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Abstract. The purpose of this paper is to study parametric earthquake analysis of thick plates using Mindlin’s theory, to determine
the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick plates subjected
to earthquake excitations and to present the frequency parameters and the mode shapes of the same plates. In the analysis, finite
element method is used for spatial integration and the Newmark-β method is used for time integration. A computer program
using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the
analysis, 8-noded finite element is used. Graphs and tables are presented that should help engineers in the design of thick plates
subjected to earthquake excitations. It is concluded that,in general, the changes in the thickness/span ratio are moreeffective on
the maximum responses considered in this study than the changes in the aspect ratio. It is also concluded that the effectsof the
change in the thickness/span ratio on the frequency parameter of the thick plates are always larger than those of the change in the
aspect ratio.

Keywords: Parametric earthquake analysis, thick plate, Mindlin’s theory, finite element method, thickness/span ratio, aspect ratio,
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1. Introduction

Plates are structural elements which are commonly used in the building industry. A plate is considered to be a
thin plate if the ratio of the plate thickness to the smaller span length is less than 1/20; it is considered to be a thick
plate if this ratio is larger than 1/20 [1,32].

The dynamic behavior of thin plates has been investigated bymany researchers [3,4,6,7,13,14,16,17,30,33,36,38,
39]. There are also many references on the behavior of the thick plates subjected to different loads. The studies
made on the behavior of the thick plates are based on the Reissner-Mindlin plate theory [9–11,29]. This theory
requires only C0 continuity for the finite elements in the analysis of thin andthick plates. Therefore, it appears as
an alternative to the thin plate theory which also requires C1 continuity. This requirement in the thin plate theory is
solved easily if Mindlin theory is used in the analysis of thin plates. Despite the simple formulation of this theory,
discretization of the plate by means of the finite element comes out to be an important parameter. In many cases,
numerical solution can have lack of convergence, which is known as “shear-locking”. Shear locking can be avoided
by increasing the mesh size, i.e. using finer mesh, but if the thickness/span ratio is “too small”, convergence may not
be achieved even if the finer mesh is used for the low order displacement shape functions.

In order to avoid shear locking problem, the different methods and techniques, such as reduced and selective
reduced integration, the substitute shear strain method, etc., are used by several researchers [8,26,27,34,35]. The
same problem can also be prevented by using higher order displacement shape function [41]. Wanji and Cheung [5]
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Fig. 1. The sample plate used in this study.

proposed a new quadrilateral thin/thick plate element based on the Mindlin-Reissner theory. Soh et al. [2] improve
a new element ARS-Q12 which is a simple quadrilateral 12 DOF plate bending element based on Reissner-Mindlin
theory for analysis of thick and thin plates.. Brezzi and Marini [12] developpeda locking free nonconformingelement
for the Reissner-Mindlin plate using discontinuous Galarkin techniques. Belounar and Guenfound [22] improved
a nev rectangular finite element based on the strain approachand the Reissner-Mindlin theory is presented for the
analysis of plates in bending either thick or thin. Cen et al.[31] developed a new high performance quadrilateral
element for analysis of thick and thin plates. This distinguishing character of the new element is that all formulations
are expressed in the quadrilateral area co-ordinate system. Ayvaz [39] derived the equations of motions for thick
orthotropic elastic plates using Hamilton’s principle, but did not present any results. Liew and Teo [20] studied
three-dimensional vibration analysis of rectangular plates based on differential quadrature method. Shen et al. [15]
studied free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations. Cai
et al. [23] presented the generalized mixed variational principle for Reissner plate analysis. Using finite element
method, Raju and Hinton [19] made significant contributionsto the vibration analysis of plates including rotatory
inertia effects for rhombic plates based on Mindlin’s theory. Woo et al. [21] found accurate natural frequencies
and mode shapes of skew plates with and without cutouts by p-version finite element method using integrals of
Legendre polynomial forp = 1 − 14. Qian et al. [24] studied free and forced vibrations of thick rectangular plates
using higher-order shear and normal deformable plate theory and meshless Petrov-Galarkin method. Morais et
al. [25] studied vibrations of thick plates using Lagrangean quadrilateral finite element with 16 nodes. However,
no references have been found in the technical literature for the earthquake analysis of thick plates using Mindlin
theory.

The purpose of this paper is to study parametric earthquake analysis of thick plates using Mindlin’s theory, to
determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses
of the thick plates subjected to earthquake excitations andto present the frequency parameters and the mode shapes
of the same plates. A computer program using finite element method is coded in C++ to analyze the plates clamped
or simply supported along all four edges. In the program, thefinite element method is used for spatial integration
and the Newmark-β method is used for the time integration. In the analysis, 8-noded finite elements are used to
construct the stiffness and mass matrices since shear locking problem does not occur if this element is used in the
finite element modeling of the thick plates [41,42].

2. Mindlin’s theory of thick plates

In the plate of Fig. 1, assuming thatu andv are proportional toz andw is independent ofz, the plate displacement
in terms of the two slopes and a displacement at an arbitraryx, y, andz point can be written as follows:

u = {u, v, w} = { − zφx, zφy, w} =

{

−z
∂ϕi

∂x
, z

∂ϕi

∂y
, w

}

(1)
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Fig. 2. 8-noded quadrilateral finite element used in this study [41].

In this equation,u, v, w are displacements in thex, y, andz directions, respectively,x, y, andz are the co-ordinate
axes andϕx andϕy are the rotations in thex andy directions, respectively (Fig. 2). The equations for strain
components in terms of plate displacementsu,v, andw are given as follows [39]:

εx =
∂u

∂x
γxy =

∂v

∂x
+

∂u

∂y

εy =
∂v

∂y
γxz =

∂w

∂x
+

∂u

∂z

εz =
∂w

∂z
γyz =

∂w

∂y
+

∂v

∂z

(2)

The expressions for stresses are given in terms of stress resultants as follows [10]:

σx =
12Mxz

t3
τxy =

12Mxyz

t3

σy =
12Myz

t3
τxz =

3Qxz

2t

(

1 −
4z2

t2

)

σz = 0 τxz =
3Qyz

2t

(

1 −
4z2

t2

)

(3)
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where is the plate thickness,Mx, andMy are bending moments,Mxy is twisting moment,Qx, andQy are shear
forces. In order to derive equations of motion for a plate, Hamilton’s equation is used. This equation is given as
follows:

δ

t2
∫

t1

(T − V )dt = 0 (4)

where T is the kinetic energy of the plate, andV is the potential energy of the plate. The kinetic energy of the plate
is given as follows:

T =
1

2

∫∫∫

m(ü2+v̈2 + ẅ2)dv (5)

where m is mass per unit volume. The potential energy function,V , for a plate subjected to an earthquake excitation
is given as follows:

V = F −

∫∫

q̄w dx dy (6)

whereq̄ denotes−müg, üg is the earthquake acceleration, andF , the strain energy, is written as follows [10]:

F =

∫

v

(σxεx+σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz) dv − W̄ (7)

andW̄ is the complementary energy of the plate, which is given as follows:

W̄ =
1

2

∫

v

(σxεx+σyεy + σzεz + τxyγxy + τxzγxz + τyzγyz) dv (8)

By substituting Eqs (2) and (3) into Eqs (7) and (8), Equation(8) into Eq. (7), Eq. (7) into Eq. (6), Eqs (5) and (6)
into Eq. (4), the following dynamic and stress resultant equations from Hamilton’s principle can be obtained;

Dynamic equations:

∂Mx

∂x
+

∂Mxy

∂y
− Qx =

mt3

12
ϕ̈x

∂Mxy

∂x
+

∂My

∂y
− Qy =

mt3

12
ϕ̈y (9)

∂Qx

∂x
+

∂Qy

∂y
− müg = mhẅ

Equation for stress resultants:

Mx = D̄

(

−
∂ϕx

∂x
+ ν

∂ϕy

∂y

)

My = D̄

(

∂ϕy

∂y
− ν

∂ϕx

∂x

)

Mxy = Dt

(

−
∂ϕx

∂y
+

∂ϕy

∂x

)

(10)

Qx = C

(

−ϕx +
∂w

∂x

)

Qy = C

(

ϕy +
∂w

∂y

)

The equations to calculateC, D, Dt are given as follows:
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C =
5

6
Gt

D̄ =
Et3

12(1 − ν2)

Dt =
Gt3

12

(11)

whereE, G, ν, andt are modulus of the elasticity, shear modulus, Poisson’s ratio, and the thickness of the plate,
respectively,

By substituting Eq. (10) into Eq. (9), the equation of motionfor a plate subjected to earthquake excitations can be
obtained. These equations are as follows:

D̄

(

−
∂2ϕx

∂x2
+ ν

∂2ϕy

∂x∂y

)

+ Dt

(

−
∂2ϕx

∂y2
+

∂2ϕy

∂x∂y

)

− c

(

−ϕx +
∂w

∂x

)

=
mh3

12

∂2ϕx

∂t2

D̄

(

∂2ϕy

∂y2
− ν

∂2ϕx

∂x∂y

)

+ Dt

(

−
∂2ϕx

∂x∂y
+

∂2ϕy

∂y2

)

− c

(

ϕy +
∂w

∂y

)

=
mh3

12

∂2ϕy

∂t2
(12)

c

(

−
∂ϕx

∂x
+

∂2w

∂x2

)

+ c

(

∂ϕy

∂y
+

∂2w

∂y2

)

− müg = mh
∂2w

∂t2

In the case of the free vibration analysis, the term,−müg, in the third equation of Eq. (12) becomes zero. In this
study, finite element method is used to solve the plate governed by Eq. (12).

3. Finite element modeling

The governing equation for a flexural plate (see Fig. 1) subjected to free vibration without damping can be given,
in matrix notation, as

[M ] {ẅ} + [K] {w} = 0 (13)

where [K] and [M ] are the stiffness matrix and the mass matrix of the plate, respectively,w andẅ are the lateral
displacement and the second derivative of the lateral displacement of the plate with respect to time, respectively.,

The governing equation for a flexural plate subjected to an earthquake excitation without damping can be given,
in matrix notation, as

[M ] {ẅ} + [K] {w} = [F ] = − [M ] {üg} (14)

In order to do free and forced vibration analysis of a plate, the stiffness, [K], mass matrices, [M ], and equivalent
nodal loads vector, [F ], of the plate should be constructed. The evaluation of these matrices is given in the following
sections.

3.1. Evaluation of the stiffness matrix

The simplest type of plate-bending element has rectangulargeometry which is a special case of quadrilateral
geometry. In this study, 8-noded quadrilateral serendipity element (MT8) (see Fig. 2) is used. The stiffness matrix
for this element can be obtained by the following equation [28].

[K] =

∫

A

[B]T [D][B]dA =

1
∫

−1

1
∫

−1

[B]T [D][B] |J | drds (15)

which must be evaluated numerically [24].
As seen from Eq. (15), in order to obtain the stiffness matrix, [B], and the flexural rigidity matrix, [D], of the

element need to be constructed.
The nodal displacements for 8-noded finite element can be written as follows;
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u = −zφx = −z

8
∑

i=1

hiϕxi, v = zφy = z

8
∑

i=1

hiϕyi, w =

8
∑

i=1

hiwi (16)

The displacement function chosen for this element is;

w = c1 + c2r + c3s + c4r
2 + c5rs + c6s

2 + c7r
2s + c8rs

2 (17)

wherer ands are the local coordinates of the plate.
From this assumption, it is possible to derive the displacement shape functionh to be;

h = [h
1
, h2, h3, h4, h5, h6, h7, h8] (18)

where [41]

h1 = (1

4
) ∗ (1 − r) ∗ (1 − s) ∗ (−r − s − 1), h2 = (1

2
) ∗ (1 − r ∗ r) ∗ (1 − s)

h3 = (1

4
) ∗ (1 + r) ∗ (1 − s) ∗ (r − s − 1), h4 = (1

2
) ∗ (1 + r) ∗ (1 − s ∗ s)

h5 = (1

4
) ∗ (1 + r) ∗ (1 + s) ∗ (r + s − 1), h6 = (1

2
) ∗ (1 − r ∗ r) ∗ (1 + s)

h7 = (1

4
) ∗ (1 − r) ∗ (1 + s) ∗ (−r + s − 1), h8 = (1

2
) ∗ (1 − r) ∗ (1 − s ∗ s).

(19)

Then, the strain-displacement matrix [B] for this element can be written as follows [37]:

[B] =





























0 0 −
∂hi

∂x
· · ·

0
∂hi

∂y
0 · · ·

0
∂hi

∂x
−

∂hi

∂y
· · ·

∂hi

∂x
0 −hi · · ·

∂hi

∂y
hi 0 · · ·





























5x21

(20)

The flexural rigidity matrix, [D], can be obtained by the following equation.

[D] =

[

Ek 0
0 Eγ

]

. (21)

In this equation, [Ek] is of size 3× 3 and [Eγ ] is of size 2× 2. [Ek], and [Eγ ] can be written as follows [18]:

[Ek] =
t3

12















E

(1 − ν2)

νE

(1 − ν2)
0

νE

(1 − ν2)

E

(1 − ν2)
0

0 0
E

2 (1 − ν)















; [Eγ ] = k t







E

2.4 (1 + ν)
0

0
E

2.4 (1 + ν)






(22)

wherek is a constant to account for the actual non-uniformity of theshearing stresses. By assembling the element
stiffness matrices obtained, the system stiffness matrix is obtained.

3.2. Evaluation of the mass matrix

The formula for the consistent mass matrix of the plate may bewritten as

M =

∫

Ω

HT
i µHidΩ. (23)

In this equation,µ is the mass density matrix of the form [40]

µ =





m1 0 0
0 m2 0
0 0 m3



 , (24)
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where m1 = ρpt, m2=m3 = 1

12

(

ρpt
3
)

, andρp is the mass densities of the plate. andHi can be written as follows,

Hi =
[

dhi/dx dhi/dy hi

]

i = 1 . . . 8. (25)

It should be noted that the rotation inertia terms are not taken into account. By assembling the element mass matrices
obtained, the system mass matrix is obtained.

3.3. Evaluation of equivalent nodal loads vector

Equivalent nodal loads, [F ], can be obtained by the following equation.

[F ] =

∫

HT
i q dΩ. (26)

In this equation, Hi can be obtained by Eq. (25).
It should be noted that, in this study, the program, MATLAB, is used for the eigenvalue solution of Eq. (13). It

should also be noted that, the Newmark-β method is used for the time integration of Eq. (14) by using the average
acceleration method.

4. Numerical examples

4.1. Data for numerical examples

In the light of the results given in references [41,42], the aspect ratios, b/a, of the plate are taken to be 1, 1.5, and
2.0. The thickness/span ratios, t/a are taken as 0.05, 0.1, 0.2, and 0.3 for each aspect ratio. The shorter span length
of the plate is kept constant to be 3 m. The mass density, Poisson’s ratio, and the modulus of elasticity of the plate
are taken to be 2.5 kN s2/m2, 0.2, and 2.8x107 kN/m2 for both analysis. In order to obtain the response of each
plate in the forced vibration analysis by using the time history analysis, the East-West component of March 13 1992
Erzincan earthquake in Turkey is used. Duration of this earthquake is 21 s, but, in this study, the first 8 s of the
earthquake is used since the peak value of the record occurred in this range (Fig. 3 (a)). The acceleration spectrum
curve of the same component of this earthquake is also given in Fig. 3(b).

For the sake of accuracy in the results, rather than startingwith a set of a finite element mesh size and time
increment, the mesh size and time increment required to obtain the desired accuracy were determined before
presenting any results. This analysis was performed for themesh size in the free vibration analysis. This analysis
was also performed separately for the mesh size and time increment in the forced vibration analysis. It was concluded
that the results have acceptable error when equally spaced 16× 16 mesh sizes are used for a 3 m× 3 m plate for the
free vibration analysis. It was also concluded that the results have acceptable error when equally spaced 16x16 mesh
sizes are used for a 3 m× 3 m plate for the forced vibration analysis, if the 0.01s timeincrement is used. Length of
the elements in thex andy directions are kept constant for different aspect ratios asin the case of square plate.

4.2. Results

4.2.1. Free vibration results
The first six frequency parameters of thick plates considered for different aspect ratio,b/a, thickness/smaller span

ratio,t/a, are presented in Table 1 for the thick simply supported plates and in Table 2 for thick clamped plates. In
order to see the effects of the changes in these parameters better on the first six frequency parameters, they are also
presented in Fig. 4 for the thick simply supported plates andin Fig. 5 for the thick clamped plates.

As seen from Tables 1 and 2, and Figs 4 and 5, the values of the frequency parameters for a constant value oft/a
decrease as the aspect ratio,b/a, increases. This behavior is understandable in that a thickplate with a larger aspect
ratio becomes more flexible and has smaller frequency parameters. The decreases in the frequency parameters with
increasing value of b/a ratio gets less for a constant value of t/a.
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(b)

Fig. 3. (a) East-West component of the March 13, 1992 Erzincan earthquake in Turkey and (b) its acceleration spectrum.

As also seen from Tables 1 and 2, and Figs 4 and 5, the values of the frequency parameters for a constant value
of b/a increase as the thickness/span ratio,b/a, increases. This behavior is also understandable in that a thick plate
with a larger thickness/span ratio becomes more rigid and has larger frequency parameters. The increases in the
frequency parameters with increasing value oft/a ratio gets larger for a constant value ofb/a.

It should be noted that the increase in the frequency parameters with increasingt/a ratios for a constant value of
b/a ratio gets larger for larger values of the frequency parameters. These observations indicate that the effects of the
change in thet/a ratio on the frequency parameter of the thick plates simply supported or clamped along all four
edges are always larger than those of the change in the aspectratio.

As also seen from Figs 4 and 5, the curves for a constant value of the aspect ratio,b/a are fairly getting closer to
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Table 1
The first six natural frequency parameters of thick simply supported plates for
different b/a ve t/a ratios

b/a t/a
λi = ωt

√

ρ

E

λ1 λ2 λ3 λ4 λ5 λ6

1.0

0.05 0.0141 0.0354 0.0354 0.0555 0.0698 0.0698
0.1 0.0545 0.1321 0.1321 0.2004 0.2496 0.2501
0.2 0.1945 0.4389 0.4389 0.6276 0.7613 0.7648
0.3 0.3867 0.8148 0.8148 1.1229 1.3296 1.3413

1.5

0.05 0.0101 0.0197 0.0317 0.0354 0.0407 0.0557
0.1 0.0402 0.0754 0.1198 0.1326 0.1505 0.2015
0.2 0.1470 0.2642 0.4052 0.4410 0.4911 0.6315
0.3 0.2986 0.5138 0.7601 0.8192 0.9009 1.1292

2.0

0.05 0.0088 0.0141 0.0231 0.0304 0.0355 0.0355
0.1 0.0353 0.0550 0.0880 0.1155 0.1328 0.1328
0.2 0.1305 0.1971 0.3050 0.3933 0.4417 0.4421
0.3 0.2682 0.3920 0.5865 0.7411 0.8197 0.8214

Table 2
The first six natural frequency parameters of thick clamped thick plates for
different b/a ve t/a ratios

b/a t/a
λi = ωt

√

ρ

E

λ1 λ2 λ3 λ4 λ5 λ6

1.0

0.05 0.0259 0.0519 0.0519 0.0752 0.0906 0.0912
0.1 0.0967 0.1844 0.1844 0.2585 0.3046 0.3075
0.2 0.3153 0.5503 0.5503 0.7390 0.8421 0.8538
0.3 0.5735 0.9465 0.9465 1.2483 1.4032 1.4239

1.5

0.05 0.0195 0.0300 0.0470 0.0474 0.0563 0.0708
0.1 0.0741 0.1114 0.1683 0.1710 0.1992 0.2472
0.2 0.2486 0.3604 0.5070 0.5255 0.5920 0.7214
0.3 0.4617 0.6525 0.8751 0.9220 1.0195 1.2321

2.0

0.05 0.0178 0.0230 0.0322 0.0452 0.0455 0.0504
0.1 0.0678 0.0866 0.1194 0.1635 0.1645 0.1797
0.2 0.2287 0.2877 0.3860 0.4933 0.5128 0.5395
0.3 0.4256 0.5312 0.6995 0.8513 0.9082 0.9325

each other as the value oft/a decreases. This shows that the curves of the frequency parameters will almost coincide
with each other when the value of the thickness/span ratio,t/a, decreases more. In other words, the decrease in the
thickness/span ratio will not affect the frequency parameters after a determined value oft/a.

4.2.2. Forced vibration results
One of the purposes of this paper was to determine the time histories of the displacements and the bending

moments at different points of the thick plates subjected toearthquake excitations, but presentation of all of the time
histories would take up excessive space. Hence, only the absolute maximum displacements and bending moments
for different thickness/span ratio and aspect ratio are presented after two time histories are given. This simplification
of presenting only the maximum responses is supported by thefact that the maximum values of these quantities are
the most important ones for design. These results are presented in graphical form rather than in tabular form.

The time histories of the center displacements of the thick simply supported plates forb/a = 1.0, and 2.0 when
t/a = 0.2 are given in Fig. 6(a) and 6(b), respectively. As seen from Fig. 6(a) and 6(b), the center displacements of
the thick simply supported plates forb/a = 1, andt/a = 0.2, and forb/a = 2, andt/a = 0.2, reached their absolute
maximum values of 0.00631 mm at 3.47 s, and of 0.01447 mm at 3.48 s, respectively. These absolute maximum
values are different even with the same occurring time as thedynamic characteristics of the thick plates affect the
response. It is also understandable that the system becomesmore flexible as the aspect ratio increases.

The absolute maximum displacements of the thick simply supported plates for different aspect ratios, and thick-
ness/span ratios are given in Fig. 7. As seen from Fig. 7, the absolute maximum displacements of the thick simply
supported plates increase with increasing aspect ratio fora constant t/a ratio. The same displacements decrease with
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Fig. 4. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of the thick simply supported plates.

increasing t/a ratio for a constant b/a ratio. As also seen from this figure, the decrease in the absolute maximum
displacement for a constant b/a ratio increases with increasing b/a ratio. The curves for a constant value of the aspect
ratio, b/a are fairly getting closer to each other as the value oft/a increases. This shows that the curves of the
absolute maximum displacements will almost coincide with each other when the value of the thickness/span ratio,
t/a, increases more. In other words, the increase in the thickness/span ratio will not affect the absolute maximum
displacements after a determined value oft/a. In general, the effects of the changes in the thickness/span ratios on
the absolute maximum displacement are larger than the changes in the aspect ratios.

The absolute maximum bending momentsMx at the center of the thick simply supported plates for different aspect
ratios and thickness/span ratios are given in Fig. 8. As seenfrom Fig. 8, the absolute maximum bending moment,
Mx, at the center of the thick simply supported plates increases with increasing aspect ratio and thickness/span ratio.
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Fig. 5. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters of the thick clamped plates.

The increases in the absolute maximum bending moment,Mx, increase with increasing aspect and thickness/span
ratios. This is understandable that increasing the aspect ratio makes the plate stiffer in the short span, the x axis,
direction. As also seen from this figure, in general, the effects of the changes in the aspect ratios on the absolute
maximum bending moment, Mx, are larger than the changes in the thickness/span ratios.

The absolute maximum bending momentsMy at the center of the thick simply supported plates for different
aspect ratios and thickness/span ratios are given in Fig. 9.As seen from Fig. 9, the absolute maximum bending
moment,My, at the center of the thick simply supported plates decreases with increasing aspect ratio and increases
with increasing thickness/span ratio. The decrease in the absolute maximum bending moment, My, increase with
increasing aspect ratio. The increase in the absolute maximum bending moment,My, increases with increasing
thickness/span ratios. This is understandable that increasing the aspect ratio makes the thick plate more flexible in
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Fig. 6. The time history of the center displacement of the thick clamped plate for (a)b/a = 1.0 andt/a = 0.2, and (b)b/a = 2.0 andt/a = 0.2.

the long span, they axis, direction. As also seen from this figure, in general, the effects of
the changes in the thickness/span ratios on the absolute maximum bending moment,My, are larger than the

changes in the aspect ratios.
It should be noted that, in this study, the thick plates clamped along all four edges are also analyzed. Since the

variations in the responses of the thick clamped plates withthe thickness/span ratios, and the aspect ratios are similar
to the variations in the responses of the thick simply supported plates with the same parameters, the results of the
thick clamped plates are not presented. It should also be noted that the absolute maximum displacements of the thick
simply supported plates are larger than those of the thick clamped plates for the same aspect and thickness/span
ratios. Since no results have been found in the literature for the case of the same earthquake problem, comparison
of the results obtained in this study is not possible.

5. Conclusions

For a thick plate subjected to the earthquake excitations, it is somewhat difficult to interpret the effects of the
thickness/span ratio, the aspect ratio, and the boundary conditions on the responses because both the frequency
content of the earthquake excitation and the exact natural frequency of the particular thick plate can make a difference
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Fig. 7. Absolute maximum displacement of the thick simply supported plates for different aspect ratios and thickness/span ratios.

1 1.5 2
b/a

0

2000

4000

6000

8000

10000

12000

Ab
so

lu
te 

m
ax

im
um

 be
nd

in
g m

om
en

t 
M

x a
t t

he
 ce

nt
er

 (k
Nm

m
) t/a=0.05

t/a=0.1
t/a=0.2
t/a=0.3

Fig. 8. Absolute maximum bending momentMx at the center of the thick simply supported plates for different aspect ratios and thickness/span
ratios.

to its response. In order to generalize the results obtainedin this study, the responses of the different thick plates
subjected to different earthquake excitations should be evaluated all together. Therefore, the curves presented herein
can help the designer to anticipate the effects of the thickness/span ratio, the aspect ratio, and the boundary conditions
on the earthquake response of a thick plate. The coded program can be effectively used for the free vibration and
earthquake analyses of any thick plates. In addition, the following conclusions can also be drawn from the results
obtained in this study.

The increase in the frequency parameters with increasingt/a ratio for a constant value ofb/a ratio gets larger for
larger values of the frequency parameters. The effects of the change in thet/a ratio on the frequency parameter of
the thick plates are always larger than those of the change inthe aspect ratio. The absolute maximum displacements
of the thick plates increase with increasing aspect ratio for a constant t/a ratio. The same displacements decrease with
increasing t/a ratio for a constant b/a ratio. The effects ofthe changes in the thickness/span ratios on the absolute
maximum displacement are generally larger than the changesin the aspect ratios. The absolute maximum bending
moment,Mx, at the center of the thick plates increases with increasingaspect ratio and thickness/span ratio. The
effects of the changes in the aspect ratios on thisMx are generally larger than the changes in the thickness/span
ratios. The absolute maximum bending moment,My, at the center of the thick plates decreases with increasing
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Fig. 9. Absolute maximum bending momentMy at the center of the thick simply supported plates for different aspect ratios and thickness/span
ratios.

aspect ratio and increases with increasing thickness/spanratio. The effects of the changes in the thickness/span ratios
on this My are generally larger than the changes in the aspect ratios. In general, degrees of decreases and increases
depend on the changes in the aspect and thickness/span ratios, and the changes in the thickness/span ratio are more
effective on the maximum responses considered in this studythan the changes in the aspect ratio.
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