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The research on gearbox fault diagnosis has been gaining increasing attention in recent years, especially on single fault diagnosis.
In engineering practices, there is always more than one fault in the gearbox, which is demonstrated as compound fault. Hence, it is
equally important for gearbox compound fault diagnosis. Both bearing and gear faults in the gearbox tend to result in different kinds
of transient impulse responses in the captured signal and thus it is necessary to propose a potential approach for compound fault
diagnosis. Sparse representation is one of the effective methods for feature extraction from strong background noise. Therefore,
sparse representation under wavelet bases for compound fault features extraction is developed in this paper. With the proposed
method, the different transient features of both bearing and gear can be separated and extracted. Both the simulated study and the

practical application in the gearbox with compound fault verify the effectiveness of the proposed method.

1. Introduction

As a fundamental mechanical component for transmitting
power, gearbox has been widely used in modern industry.
Because of its complicated structure, hostile working condi-
tions, and other reasons, gearbox is usually easily damaged
and breaks down. Therefore, it is of great significance to
develop proper condition monitoring and fault diagnosis
method for gearbox in order to prevent the unexpected
machine fault during operation and even casualties [1].

When a fault is occurring in a bearing or a gear, both of
which are vital components for gearbox, periodic transient
impulses appear in its generated vibration signals. Researches
have shown that the transients in the captured signal always
comprise the important information of fault feature from
the defective component [2]. Therefore, gearbox fault feature
extraction can be transformed into extracting the transients
in the generated signal.

During the past two decades, various advanced sig-
nal processing methods have been proposed for effective
fault feature extraction in rotary machines. Time-frequency

analysis [3, 4], whose analysis of a signal is performed in both
time and frequency domains, is developed for nonstationary
signal processing. As a typical method of time-frequency
analysis, Wigner-Ville Distribution (WVD) has proven its
effectiveness in mechanical fault diagnosis [5, 6]. Wavelet
transforms, which decompose an original signal into different
scales with varying frequency bandwidths [7, 8], are also used
to extract fault-related information of rotary machines [9, 10].
Empirical mode decomposition (EMD) [11], a self-adaptive
signal processing technique, decomposes the nonlinear and
nonstationary signal into a set of intrinsic mode functions
(IMF). It has also been introduced to fault diagnosis of rotary
machines [12, 13].

However, methods mentioned above are mostly used
on the occasion that there is single fault in the machinery.
A number of engineering practices have shown that there
is usually more than one fault in a gearbox, which is
demonstrated as compound fault [14]. When different faults
exit simultaneously, vibration signal excited by several faults
always contains different transient impulse responses, which
makes it quite complex and difficult to identify each fault



from the observed signal in terms of traditional methods.
Hence, some novel techniques for compound fault diagnosis
have been developed gradually. The blind source separation
(BSS) technique [15] can separate several original signals that
cannot be observed directly from the superposed signals and
has been used in extracting machinery faults features from
different rotary components [16, 17]. However, the analyzed
compound signals in BSS are usually derived from different
channels through several transducers, which may bring some
inconvenience in installing transducers during engineering
application. Morphological component analysis (MCA) [18]
was also developed for compound signal decomposition
based on the morphological diversity of each component [19,
20]. However, MCA requests that the vibrations generated by
each faulty component are totally irrelevant, which may lower
the separation quality. Additionally, some intelligent methods
based on models are proposed in recent years for compound
faults signals separation [21, 22], but due to its difficulty in
acquiring the appropriate data, these intelligent methods have
not been widely promoted.

Meanwhile, there has been a growing interest in the study
of sparse representation of signals recently [23, 24]. With
an overcomplete dictionary which contains prototype signal-
atoms, signals can be described as a sparse linear combination
of these atoms [25, 26]. Till now, sparse representation
has already been used in single fault feature extraction,
and its excellent extraction property has been proven [27,
28]. According to the characteristics of gear fault vibration
signal, Cai et al. [27] proposed the sparsity-enabled signal
decomposition using tunable Q-factor wavelet transform
and successfully extracted the fault feature of gear. In [28],
Fan et al. constructed a sparse dictionary corresponding
to the signal characteristic and combined Majorization-
Minimization (MM) algorithm to extract the gear transient
impulse responses sparsely.

Based on the engineering practical requirement, further
research on the gearbox compound fault diagnosis should be
conducted. On the basis of failure ratio investigation among
the components in gearbox, the main failure components
tend to be bearing and gear. However, there are few methods
for extracting gearbox compound fault features of both
bearing and gear faults. Hence, it is of much importance
to pay attention to gearbox compound fault diagnosis when
both bearing and gear faults occur. Due to its excellent self-
adaptability, concise expression, and other merits, sparse
representation is introduced in this paper for separating and
extracting the gearbox compound fault features. Once there
are both bearing and gear faults in a gearbox, there will
always be two different kinds of transient impulse responses
in the sampled signal. Considering the diversity in waveforms
of each fault, different optimal wavelet bases thus can be
constructed by correlation filtering [29, 30]. Then the con-
strained optimization algorithm with obtained special basis
is incorporated to get a series of sparse coeflicients which
represent the specific fault. After representing the fault in
sparse coeflicients with the suitable constrained optimization
algorithm one by one, the impulse time and the period
parameter of each fault in the gearbox can be detected from
the sparse coeflicients properly.
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The rest of this paper is outlined as follows. In Section 2,
the basic theoretical background concerning the proposed
method is introduced. A simulated study is given to verify
the effectiveness of the proposed method in Section 3. In
Section 4, the proposed method is applied to the gearbox
compound fault features extraction to further verify its
effectiveness. At last, Section 5 gives the conclusions.

2. Theoretical Framework

2.1. Sparse Representation Theory. Signal sparse representa-
tion is to represent the signal with as fewer nonzero values as
possible in an overcomplete dictionary, in order to simplify
the procedure of signal processing. The following part gives a
concrete description on sparse representation theory.

Assume that a set A = {a,},.r contains M elements and
N linearly independent vectors with N « M; thus, the set
A is an overcomplete dictionary or basis. Each column of the
matrix A is a signal called an atom. Considering the signal
sampled from the transducer contains noise, the observed
signal y(#) can be modeled as

y (@) =x(t) +n(t), ey

where y(t) is the observed noisy signal, x(t) is the true signal
without noise, and »(t) is the noise. The true signal x(t) can
be represented sparsely with the overcomplete basis A and
also can be described as a linear combination of certain atoms
of A. Therefore, the representation of x can be expressed as
x = Ac, where c is the vector of representation coeflicients
which also represents the transient. The occurrence of an
impulse in the cyclic signal generates a value in the sparse
coeflicient vector ¢ accordingly. Therefore, when the cyclic
impulses occur in the signal, cyclic values occur in the sparse
coeflicient vector ¢ correspondingly, and other values in the
sparse coefficient vector will be zeros theoretically. Thus, the
representation coefficient vector ¢ has sparsity, and then the
cyclic transient components as well as the impulse time of
the signal can be extracted from the sparse coefficients. As
a result, the estimation modal in (1) turns into

y(t) =Ac+n(t), (2)

where A is an N x M matrix, with N < M; c is a length-
M vector. The more similar the basis A and the signal x
are, the sparser the vector ¢ will be. Based on the sparse
representation theory, to obtain the sparse representation
of signal x under overcomplete basis A, the optimization
function can be constructed as

min el

)
st y-Ad; <e,

where ||c|, is the [,-norm of vector ¢, counting the nonzero
values of vector c. It is well known that the problem in
(3) of estimating ¢ is a nondeterministic polynomial (NP)
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problem, which is difficult to make out. Usually, problem (3)
is transformed into

min |l

2 @)
s.t. ||y - Ac”2 <e

where |c||; is the [;-norm of vector ¢, defined as |c[|, =

M letm)l.

2.2. Optimization Algorithm for Sparse Representation. At
present, sparse algorithms including greedy pursuit algo-
rithms and convex relaxation algorithms have been proposed
to resolve the problem in (4). Greedy algorithms mainly con-
tain Matching Pursuit (MP) algorithm [31] and Orthogonal
Matching Pursuit (OMP) [32] which is developed by MP
algorithm and so forth. Basis Pursuit (BP) algorithm, as one
of the convex relaxation algorithms, is proposed by Chen et
al. in [33]. It is different from the greedy methods by replacing
the /;-norm by [,-norm to transform the combinatorial
optimization problem into convex optimization problem.
BPD algorithm, developed based on BP algorithm, having
the advantage of eliminating noise inference, is introduced to
solve the problem in (4):

1
J (€)= argmin_ [ly - Ac[; + Al 3)

where |[ic||, is the ],-norm of vector ¢, defined as ||c||§ =

Zil lc(m)|?, and A is the regularization parameter. After
the minimization of objective function in (5), a sparse
representation vector ¢ can be obtained. To minimize J(c),
an iterative algorithm must be introduced. The traditional
gradient descent methods always converge slowly, such as
iterative shrinkage/thresholding algorithm (ISTA) [34] and
fast IST algorithm (FISTA) [35]. In order to improve the speed
of convergence, Afonso et al. proposed a novel technique
named the split augmented Lagrangian shrinkage algorithm
(SALSA) [36], which is faster than the earlier methods. The
algorithm updates the vector ¢ during each iteration so as
to minimize the objective function J(c¢) until the optimal
solution € is gained.

Considering the unconstrained optimization problem in
which the objective function is the sum of two functions, (5)
can be written as

mcin {fl ©+ f, (C)}) (6)

where f,(c) = (1/2)]ly - Acllg, f2(c) = Alicll;. Then variable
splitting is introduced to create a new variable denoted by u,
to serve as the augment of f,, under the constraint thatu = c.
This leads to the constrained problem:

min  {f; W + £, ()}
7)

st. u=c

which is obviously equivalent to the unconstrained problem
in (6). Then, use the following definitions: E(z) = f;(u) +

f>(c),z=[%],b=0,H = [I —I]. With these definitions, (7)
can be transformed into

mzin E(z)
(8)
st. Hz-b=0.

The augmented Lagrangian function for this problem is
defined as

L(zAu) = E(z) + AT (Hz - b) + g IHz - bJ2, (9)

where A is a vector of Lagrange multipliers and ¢ > 0 is
the penalty parameter. The augmented Lagrangian method
(ALM) is used to minimize the objective function L(z, A, p),
and the following results can be obtained:

2"V = argmin {E (2)+£ "Hz B d(k)ni} ’
2 2 (10)
k) = g® () ),

where k is the iteration counter. Considering the concrete
forms of the function E(z), matrix H, and the vector b, novel
results can be written as

us = argmin {fl (u) + g "u - - d(k)“j}

(11)
(1 )
= argmin {5 Iy - Aul; + g Ju—c®—a® ||2} ,
< = argmin { £, (0 + & [u? - - a®|}
(12)
= i B (kD) ) ||2
= argmin {/\IICIh + 2 o —c-d “2}’
4k — q® _ (u(k+1) _ C(k+1)) . 13)

Equation (11) is a strictly convex quadratic function to be
minimized, which leads to the solution u**") directly, and the
soft threshold facilitates the minimization of (12), after which
the iteration procedure of SALSA can be listed as

ukrd) = (AHA + ptI)i1 (AHy +u (ck + dk)) ,

D oy <u(k+1) & &)) (14)
U

dorD — gt _ kD | Ger)

By running the iterative numerical algorithm SALSA, the
optimal sparse solution € can be found eventually. With the
sparse solution ¢, which means most elements of the vector €
are closer to zero, the reconstructed X can be represented as
X = AC. In the sparse vector ¢, there are successive periodic
nonzero coeflicients which present the transient responses in
the original signal. Thus, the fault period can be calculated
from the envelope spectrum analysis of the reconstructed
signal, after which the fault feature is eventually extracted.
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FIGURE 1: Diagram of test-bed (the red arrow illustrates the propagation path of the compound fault signal).

2.3. Selection of the Optimal Wavelet Bases by Correlation
Filtering. After choosing SALSA as the sparse optimization
algorithm, the selection of wavelet bases turns out to be
another key work. In order to represent the original signal as
sparse as possible, the basis should be as relevant to the signal
as possible. Considering the characteristics of vibration signal
of the faulty bearing, the Laplace wavelet, which is in shape
similar to the signal transients caused by bearing localized
fault, is selected to construct the wavelet basis during the

extraction of bearing fault feature. The Laplace wavelet is
defined as

A D) =y (LEnt) =y, ()

(15)
= B, N ginonf (¢ — 1),
where the parameter vector y = (f,{,7) determines the

wavelet properties. These parameters (f,{,7) denote fre-
quency f € R", damping ratio { € [0,1) ¢ R, and time
index 7 € R, respectively. The parameter B, is used to normal-
ize the wavelet function.

The parameters f, {, and 7 belong to the subsets of F, Z,
and T, respectively. With different parameters, the Laplace
wavelet dictionary can be constructed as

‘I’={l//y(t):y€FXZ><T}

={y(f.{,7,t): feF{eZ 1eT}.

(16)

With the constructed Laplace wavelet basis, correla-
tion filtering is introduced to identify the optimal set of

parameters (f,(,7). Correlation is used to determine the
similarity between the wavelet basis and the original signal
and measured by inner product operation. The correlation
function ¢, is defined to calculate the correlation degree
between the basis 1//y(t) and the original signal x(t):

Cy = cosf = W—’X(t)”, (17)
lv, @ Ix @)1

where 0 is the angle between Wy(t) and x(¢). The smaller the
angle is, the more similar the basis y,(t) and the original
signal x(t) will be. Therefore, the optimal wavelet atom with
optimal parameters ( f,{,7) can be obtained by maximizing

the correlation function ¢, at each time value from the

constructed Laplace wavelet dictionary. Peaks of ¢, for a given
time value 7 can be represented as

K (7) = max o, =c(f.0.7) (18)

and the time index parameter T can be calculated by max-
imizing the coeflicient k, (7). With correlation filtering, the

optimal parameters (f,{,7) can be found effectively; then
the optimal wavelet atom with these parameters can be
constructed.

Meanwhile, the Morlet wavelet, which is in shape similar
to the vibration signal transients caused by gear localized
fault, is used to construct the wavelet basis during the
extraction of gear fault feature. The Morlet wavelet is defined
as

A (61) =y (fLm0) = vy (1)

(19)
= B,e™ V1=Prf Dl (o 2nf (t-1),
where the parameter vector y = (f,{,7) also determines

the wavelet properties. These parameters (f,(,7) denote
frequency f € R, damping ratio { € [0,1) ¢ R', and
time index T € R, respectively, and the optimal set of the
characteristic parameters also can be found by correlation
filtering. The parameter B, is used to normalize the wavelet
function.

2.4. Separation and Extraction for Gearbox Compound Fault.
However, the sequence of the compound fault features extrac-
tion should be determined first. The influence of propagation
path of signals in the gearbox is taken into consideration to
handle the problem. The vibration signals, generated from
the gearbox, always contain not only the normal vibrations
but also the fault vibrations. In theory, these signals transmit
arbitrarily in the gearbox, but as a whole there is an overall
propagation path of signals: gear-spline-shaft-bearing-casing
[37]. When there are faults in both gear and bearing, the
signal sampled by the sensor always contains different kinds
of transient impulse responses. Because the sensor is placed
on the casing, which is closer to the bearing according to
the propagation path of the fault vibration signal as shown in
Figure 1, the energy of bearing fault feature is thus higher than
that of gear fault feature in the captured compound signal. As
aresult, the feature of bearing with higher energy is extracted
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first in order to reduce the interference during the extraction
of gear fault feature.

Since the choice for bases A; and A, has been made,
by incorporating them into the algorithm SALSA during
the extraction procedure of each fault feature, two sparse
vectors ¢, and €, can be obtained one by one. That is, due
to the characteristics of the vibration signal of the defective
bearing, the Laplace wavelet basis, which is matched with
the original compound fault signal by correlation filtering,
is firstly incorporated into the iterative algorithm SALSA.
Then, a sparse vector ¢;, which represents the bearing fault
feature sparsely, and the reconstructed signal X, of bearing
fault can be obtained. After the sparse representation of
bearing fault feature, the amplitude of each transient impulse
is represented by the sparse vector €;. In order to estimate the
real amplitude of the bearing fault transients, a constrained
optimization strategy is proposed to estimate the amplitude
of the single fault component by introducing the parameter
k. The spectrum of the residual fault signal x — kX, is denoted

by F\(f)
min £, ()}
subject to k> 0, (20)
f=ra

where x is the original signal, X, is the reconstructed signal
of bearing, f; is the peak frequency of X;, and k is a positive
parameter. When F, (f) is minimized eventually subjected to
its constraints, it indicates that the bearing fault component
in the residual fault signal has been removed to the largest
extent. By solving problem in (20), an optimal value kq,
is acquired, and the estimated bearing fault signal can be
obtained by the function x; = ko, X;.

Then, after removing the bearing fault signal, the residual
signal should only contain gear fault transient responses and
underground noise. To extract the fault feature of gear, Morlet
wavelet basis, matched with the obtained residual signal
by correlation filtering, is incorporated into the iterative
algorithm SALSA. After that, the second sparse vector ¢,
representing the gear transients is generated. Similarly, the
reconstructed signal X, of gear can be gained by X, = A,cC,.
Similar to the bearing fault feature extraction, it is also
necessary to estimate the real gear fault signal by solving
another constrained optimization problem:

min {5 ()
subject to k>0, (21

f = sz’

where the spectrum of the residual fault signal x, ., — kX, is
denoted by F,(f), X, is the residual signal after removing
the bearing fault component, and X, is the preliminary
reconstructed fault signal of gear. After solving problem
in (21), another optimal value k,, is acquired naturally.
The estimated gear fault signal thus can be obtained by the
function x, = ko X,.

| Input compound signal x(t) |

| Laplace wavelet basis by correlation filtering |
N

| Iterative algorithm SALSA |
N2

Sparse vector €, representing bearing fault
and its reconstructed signal X;

Estimate the bearing fault signal x; by solving
the optimization problem to obtain ko

Remove the fault feature signal of bearing from
the original compound signal

| Morlet wavelet basis by correlation filtering |
L

| Iterative algorithm SALSA |
N

Sparse vector €, representing gear fault
and its reconstructed signal X,

N2
Estimate the gear fault signal x, by solving the
the optimization problem to obtain ki

End

FIGURE 2: Procedure of the proposed compound fault transients
extraction method.

To summarize, the procedure of the proposed method in
this paper to separate and extract gearbox compound fault
features using wavelet bases is presented in Figure 2.

3. Simulated Study

To verify the effectiveness of the proposed method, a sim-
ulated compound fault signal processing is performed for
different features extraction. Considering the characteristics
of the compound fault vibration signal in a gearbox, the signal
is constructed as

x(t)=x, () +x,(t)+A,n(t),

x, (t) = z [Ble(—(l/m)zﬂfl(t_rl_kn)

k

x sin2nf, (t -7, - le)] , (22)

X, (t) = Z [Bze(_CZ/@)[Zﬂfz(t—rz—sz)]Z

K
x cos2nf, (t -7, — sz)] ,

where x,(t) is a period cyclic impulse responses signal
to simulate the bearing fault in Figure 3(a). The values of
parameters are given. The frequency is f; = 3500 Hz, the
damping ratio is {; = 0.080, the time index is 7; = 0.1s, the
cyclic period is T; = 0.007 s, and the normalized parameter
is B, = 1. x,(t) is also a period cyclic signal to simulate
the vibration signal of faulty gear in Figure 3(b). Concrete
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FIGURE 3: Simulated signals: (a) the simulated signal for faulty
bearing, (b) the simulated signal for faulty gear, and (c) noisy
compound fault signal.

values of the parameters are listed: f, = 275 Hz, {, = 0.0074,
T, = 0.02s, T, = 0.05s, and B, = 0.6. The signal n(¢) is
white Gaussian noise, which is weighted by A, = 0.3. The
sampling frequency is 25.6 KHz and the sampling number is
5000. Figure 3(c) gives the waveforms of the noisy compound
signal.

To separate and extract each fault feature from the noisy
compound signal, the proposed sparse representation under
wavelet bases is applied. According to the procedure in
Figure 2, the first step is to obtain the optimal Laplace wavelet
basis matched with the original noisy signal by correlation
filtering, which is shown in Figure 4(a). Then incorporate
the matched Laplace wavelet basis into the iterative processes
of the algorithm SALSA, after which the sparse coefficients
representing the transient feature of the faulty bearing can be
obtained, as shown in Figure 4(b). The reconstructed signal
of bearing is shown in Figure 4(c), and Figure 4(d) gives
the envelope spectrum analysis of reconstructed signal. In
Figure 4(b), there are successive periodic nonzero values in
the sparse vector, which represent the bearing fault transient
in the original signal. In Figure 4(d), the fault characteristic
frequency of bearing is obtained as 141.1 Hz, almost consistent
with the theoretical value (f, = 1/T = 142.9 Hz). Figure 4(e)
shows the estimated bearing fault signal with k,,,; = 1.716.

Remove the estimated bearing fault signal from the
original noisy compound signal; we can get a residual signal
as shown in Figure 5. Similar to the bearing, the first step is
to obtain the optimal Morlet wavelet basis matched with the
residual signal by correlation filtering, which is illustrated in
Figure 6(a). Then, incorporate the Morlet wavelet basis into
the iterative processes of SALSA, sparse coeflicients repre-
senting the gear fault feature can be obtained in Figure 6(b),

Shock and Vibration

0 002 0.04 0.06 008 01 0.12 014 0.16 0.18

Time (s)
(a)
e T AT NI AT N
[=9
S iR
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Time (s)
(b)
E ol b b b b
g rrrrrrrryrrrrrrrrrrerrry ot
-0.5 ¢ X X L L L L L L -
< 0 0.02 0.04 0.06 008 0.1 0.12 0.14 0.16 0.18
Time (s)
(0)
1
E o5l 1
E o . e
< 0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)
(d)
E o4 LLLLLLLLLL;[LLLlLLLLllAL
N AN AR AR AARNARARRARRAS A
< 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Time (s)
(e)

FIGURE 4: Results of bearing fault signal: (a) optimal Laplace basis,
(b) sparse coeflicients, (c) reconstructed signal, (d) the envelope
spectrum analysis of reconstructed signal, and (e) the estimated
bearing fault signal.
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FIGURE 5: The residual signal after removing the estimated bearing
fault signal.

and Figure 6(c) gives the reconstructed signal of defective
gear. The envelope spectrum analysis of the reconstructed
signal is given in Figure 6(d), where we can get the fault
characteristic frequency as 20.9 Hz, nearly equal to the
simulated value (f, = 1/T, = 20Hz). At last, Figure 6(e)
shows the estimated gear fault signal with k,,, = 11.563.

By analyzing the results of the simulated study, we can
conclude that there are both bearing and gear faults in the
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FIGURE 6: Results of gear fault signal: (a) optimal Morlet basis,
(b) sparse coeflicients, (c) reconstructed signal, (d) the envelope
spectrum analysis of reconstructed signal, and (e) the estimated gear
fault signal.

simulated compound fault signal. The effectiveness of the
proposed method has been proven preliminarily.

Taking the noise inference into consideration, the noise
intensity A, is increased gradually in order to analyze the
robustness of the proposed method. Figures 7-10 show the
extraction results when A, is selected as 0.4, 0.5, and 0.6,
respectively. As shown in these figures, bearing and gear
faults can still be separated and extracted from the compound
signal accurately. Based on these above analyses, it can be
concluded that the proposed method has the capability to
suppress the noise inference until the noise intensity is
increased to a higher value.

4. Application to Gearbox Compound Fault
Features Extraction

To further verify the effectiveness of the proposed method
in practical engineering application, defective gearbox data
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FIGURE 7: Extraction results of the compound signal with A, =
0.4: (a) the noisy signal, (b) sparse coefficients of bearing fault
component, (c) the envelope spectrum analysis of reconstructed
bearing fault signal, (d) sparse coefficients of gear fault component,
and (e) the envelope spectrum analysis of reconstructed gear fault
signal.

is analyzed. The research object is a single stage transmission
gearbox in a test-bed, as illustrated in Figure 10. The faulty
gear is a helical gear, whose working parameters are listed
in Table 1. The bearing model in the experiment is 30625,
taper roller bearing, and its geometric parameters are listed
in Table 2. Based on the known parameters, the theoretical
fault frequency of the bearing outer race can be calculated as
176.18 Hz.

Aimed at getting gearbox compound fault data, a crack
width of 0.4 mm is set in the outer race of the bearing using
the linear cutting technique to simulate the localized fault of
abearing, and half a tooth is cut in the driving gear by electric
sparkle technique to simulate the localized defection of a gear
as shown in Figure 11. Additionally, to reduce the influence
of propagation path, the sensor is placed on the bearing end
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TABLE 1: Working parameters of gears in the tested gearbox.
Gear Number of teeth Rotating frequency (Hz) Rotating period (s) Meshing frequency (Hz)
Driving gear 34 24.67 0.041 839
Driven gear 42 19.98 0.05
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FIGURE 8: Extraction results of the compound signal with A, =
0.5: (a) the noisy signal, (b) sparse coefficients of bearing fault
component, (c) the envelope spectrum analysis of reconstructed
bearing fault signal, (d) sparse coefficients of gear fault component,
and (e) the envelope spectrum analysis of reconstructed gear fault
signal.

TABLE 2: Geometry of the tested bearing.

Inside Outside Ball Number of  Contact
diameter diameter diameter rolling angle
(mm) (mm) (mm) elements @)

30 62 8 17 14

cover close to the faulty bearing. During the experiment, the
rotating speed of the motor is 1496 r/min, and the sampling
frequency is set at 25.6 KHz.
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FIGURE 9: Extraction results of the compound signal with A, =
0.5: (a) the noisy signal, (b) sparse coefficients of bearing fault
component, (c) the envelope spectrum analysis of reconstructed
bearing fault signal, (d) sparse coefficients of gear fault component,
and (e) the envelope spectrum analysis of reconstructed gear fault
signal.

The measured vibration signal with compound fault is
shown in Figure 12(a). From Figure 12(a), the characteristics
of each fault cannot be identified clearly. Therefore, the pro-
posed method in this paper is employed to extract different
transient features from the noisy signal. Figure 12(b) gives its
frequency spectrum. Figure 12(c) is the envelope spectrum
analysis of the original signal. In Figure 12(c), there exist
different frequency components. Thus, the location of the
fault cannot be identified exactly in the gearbox.
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FIGURE 10: Experimental gearbox in a test-bed.
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FIGURE 11: Fault components.
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FIGURE 12: The measured signal and its spectral analysis: (a) the
measured signal with compound fault, (b) its frequency spectrum,
and (¢) its envelope spectrum analysis.

According to the procedure of the proposed method in
this paper, the first step is to obtain the optimal Laplace
wavelet basis matched with the original measured signal by
correlation filtering. Figure 13(a) gives the result of matched
Laplace wavelet basis. Then, the matched Laplace wavelet
basis is incorporated into the iterative algorithm SALSA.
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FIGURE 13: Results of bearing fault signal: (a) optimal Laplace basis,
(b) sparse coeflicients, (c) reconstructed signal, (d) the envelope
spectrum analysis of the reconstructed signal, and (e) the estimated
bearing fault signal.

Figure 13(b) shows the sparse coefficients of bearing. In
Figure 13(b), there are successive nonzeros in the sparse
vector, which represent the transient of bearing outer race
fault. Figure 13(c) is the reconstructed signal of faulty bearing.
Figure 13(d) gives the envelope spectrum analysis of the
reconstructed signal, where we can conclude that the feature
frequency of the bearing outer race is 174.1Hz, and it is
consistent with the theoretical value 176.18 Hz. Hence, it
indicates that there exists a localized fault in the outer race
of bearing indeed. Finally, Figure 13(e) shows the estimated
bearing fault signal with ko, = 1.322.

After removing the estimated bearing fault signal from
the original signal, we can obtain the residual signal in
Figure 14. Then the next steps of the proposed method are
conducted and the extraction results of the defective gear fault
feature are shown in Figure 15. Figure 15(a) gives the optimal
matched Morlet wavelet basis. Figure 15(b) gives the sparse
coefficients. In Figure 15(b), there are successive nonzeros in
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FIGURE 15: Results of gear fault signal: (a) optimal Morlet basis,
(b) sparse coefficients, (c) reconstructed signal, (d) the envelope
spectrum analysis of the reconstructed signal, and (e) the estimated
gear fault signal.

the sparse vector, which represent the transients of gear fault.
Figure 15(c) shows the reconstructed signal of the defective
gear. Figure 15(d) is the envelope spectrum analysis of the
reconstructed signal, from which the feature frequency can
be obtained as 25.6 Hz, nearly consistent with the theoretical
value 24.67 Hz. Therefore, it indicates that there is a localized
fault in the gear indeed. Finally, Figure15(e) shows the

estimated gear fault signal with k,, = 2.193.

Shock and Vibration

5. Conclusions

This paper proposes a novel method to represent the gearbox
compound fault features sparsely using different wavelet
bases so as to separate the different faulty components from
the compound signal. Based on the sparse representation
theory, the proposed method introduces the numerical iter-
ative algorithm SALSA under Laplace wavelet basis and
Morlet wavelet basis, respectively, to solve the BPD problem,
after which two sparse vectors can be obtained one by one.
One vector represents the transient feature of faulty bearing
and the other represents the transient feature of defective
gear. As a result, the proposed method converts the gearbox
compound fault features into a series of sparse coefficients,
which facilitates gearbox fault diagnosis. Both the simulated
study and the application to the sampled gearbox compound
fault data verify that the proposed method can separate and
extract the compound fault features of the gearbox effectively.
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