
1
𝑟
2
⋅⋅⋅𝑟
𝑁

)] ,

(𝑟𝑖 = 1, 2, . . . , 𝐿 𝑖, 𝑖 = 1, 2, . . . , 𝑁) .

(48)

From the convergence condition of perturbation theory,
we can see that if the number of the subintervals for each
parameter is sufficiently large, the bounds of the response
variables of the built-up structure systems with large interval
parametric uncertainty will be predicted accurately.

6. Numerical Examples

6.1. An Oscillator-Plate System. Figure 1 shows an oscillator-
plate system in which the oscillator is attached to the simply
supported plate. The dimensions of the plate are 2.1m ×

1.9m×1.25mm, Young’s modulus is 𝐸𝑝 = 7.2×10
4MPa, the

density is 𝜌𝑝 = 2800 kg/m
3, Poisson’s ratio is ] = 0.3, and the

modal density is 𝑛𝑝 = 1.05modes/Hz.The oscillator consists
of a spring and a mass, and it is attached at the point (0.882,
0.772). The spring is fixed at the other end and a vertical unit
force 𝐹 is applied to the mass. The stiffness of the spring is
expressed as 𝑘, and the mass value is expressed as 𝑚. The
damping loss factors of the plate and the oscillator are both
𝜂 = 0.01.
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Figure 1: The oscillator-plate system.

To describe the system via the FE-SEA method, the
oscillator is modeled as the FE component, and the plate is
modeled as the SEA subsystem. Considering the parametric
uncertainty of the FE component, the stiffness of the spring
𝑘 and the mass value𝑚 are set as the interval parameters. By
introducing the uncertainty level 𝛼, the intervals of the spring
𝑘 and the mass value𝑚 can be expressed as

𝑘
𝐼
= 𝑘𝑚 [1 − 𝛼, 1 + 𝛼] ,

𝑚
𝐼
= 𝑚𝑚 [1 − 𝛼, 1 + 𝛼] ,

(49)

where the mean values of 𝑘 and 𝑚 are 𝑘𝑚 = 3.2 × 10
6N/m,

𝑚𝑚 = 2 kg.
To investigate the accuracy of the proposed SIPFEM/SEA

method for predicting the response of the built-up structure
system with interval parameters, we calculate the lower and
upper bounds of the plate energy and the autospectra of
the mass displacements. Benchmark results are made by the
Monte Carlo simulations of the hybrid FE/SEA model with
10,000 samples, and all of the results for this oscillator-plate
system are obtained by usingMATLABR2014a on a 3.60GHz
Intel(R) Core (TM) CPU i7-4790. Figures 2 and 3 show
the bounds of the plate energy and the autospectra of the
mass displacements for frequencies 100∼300Hz, respectively.
The considered uncertainty levels are 𝛼 = 0.01, 0.02, 0.03,
and 0.04. From Figures 3 and 4, we can see that there is
an excellent agreement between the results yielded by the
SIPFEM/SEA method and by the Monte Carlo simulation
of the hybrid FE/SEA model when the uncertainty level 𝛼
is not more than 0.02, and there is a significant deviation
between the results yielded by the two methods when the
uncertainty level 𝛼 is increased to 0.04. Due to the effect of
the inherent flaw of the perturbation method, the bounds
calculated by SIPFEM/SEA at the neighborhood of the peaks
corresponding to the resonance frequencies of the oscillator
are unreliable and valueless.

To investigate the accuracy of the proposed SIPFEM/SEA
method for predicting the response of the built-up structure
system with interval parameters more clearly, the relative
errors of the bounds of the plate energy and the autospectra
of the mass displacements obtained by SIPFEM/SEA for 𝛼 =
0.01, 0.02, 0.03, and 0.04 are calculated and listed in Tables
1 and 2; the considered frequencies are 𝑓 = 170Hz and
𝑓 = 230Hz, respectively. It can be seen from Tables 1 and
2 that the relative errors of SIPFEM/SEA increase gradually
with the increase of the uncertainty level 𝛼. From Figures
1 and 2 and Tables 1 and 2, we can conclude that the pro-
posed SIPFEM/SEA method is very accurate for predicting

the response of the built-up structure system with small
interval parametric uncertainty, and when the uncertainty
level gets larger, the accuracy of it decreases and unreliable
results will be obtained. This is mainly because of the neglect
of the higher order terms of Taylor series, which may bring
unpredictable and uncontrollable effect on the results.

To extend SIPFEM/SEA to the midfrequency analysis of
the built-up structure system with large interval parameters,
the subinterval perturbation method is introduced based on
SIPFEM/SEA(S-SIPFEM/SEA). To illustrate the accuracy of
S-SIPFEM/SEA, the uncertainty level 𝛼 is set as 0.08; other
parameters are kept the same. Figures 4 and 5 show the
bounds of the plate energy and the autospectra of the mass
displacements for 𝛼 = 0.08, respectively. The considered
numbers of subintervals for each parameter are one, two,
four, and eight. It can be seen from Figures 4 and 5 that
the bounds of the plate energy and the autospectra yielded
by S-SIPFEM/SEA match the reference bounds more closely
with the increase of the number of the subintervals, and the
bounds yielded by S-SIPFEM/SEA with eight subintervals
match the reference bounds perfectly. The relative errors
of the bounds yielded by S-SIPFEM/SEA with different
subinterval numbers are shown in Tables 3 and 4, and the
considered frequencies are 𝑓 = 170Hz and 𝑓 = 230Hz,
respectively. From Tables 3 and 4, we can see that the relative
errors of S-SIPFEM/SEA get smaller with the increase of
the number of subintervals. Therefore, we can conclude
that S-SIPFEM/SEA will be accurate for the midfrequency
analysis of the built-up structure system with large interval
parameters if the number of the subintervals is sufficiently
large.

Execution times of the S-SIPFEM/SEA with eight subin-
tervals and the Monte Carlo simulations of the hybrid
FE/SEA model for calculating the plate energy are shown in
Table 5; we can see that the S-SIPFEM/SEA is much more
efficient than the Monte Carlo simulation of the hybrid
FE/SEA model.

6.2. A Beam-Plate System. Beam-plate systems are typical
built-up structures in practical engineering, and the beams
are usually much stiffer than the plates [39]. Figure 6 depicts
a beam-plate system in which a plate and a beam are coupled
via three point connections. The plate is rectangular with
dimensions of 2m × 0.8m × 5mm, and Young’s modulus of
it is 𝐸𝑝 = 2.1 × 10

5MPa, the density is 𝜌𝑝 = 7850 kg/m
3,

Poisson’s ratio is ]𝑝 = 0.3, and the modal density is 𝑛𝑝 =
0.102modes/Hz. The beam with a length of 𝑙𝑏 = 2m is
simply supported at both ends, and the cross section of it
is rectangular with dimensions of 0.03m × 0.04m; Poisson’s
ratio of the beam is ]𝑏 = 0.3; Young’smodulus and the density
of it are expressed as 𝐸𝑏 and 𝜌𝑏, respectively. The damping
loss factors of the beam and the plate are both 𝜂 = 0.01. The
coupling points are located along the beam length at 0.27𝑙𝑏,
0.47𝑙𝑏, and 0.69𝑙𝑏, and a force 𝐹 is vertically exerted at 0.37𝑙𝑏
of the beam. In order to employ FE-SEA tomodel this system,
the beam is set as the master system and modeled by using
FEMwith 200 beam elements; the plate is set as the subsystem
and modeled by SEA.
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Table 1:The relative errors of the bounds of the plate energy and the autospectrum of the mass displacements for different uncertainty levels
(𝑓 = 170Hz).

Uncertainty level 𝛼 Lower bounds Upper bounds
MCS SIPFEM/SEA Relative errors (%) MCS SIPFEM/SEA Relative errors (%)

𝐸 (J)

0.01 4.15𝐸 − 06 4.12𝐸 − 06 0.72 5.50𝐸 − 06 5.46𝐸 − 06 0.73

0.02 3.65𝐸 − 06 3.55𝐸 − 06 2.74 6.41𝐸 − 06 6.25𝐸 − 06 2.50

0.03 3.25𝐸 − 06 3.06𝐸 − 06 5.85 7.61𝐸 − 06 7.10𝐸 − 06 6.70

0.04 2.90𝐸 − 06 2.64𝐸 − 06 8.97 9.11𝐸 − 06 8.03𝐸 − 06 11.86

𝑆𝑞𝑞 (m
2)

0.01 1.41𝐸 − 12 1.40𝐸 − 12 0.71 1.88𝐸 − 12 1.86𝐸 − 12 1.06

0.02 1.24𝐸 − 12 1.21𝐸 − 12 2.42 2.20𝐸 − 12 2.13𝐸 − 12 3.18

0.03 1.10𝐸 − 12 1.04𝐸 − 12 5.45 2.59𝐸 − 12 2.42𝐸 − 12 6.56

0.04 9.91𝐸 − 13 8.98𝐸 − 13 9.38 3.16𝐸 − 12 2.74𝐸 − 12 13.29

Table 2:The relative errors of the bounds of the plate energy and the autospectrum of the mass displacements for different uncertainty levels
(𝑓 = 230Hz).

Uncertainty level 𝛼 Lower bounds Upper bounds
MCS SIPFEM/SEA Relative errors (%) MCS SIPFEM/SEA Relative errors (%)

𝐸 (J)

0.01 4.95𝐸 − 06 4.89𝐸 − 06 1.21 7.03𝐸 − 06 6.96𝐸 − 06 1.00

0.02 4.26𝐸 − 06 4.06𝐸 − 06 4.69 8.59𝐸 − 06 8.20𝐸 − 06 4.54

0.03 3.67𝐸 − 06 3.37𝐸 − 06 8.17 1.08𝐸 − 05 9.58𝐸 − 06 11.30

0.04 3.21𝐸 − 06 2.82𝐸 − 06 12.15 1.38𝐸 − 05 1.11𝐸 − 05 19.57

𝑆𝑞𝑞 (m
2)

0.01 1.31𝐸 − 12 1.29𝐸 − 12 1.53 1.87𝐸 − 12 1.85𝐸 − 12 1.07

0.02 1.13𝐸 − 12 1.07𝐸 − 12 5.31 2.28𝐸 − 12 2.18𝐸 − 12 4.39

0.03 9.71𝐸 − 13 8.91𝐸 − 13 8.24 2.83𝐸 − 12 2.55𝐸 − 12 9.89

0.04 8.47𝐸 − 13 7.44𝐸 − 13 12.16 3.72𝐸 − 12 2.96𝐸 − 12 20.43

Table 3: The relative errors of the bounds of the plate energy and the autospectra of the mass displacements yielded by S-SIPFEM/SEA with
different subinterval numbers (𝑓 = 170Hz).

The number of subintervals Lower bounds Upper bounds
MCS S-SIPFEM/SEA Relative errors (%) MCS S-SIPFEM/SEA Relative errors (%)

𝐸 (J)

1

1.57𝐸 − 06

1.34𝐸 − 06 14.65

1.20𝐸 − 05

7.70𝐸 − 06 35.83

2 1.48𝐸 − 06 5.73 1.02𝐸 − 05 15.00

4 1.53𝐸 − 06 2.55 1.14𝐸 − 05 5.00

8 1.55𝐸 − 06 1.27 1.18𝐸 − 05 1.67

𝑆𝑞𝑞 (m
2)

1

5.49𝐸 − 13

4.68𝐸 − 13 14.75

4.22𝐸 − 12

2.71𝐸 − 12 35.78

2 5.18𝐸 − 13 5.65 3.58𝐸 − 12 15.17

4 5.36𝐸 − 13 2.37 4.02𝐸 − 12 4.74

8 5.40𝐸 − 13 1.64 4.18𝐸 − 12 0.95

Table 4: The relative errors of the bounds of the plate energy and the autospectra of the mass displacements yielded by S-SIPFEM/SEA with
different subinterval numbers (𝑓 = 230Hz).

The number of subintervals Lower bounds Upper bounds
MCS S-SIPFEM/SEA Relative errors (%) MCS S-SIPFEM/SEA Relative errors (%)

𝐸 (J)

1

1.58𝐸 − 06

1.39𝐸 − 06 12.03

2.22𝐸 − 05

1.09𝐸 − 05 50.90
2 1.48𝐸 − 06 6.33 1.71𝐸 − 05 22.97
4 1.55𝐸 − 06 1.90 2.11𝐸 − 05 4.95
8 1.57𝐸 − 06 0.63 2.29𝐸 − 05 3.15

𝑆𝑞𝑞 (m
2)

1

4.09𝐸 − 13

3.61𝐸 − 13 11.74

6.15𝐸 − 12

2.85𝐸 − 12 53.66
2 3.81𝐸 − 13 6.85 4.48𝐸 − 12 27.15
4 4.00𝐸 − 13 2.20 5.57𝐸 − 12 9.43
8 4.05𝐸 − 13 0.98 6.06𝐸 − 12 1.46
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Figure 2: The bounds of the plate energy: (a) 𝛼 = 0.01; (b) 𝛼 = 0.02; (c) 𝛼 = 0.03; (d) 𝛼 = 0.04.

Table 5: Execution times of S-SIPFEM/SEA and the Monte Carlo
simulation of the hybrid FE/SEA model.

MCS S-SIPFEM/SEA
Execution time(s) 9.22 0.19

In this numerical example, Young’s modulus 𝐸𝑏 and
the density 𝜌𝑏 of the beam and the force 𝐹 are considered
as interval parameters, and the intervals of them can be
expressed by using the uncertainty level 𝛼:

𝐸
𝐼

𝑏
= 𝐸𝑏,𝑚 [1 − 𝛼, 1 + 𝛼] ,

𝜌
𝐼

𝑏
= 𝜌𝑏,𝑚

[1 − 𝛼, 1 + 𝛼] ,

𝐹
𝐼
= 𝐹𝑚 [1 − 𝛼, 1 + 𝛼] ,

(50)

where the mean values of 𝐸𝑏, 𝜌𝑏, and 𝐹 are 𝐸𝑏,𝑚 = 2.1 ×

10
5Mpa, 𝜌𝑏,𝑚 = 7850 kg, and 𝐹𝑚 = 1N, respectively.
All simulations of the beam-plate system are carried out

by using MATLAB R2014a on a 3.60GHz Intel(R) Core
(TM) CPU i7-4790. To illustrate the proposed SIPFEM/SEA

method, the bounds of the plate energy and the autospectra
of the driving point displacements are calculated, and bench-
mark results are obtained by the Monte Carlo simulations of
the hybrid FE/SEA model with 10,000 samples. The bounds
of the plate energy and the autospectra of the driving point
displacements in the frequency band 𝑓 = 200 ∼ 600Hz are
shown in Figures 7 and 8; the considered uncertainty levels
of the interval parameters are 𝛼 = 0.01, 0.02, 0.03, and 0.04,
respectively. The relative errors of the bounds of the plate
energy and the autospectra of the driving point displacements
with different uncertainty levels are shown in Tables 6 and 7;
the considered frequencies are 𝑓 = 330Hz and 𝑓 = 440Hz.
FromFigures 7 and 8 andTables 6 and 7, we can conclude that
the accuracy of SIPFEM/SEA for midfrequency analysis of
built-up structure systems with interval parameters of small
uncertainty levels is excellent, and it will decrease gradually
with the increase of the uncertainty levels. If the uncertainty
level increases to a certain value, unreliable results will be
yielded by SIPFEM/SEA.

To illustrate the effectiveness of S-SIPFEM/SEA for the
analysis with large uncertainty level, we take the uncertainty
level 𝛼 = 0.04 as an example. Figures 9 and 10 show
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Figure 3: The bounds of the autospectra of the mass displacements: (a) 𝛼 = 0.01; (b) 𝛼 = 0.02; (c) 𝛼 = 0.03; (d) 𝛼 = 0.04.

Table 6:The relative errors of the bounds of the plate energy and the autospectrumof the driving point displacements for different uncertainty
levels (𝑓 = 330Hz).

Uncertainty level 𝛼 Lower bounds Upper bounds
MCS SIPFEM/SEA Relative errors (%) MCS SIPFEM/SEA Relative errors (%)

𝐸 (J)

0.01 5.18𝐸 − 07 5.11𝐸 − 07 1.35 6.71𝐸 − 07 6.68𝐸 − 07 0.45
0.02 4.70𝐸 − 07 4.49𝐸 − 07 4.47 7.89𝐸 − 07 7.63𝐸 − 07 3.30
0.03 4.37𝐸 − 07 3.99𝐸 − 07 8.70 9.62𝐸 − 07 8.70𝐸 − 07 9.56
0.04 4.11𝐸 − 07 3.61𝐸 − 07 12.17 1.20𝐸 − 06 9.89𝐸 − 07 17.58

𝑆𝑞𝑞 (m
2)

0.01 2.61𝐸 − 15 2.61𝐸 − 15 0 4.43𝐸 − 15 4.43𝐸 − 15 0
0.02 2.10𝐸 − 15 1.88𝐸 − 15 10.48 5.84𝐸 − 15 5.53𝐸 − 15 5.31
0.03 1.68𝐸 − 15 1.27𝐸 − 15 24.40 7.86𝐸 − 15 6.75𝐸 − 15 14.12
0.04 1.33𝐸 − 15 7.88𝐸 − 16 40.75 1.08𝐸 − 14 8.09𝐸 − 15 24.86

the bounds of the plate energy and the autospectra of the
driving point displacements in the frequency band f = 200∼
600Hz calculated by S-SIPFEM/SEA; the considered number
of subintervals for each interval parameter is three. The
corresponding relative errors of the bounds for frequencies
𝑓 = 330Hz and 𝑓 = 440Hz are shown in Table 8.
From Figures 7(d), 8(d), 9, and 10 and Tables 6∼8, we

can conclude that if the uncertainty level of the interval
parameters increases to a certain value, SIPFEM/SEA will
yield unreliable results. When SIPFEM/SEA yields unreliable
results, S-SIPFEM/SEA can be used to improve the accuracy
by gradually increasing the number of subintervals. If the
number of subintervals is sufficiently large, S-SIPFEM/SEA
will yield perfect results.
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Figure 4: The bounds of the plate energy: (a) one subinterval, (b) two subintervals, (c) four subintervals, and (d) eight subintervals.

Table 7:The relative errors of the bounds of the plate energy and the autospectrumof the driving point displacements for different uncertainty
levels (𝑓 = 440Hz).

Uncertainty level 𝛼 Lower bounds Upper bounds
MCS SIPFEM/SEA Relative errors (%) MCS SIPFEM/SEA Relative errors (%)

𝐸 (J)

0.01 1.39𝐸 − 06 1.38𝐸 − 06 0.71 1.61𝐸 − 06 1.61𝐸 − 06 0

0.02 1.30𝐸 − 06 1.27𝐸 − 06 2.31 1.74𝐸 − 06 1.74𝐸 − 06 0

0.03 1.21𝐸 − 06 1.17𝐸 − 06 3.31 1.93𝐸 − 06 1.87𝐸 − 06 3.11

0.04 1.14𝐸 − 06 1.08𝐸 − 06 5.26 2.11𝐸 − 06 2.02𝐸 − 06 4.27

𝑆𝑞𝑞 (m
2)

0.01 5.79𝐸 − 15 5.79𝐸 − 15 0 7.45𝐸 − 15 7.45𝐸 − 15 0

0.02 5.28𝐸 − 15 5.06𝐸 − 15 4.17 8.44𝐸 − 15 8.38𝐸 − 15 0.71

0.03 4.69𝐸 − 15 4.40𝐸 − 15 6.18 9.94𝐸 − 15 9.38𝐸 − 15 5.63

0.04 4.28𝐸 − 15 3.80𝐸 − 15 11.21 1.14𝐸 − 14 1.04𝐸 − 14 8.77

Table 8:The relative errors of the bounds of the plate energy and the autospectrum of the driving point displacements with three subintervals.

Frequency (Hz) Lower bounds Upper bounds
MCS S-SIPFEM/SEA Relative errors (%) MCS S-SIPFEM/SEA Relative errors (%)

𝐸 (J) 330 4.11𝐸 − 07 4.04𝐸 − 06 1.70 1.20𝐸 − 06 1.19𝐸 − 06 0.83

440 1.14𝐸 − 06 1.12𝐸 − 06 1.75 2.11𝐸 − 06 2.12𝐸 − 05 0.47

𝑆𝑞𝑞 (m
2) 330 1.33𝐸 − 15 1.25𝐸 − 15 6.02 1.08𝐸 − 14 1.05𝐸 − 14 2.78

440 4.28𝐸 − 15 4.15𝐸 − 13 3.04 1.14𝐸 − 14 1.15𝐸 − 12 0.88
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Figure 5: The bounds of the autospectra of the mass displacements: (a) one subinterval, (b) two subintervals, (c) four subintervals, and (d)
eight subintervals.
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Figure 6: The beam-plate system.

Execution times of the S-SIPFEM/SEA with three subin-
tervals and theMonte Carlo simulation of the hybrid FE/SEA
model for calculating the plate energy at the same frequency
are listed in Table 9. It can be seen from Table 9 that the S-
SIPFEM is much more time-saving than the Monte Carlo
simulation of the hybrid FE/SEA model. It is foreseeable
that the computational cost of S-SIPFEM/SEA will increase
gradually with the increase of the number of subintervals, but

Table 9: Execution times of S-SIPFEM/SEA and the Monte Carlo
simulation of the hybrid FE/SEA model.

MCS S-SIPFEM/SEA
Execution time(s) 5,954 123

in engineering practice, the number of subintervals will be
restrained according to the required accuracy.

7. Conclusions

In order to improve the efficiency of midfrequency analysis
of built-up structure systems with interval parameters, the
second-order interval perturbation method and the subin-
terval technique are introduced into the FE/SEA framework
in this study. Based on the FE/SEA equations for built-
up structure systems and the second-order interval pertur-
bation method, the frequency response variables (the SEA
subsystem energy and the cross-spectrum of the response
of the FE components, over the interval parametric and
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Figure 7: The bounds of the plate energy: (a) 𝛼 = 0.01; (b) 𝛼 = 0.02; (c) 𝛼 = 0.03; (d) 𝛼 = 0.04.

nonparametric uncertainties) are expanded with the second-
order Taylor series at the mean values of interval parame-
ters. The nondiagonal elements of the Hessian matrices are
neglected for the sake of simplicity and efficiency and thus
the expanded response variables can be considered as the
sum of a series of quadratic functions with respect to the
interval parameters. By searching the target positions of the
interval parameters that maximize or minimize the quadratic
functions, the bounds of the ensemble averaged responses can
be obtained. Due to the neglect of the higher order terms of
Taylor series, SIPFEM/SEA is limited to the interval analysis
of built-up systems with narrow parameter intervals. For the
interval analysis of built-up systems with larger parameter
intervals, the subinterval perturbation method based on the
SIPFEM/SEA is introduced.

The proposed methods are illustrated by application to
two built-up structure models, and reference results are
obtained by the Monte Carlo simulations of the hybrid
FE/SEAmodels. From the numerical results on the two built-
up structure models, we conclude that (1) the accuracy of
SIPFEM/SEA is remarkable for the midfrequency analysis
of built-up structure systems with small interval parametric

uncertainty; (2) the accuracy of SIPFEM/SEAdecreases grad-
ually with the increase of the interval parametric uncertainty,
and if the uncertainty level increases to a certain value,
unreliable results will be yielded. This is mainly because
of the unpredictable and uncontrollable effect arising from
the neglect of the higher order terms of Taylor series; (3)
the subinterval perturbation method based on SIPFEM/SEA
can be efficiently applied to the midfrequency analysis of
built-up structure systems with large interval parametric
uncertainty, and the accuracy of S-SIPFEM/SEA can be
improved monotonically by increasing the number of subin-
tervals. Thus, we can determine that SIPFEM/SEA and the
subinterval perturbation method based on SIPFEM/SEA are
powerful techniques for the midfrequency analysis of built-
up structure systems with interval parametric uncertainty of
the FE components.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



16 Shock and Vibration

200 250 300 350 400 450 500 550 600
Frequency (Hz)

SIPFEM/SEA (upper)
SIPFEM/SEA (lower)

MCS (upper)
MCS (lower)

10−13

10−14

10−15

10−16

S q
q

(m
2
)

(a)

200 250 300 350 400 450 500 550 600
Frequency (Hz)

SIPFEM/SEA (upper)
SIPFEM/SEA (lower)

MCS (upper)
MCS (lower)

S q
q

(m
2
)

10−13

10−14

10−15

10−16

(b)

200 250 300 350 400 450 500 550 600
Frequency (Hz)

SIPFEM/SEA (upper)
SIPFEM/SEA (lower)

MCS (upper)
MCS (lower)

10−13

10−14

10−15

10−16

S q
q

(m
2
)

(c)

200 250 300 350 400 450 500 550 600
Frequency (Hz)

SIPFEM/SEA (upper)
SIPFEM/SEA (lower)

MCS (upper)
MCS (lower)

10−13

10−14

10−15

10−16

S q
q

(m
2
)

(d)

Figure 8: The bounds of the autospectra of the driving point displacements: (a) 𝛼 = 0.01; (b) 𝛼 = 0.02; (c) 𝛼 = 0.03; (d) 𝛼 = 0.04.
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Figure 9: The bounds of the plate energy with three subintervals.
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[9] P. Ladevèze, L. Arnaud, P. Rouch, and C. Blanze, “The varia-
tional theory of complex rays for the calculation of medium-
frequency vibrations,” Engineering Computations, vol. 18, no. 1-
2, pp. 193–214, 2001.
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