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Frequency domain structural synthesis
applied to quasi-static crack growth modeling
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Abstract. Quasi-static crack growth in a composite beam was modeled using the structural synthesis technique along with a
finite element model. The considered crack was an interface crack in the shear mode (i.e. mode II), which occurs frequently in
the scarf joint of composite structures. The analysis model was a composite beam with an edge crack at the midplane of the
beam subjected to a three-point bending load. In the finite element model, beam finite elements with translational degrees of
freedom only were used to model the crack conveniently. Then, frequency domain structural synthesis (substructure coupling)
was applied to reduce the computational time associated with a repeated finite element calculation with crack growth. The
quasi-static interface crack growth in a composite beam was predicted using the developed computational technique, and its result
was compared to experimental data. The computational and experimental results agree well. In addition, the substructure-based
synthesis technique showed the significantly improved computational efficiency when compared to the conventional full analysis.
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1. Introduction

The failure analysis of large-scale structural systems such as aircraft and ships is a computationally demanding
task, and hence is frequently pursued on a component basis. At a basic level, the computational demand is due to the
need for a refined mesh surrounding the crack area, while maintaining a mesh of adequate refinement for the entire
structure. The computational demand is significantly increased by the presence of composite materials due to the
need to include through-the-thickness computations for ply failure. The computational demand is further increased
when nonlinear structural behavior is included. In this paper, we explore the use of substructuring techniques in the
failure analysis of structural systems.

Substructure coupling, or substructuring refers to the analysis of a structural system by the joining together of
substructures, each of which is analyzed independently. The resulting assemblage of substructures is typically a
system model of significantly fewer degrees-of-freedom (DOF) than the total number of DOF, hence the computa-
tional advantage of a substructuring procedure. The most well-known of the substructuring procedures are known
as component mode synthesis procedures. The substructures are each represented by sets of shapes associated with
a combination of physical and modal coordinates. A distinctive feature of component mode synthesis procedures is
that the substructure representation requires mode shape information for all DOF for each substructure. Additionally,
the system model size grows as additional substructure modes are added to increase the accuracy of the system
model.

In contrast to component mode synthesis, here we will make use of a coupling procedure which is distinguished
by its functioning solely in physical coordinates, and which requires the retention of coupling DOF only from

∗Corresponding author. E-mail: ywkwon@nps.edu.

ISSN 1070-9622/09/$17.00  2009 – IOS Press and the authors. All rights reserved



638 Y.W. Kwon and J.H. Gordis / Frequency domain structural synthesis applied to quasi-static crack growth modeling

Fig. 1. Scarf joint of two composites, one in gray and the other in white.

each of the substructures. A significant literature exists on this topic; see for example [1–7]. A frequency domain
formulation [6,7] which was adopted in the present work, represents substructures by frequency response functions
(FRF) calculated at the connect DOF. Using the FRF of the substructures, which need be calculated only once, the
coupled system frequency response can be directly synthesized. Additionally, the coupling forces which act on the
substructures can be calculated. What distinguishes both the time and frequency domain coupling methods is that the
substructures are represented only by response functions at the coupling DOF only – no internal DOF (non-coupling
DOF which are “internal” to the substructures) need be retained.

Here we will develop a hybrid frequency domain substructure/crack growth analysis methodology for an interface
crack in a composite structure. We exploit the property of the frequency domain formulation wherein each substruc-
ture is represented only by coupling DOF. This will allow those portions of the structures not containing a crack
to be eliminated from the analysis, except for the coupling DOF. Note that as the frequency domain formulation is
exact, no approximation is introduced, regardless of the size and number of the substructures whose internal (non-
coupling) DOF are eliminated. We will demonstrate the computational advantage of the hybrid frequency domain
substructure/crack growth analysis methodology, as compared with a traditional full-up analysis of the damaged
structure.

Interface crack failure is common in composites structures, especially in scarf joints of composite structures [8]
as sketched in Fig. 1. In the scarf joint, cracks initiate at interfaces of two adjacent layers of the joint section and
propagate to complete failure. In particular, the critical crack forms at the high stress concentration location, which
is in most cases at the bottom interface of the joint of Fig. 1. In order to predict the failure strength of the scarf joint,
it is necessary to be able to model interface crack propagation in composites. As a result, the present study considers
modeling of a quasi-static interface crack growth in a composite beam.

The subsequent section describes the frequency domain substructuring technique, which is followed by the finite
element modeling for crack growth. Then, an example problem is provided for quasi-static crack growth in a
composite beam. For this example, both computer modeling results (traditional full-up analysis and the substructuring
methodology) are compared to the experimental data. In addition, the substructuring synthesis model is compared
to the conventional full analysis model so as to determine the relative computational time. Finally, conclusions are
provided at the end.

2. Frequency domain substructuring

Frequency domain synthesis is a general formulation for structural modification and substructure coupling [6,
7]. Using frequency response functions (FRF) to represent the substructures, the formulation is exact and as a
minimum, requires only FRF at the coupling DOF. The generation of FRF is done once, and the full model need not
be resolved subsequently. The frequency response functions are defined quite generally, and may include stress and
strain frequency response as needed, e.g.:

Hij (Ω) ≡ ∂xi (Ω)
∂fj (Ω)

Hσ
ij (Ω) ≡ ∂σi (Ω)

∂fj (Ω)
Hε

ij (Ω) ≡ ∂εi (Ω)
∂fj (Ω)

(1)

where Eq. (1) denote frequency response functions which relate displacement, stress, and strain response at DOF “i”
to a force at DOF “j”, respectively.

We will summarize the principal elements of the formulation which are pertinent to the coupling problem at hand.
We will be applying the procedure to a quasi-static analysis, a prior example of which can be found in [9]. A key
aspect of the application to static problems is the need to install springs to ground in the substructure models prior to
synthesis (due to the need to form flexibility matrices) and the subsequent removal of these springs in the synthesis,
concurrently with the coupling.
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Fig. 2. Uncoupled and coupled substructures.

Referring to Fig. 2, two substructures, denoted “A” and “B” are shown. For each substructure, a set of coupling
DOF are identified, and are members of the “c” set of DOF. Those DOF not directly involved in coupling, but for
which synthesized (i.e. coupled) responses are desired are included as needed in the “i” set. Those DOF at which
synthesized stress response is desired are members of the “σ” set. For those substructures with rigid-body modes
requiring the installation of springs-to-ground prior to the calculation of uncoupled flexibilities (zero-frequency
response), the DOF at which the springs-to-ground are installed are members of the “g” set.

The steady-state equation of motion in the frequency domain is given by Eq. (2). Note that vector/matrix quantities
are in bold text. Note that the various partitions of the matrix in this equation contain entries from all substructures.
In other words, each DOF set may have members from all substructures.



σ
xi

xc

xg




=




Hσi Hσc Hσg

Hii Hic Hig

Hci Hcc Hcg

Hgi Hgc Hgg







fi
fc
fg


 (2)

From the definition of the DOF sets (c-set, i-set, σ-set, g-set), the loading at the member DOF is comprised of
externally applied loads, and in all cases except the i-set, loads due to coupling, i.e.


fe
fc
fg


 =




fe
fc
fg




e

+




0
fc
fg




∗

(3)

where the “e” superscript indicates externally applied loads, and the * superscript indicates a coupled (synthesized)
quantity.

Making use of Eq. (3) along with the set union,

e = i ∪ c ∪ g
we can rewrite Eq. (2) as,



σ
xe

xc

xg




=




Hσe Hσc Hσg

Hee Hec Heg

Hce Hcc Hcg

Hge Hgc Hgg







fe
fc
fg


 (4)

which now includes redundant rows, since c ⊂ e.
As explained in Ref. [9], the coupling connectivity to be established between the c-set and g-set DOF is represented

by a Boolean mapping matrix, [Mc], whose rows correspond to the c-set DOF and the columns correspond to the
connections. For example, for a single pair of c-set coordinates to be coupled, [M c] is

[Mc] =
[

1
−1

]
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This matrix establishes the “pairing” among the c-set coordinates. For a spring-to-ground (one end restrained), the
mapping matrix is simply

[Mg] =
[
1
]

where the pairing is between g-set coordinates on the substructures and (non-existent) ground coordinates, hence the
missing lower row in [Mg].

In Ref. [6,7,9], it is shown that the mapping matrices are related to directed graphs, which can be used to
graphically portray the synthesis, and can also be found from equilibrium of the connection. The mapping matrices
are associated with “reduced” impedances for an interconnecting impedance, and the reduced impedance Z̃ for
single spring-to-ground is,

Z̃ = kg

The mapping matrices serve to define the reduced coordinates. For the c-set coordinates, we have

{fc} = [Mc]
{
f̃c

}
(5)

{x̃c} = [Mc]
T {xc} (6)

For the complete development of these results, see Ref. [6,7,9].
We now construct the synthesis transformations which will operate on Eq. (4).



σ
xe

x̃c

x̃g




=




I 0 0 0
0 I 0 0
0 0 MT

c 0
0 0 0 MT

g







σ
xe

xc

xg




(7)




fe
fc
fg


 =


 I 0 0

0 Mc 0
0 0 −MgZ̃







fe
f̃c
x̃g


 (8)

Using these transformations, Eq. (4) becomes


σ
xe

x̃c

x̃g




=




Hσe HσcMc −HσgMgZ̃
Hee HecMc −HegMgZ̃

MT
c Hce MT

c HccMc −MT
c HcgMgZ̃

MT
g Hge MT

g HgcMc −MT
g HggMgZ̃







fe
f̃c
x̃g


 (9)

Extracting the third and fourth rows of Eq. (9){
x̃c

x̃g

}
=

[
MT

c Hce

MT
g Hge

]
{fe} +

[
MT

c HccMc −MT
c HcgMgZ̃

MT
g HgcMc −MT

g HggMgZ̃

] {
f̃c
x̃g

}
(10)

Imposing compatibility on the c-set coordinates,

{x̃c} = {0}
leads to,{

f̃c
x̃g

}
=

[−MT
c HccMc MT

c HcgMgZ̃
−MT

g HgcMc I + MT
g HggMgZ̃

]−1 [
MT

c Hce

MT
g Hge

]
{fe} (11)

Using Eq. (11) in the first two rows of Eq. (9) yields,{
σ
xe

}
=

[
Hσe

Hee

]
{fe} +

[
HσcMc −HσgMgZ̃
HecMc −HegMgZ̃

][−MT
c HccMc MT

c HcgMgZ̃

−MT
g HgcMc I + MT

g HggMgZ̃

]−1 [
MT

c Hce

MT
g Hge

]
{fe}(12)

Recognizing the new relationship between the applied loads and the σ-set and e-set responses yields the operative
form synthesis transformation:[

Hσe

Hee

]∗
=

[
Hσe

Hee

]
−

[
Hσc Hσg

Hec Heg

][
Mc 0
0 Mg

][
MT

c HccMc MT
c HcgMg

MT
g HgcMc Z̃−1 + MT

g HggMg

]−1 [
Mc 0
0 Mg

] [
Hσe

Hee

]T

(13)

Equation (13) provides for the simultaneous coupling of substructure and removal of grounding springs.
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Fig. 3. Displacement-based beam element.

3. Finite element modeling for crack growth

Shearing mode crack growth, so called Mode II, was modeled for a composite beam joining interface strength. To
this end, the displacement-based beam element was used to accommodate the crack and its growth conveniently [10,
11]. The beam element has both in-plane and transverse displacement degrees of freedom as sketched in Fig. 3,
but no rotational degree of freedom. In addition, the transverse displacement is assumed to be constant through the
beam thickness because the transverse normal strain is considered negligible. As a result, there are three degrees of
freedom (i.e. two in-plane displacements and one transverse displacement) per node and six degrees of freedoms per
beam element if the element has two nodes as shown in Fig. 3.

The stiffness matrix for the beam element is developed below. The in-plane displacement field of the element is
expressed as

u(x, y) =
n∑

i=1

Ni(x)
[
H1(y)ub

i +H2(y)ut
i

]
(14)

and the transverse displacement field is given by

v(x) =
n∑

i=1

Ni(x)vi (15)

in which superscripts ‘b’ and ‘t’ denote bottom and top sides of the beam, and n = 2 for the beam element shown in
Fig. 3. The shape functions are expressed as

N1(x) = 1 − x

l
(16)

N2(x) =
x

l
(17)

H1(y) = 1 − y

h
(18)

H2(y) =
y

h
(19)

Here, l and h are the length and height of the beam element, respectively.
Normal and shear strains resulting from the displacement fields are computed as

εx =
∂u

∂x
=

2∑
i=1

∂N1

∂x

[
H1u

b
i +H1u

b
i

]
= {Bb}T {d} (20)

and

γxy =
∂u

∂y
+
∂v

∂x
=

2∑
i=1

(
Ni

[
∂H1

∂y
ub

i +
∂H2

∂y
ub

i

]
+
∂Ni

∂x
vi

)
= {Bs}T {d} (21)
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Fig. 4. Beam containing a crack along its longitudinal direction

a

P

L

Fig. 5. Three point bending test for Mode II fracture.

where the elemental nodal displacement vector is given by

{d}T =
{
ub

1 u
t
1 v1 u

b
2 u

t
2 v2

}
(22)

Then, the element stiffness matrix is computed by summing bending stiffness and transverse shear stiffness as shown
below:

[Ke] = [Ke
b ] + [Ke

s ] (23)

where the bending stiffness matrix is

[Ke
b ] =

∫ l

0

∫ h

0

{Bb}E {Bb}T
dydx (24)

and the transverse shear stiffness matrix is

[Ke
s ] =

∫ l

0

∫ h

0

{Bs}G {Bs}T
dydx (25)

in which E andG are elastic and shear moduli, respectively. Finally, the element stiffness matrix is given by

[Ke] =




a1 + 2a3 −a1 + a3 a4 a1 − 2a3 −a1 − a3 −a4

−a1 + a3 a1 + 2a3 −a4 −a1 − a3 a1 − 2a3 a4

a4 −a4 a2 a4 −a4 −a2

a1 − 2a3 −a1 − a3 a4 a1 + 2a3 −a1 + a3 −a4

−a1 − a3 a1 − 2a3 −a4 −a1 + a3 a1 + 2a3 a4

−a4 a4 −a2 −a4 a4 a2




(26)

in which

a1 =
Gl

4h
, a2 =

Gh

l
, a3 =

Eh

6l
, a4 =

G

2
(27)

In order to model a crack along the beam axis, two beam elements were overlaid along the beam as sketched in
Fig. 4. Because the beam element has only displacement degrees of freedom like a 2-D plane stress element,
element interface between the top and bottom elements are natural. Likewise the crack faces can be easily modeled
with displacement degrees of freedom. As the crack grows, there should be a separation between top and bottom
elements which are located along the path of crack growth. Therefore, top and bottom elements were considered
to be connected by linear springs as constraints. Then, when the crack passes through the element, the springs are
removed so that there is no need for remeshing for crack growth.

4. Example problem

The example problem selected was a three-point bending test of a carbon fiber composite beam with a crack at
the midplane along the beam axis as sketched in Fig. 5. The test specimens were fabricated in two steps in order to
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(a)      (b) 

(c) 

Resin layer  

Nonstick peel ply 

Fig. 6. (a) Prepare and cure the bottom half of composite layers. (b) Add a non-stick Teflon ply for the initial crack. (c) Put the top half composite
layers on the top of the bottom composite and cure them.

represent the joining interface of a composite. The bottom half of a composite beam was cured first with layers of
composite fabrics using a resin. Then, top half composite layers were placed on the already cured composite beam,
and they were cured with a resin. In order to create an initial crack, a non-sticking Teflon tape was placed partially
between the top and bottom parts of the composite, as sketched in Fig. 6. The main reason that the whole specimens
were not cured together simultaneously was to represent the joining interface as in the composite scarf joint where
a new composite part is added and cured on top of an already constructed and cured composite structure.

The physical test was conducted to measure the energy release of Mode II fracture of the joint interface of
composite beams which was 128 mm long, 4.2 mm high, and 25.1 mm wide. Elastic and shear moduli of the beam
were 50.4 GPa, and 3.17 GPa, respectively. The initial crack at the midplane of the beam was 50 mm. The Mode II
energy release rate, GII , was determined using a compliance approach with the following equation [12]:

GII =
9a2P 2C

2b(2L3 + 3a3)
(28)

where:
P = applied load
C = compliance (= deflection/force)
a = initial delamination length
b = sample width
L = span length
The critical energy release rate GIIc is computed with the applied load at the onset of crack propagation as the

applied load increases very slowly. The unit of GIIc is force/length. As the crack grows, the overall beam stiffness
becomes less. Therefore, the load vs. displacement relationship at the center of the beam becomes nonlinear along
with the crack growth. This experimental data is compared to the computational results later.

During the physical experiment, the displacement was controlled by increasing it very slowly to represent a
quasi-static crack growth, for which the effect of kinetic energy is neglected. In order to simulate the experiment in
the computer model, the displacement was applied incrementally at the beam center to determine the resulting force.
Then, the energy release rate of Mode II is computed from Eq. (28) using the compliance of the force-displacement
data. If the computed energy release rate is greater than the critical energy release rate, the crack is considered to
grow until the new calculated energy release rate becomes less than the critical value. Because of the displacement
control, the load and the energy release rate decrease under a constant displacement condition as the crack grows.

In order to model the present problem using the synthesis technique, the beam was constructed by two substructures
as shown in Fig. 7. One substructure, labeled SubstructureA, includes the applied load while the other substructure,
labeled Substructure B, contains the crack. Because the force in Substructure A is located at the center of the
total beam, Substructure A was slightly longer than Substructure B. The displacement and force degrees of freedom
associated with the external load used in the synthesis are the transverse displacement and the applied vertical force
in Substructure A. For coupling between two substructures, the six translational displacement degrees of freedom at
each end of the substructures were used.
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P

L1

k
a

L2

- k

Fig. 7. Substructures of the simply supported beam of Fig. 6.
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Fig. 8. Force vs. deflection curves at the center of a three point bending composite beam with a middle crack at one side.

Because each substructure has only one pin-joint support, there is still a rigid body mode in its stiffness matrix
for static analysis, which prevents the calculation of the flexibility matrix, as needed by the synthesis. As a result,
a spring-to-ground was attached to each substructure as shown in Fig. 7. The two springs had the same magnitude
but one positive and the other negative. The locations of the springs were selected such that the spring effect was
cancelled out when the substructures were coupled together. In other words, the springs were attached to two nodes,
respectively, that would be directly coupled together.

The numerical result is compared to the experimental data as shown in Fig. 8. They agree very well. In the
numerical model, crack growth was considered by checking the computed energy release rate against its critical
value. When the former exceeded the latter, the crack advanced to the next element. Then, the new energy release
rate was computed again and compared to the critical value. This process repeated until there was no more crack
growth under a given deflection at the center of the beam. Once a stable crack size was determined, the force
corresponding to the given deflection was computed. Then, another increment of the displacement was applied to
the beam. This procedure continued so that the force-displacement curve was obtained as shown in Fig. 8. As the
crack grew beyond a certain critical size, there was a significant load drop in the displacement-controlled situation.
As explained, Fig. 9 illustrates the crack growth along with the applied displacement at the center of the beam. The
figure shows that the crack did not propagate until the applied deflection reached greater than 6.6 mm.

The same problem was also analyzed using the conventional finite element model without using the synthesis
technique. This solution also agrees well with other solutions as seen in Fig. 8. However, the computational time was
much more extensive for the traditional model without the synthesis technique. Figure 10 compares the execution
time between two computer models with and without the synthesis technique using a PC. In other word, the ratio of
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Fig. 9. Plot of crack growth as a function of the applied deflection at the center of a three point bending composite beam with a middle crack at
one side.

100 150 200 250 300 350 400
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Total No. of Elements

C
P

U
 T

im
e 

R
at

io
 o

f F
ul

l M
od

el
 to

 S
yn

th
es

is
 M

od
el

Fig. 10. Comparison of execution times between synthesis model and traditional full model as a function of the total number of elements in the
model.

the CPU time without the synthesis technique divided by that with the synthesis technique was plotted as a function
of the number of elements in the given problem. As expected, the synthesis technique proved more computationally
efficient than the traditional full model. As the total number of elements in the model increased in the problem, the
synthesis model became more efficient. Figure 10 suggests the CPU ratio curve approaches asymptotically to a limit
value around 7.5. This characteristic behavior is problem-dependent.

If the number of degrees of freedom of a substructure which does not contain a change such as Substructure A
in Fig. 7 became larger compared to the degrees of freedom in the other substructure such as Substructure B in
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Fig. 7, the computational savings associated with the substructuring synthesis technique increases further. For the
present problem, both substructures had almost the same number of degrees of freedom. They only differed by
12. However, as the number of degrees of freedom in Substructure A in Fig. 7 became double, the computational
efficiency increased more than 15 times.

5. Conclusions

Frequency domain structural synthesis, functioning as a substructure coupling technique was applied to analyze
quasi-static crack growth of an interface crack in a composite beam. This modeling of an interface crack behavior
has been critical to predict the failure strength of scarf joints of composite structures. The synthesis technique
contributed to reducing the computational time significantly as compared to the conventional full analysis technique.
The actual computational saving associated with the substructuring synthesis technique depends on the number of
degrees of freedom of a substructure which does not contain a change such as Substructure A in Fig. 7. If that
number of degrees of freedom becomes larger, the computational efficiency becomes increases. This is frequently
the case in real structures because cracks and damage are usually very localized in those structures.

In addition, the beam elements with displacement degrees of freedom only were useful to model a crack and
its propagation. The predicted crack growth behavior agreed well with the experimental result in terms of the
load-displacement curve. The extension of this work for subsequent studies includes quasi-static or transient crack
growth in composite plate and shell structures in order to predict and monitor crack propagation in such structures.
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