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Abstract. A new force method is proposed for analysing the dynamic behaviour of oscillating cables with small sags. The
accepted dynamic model of such cables reduces to a partial differential equation (the equation of motion) and an integral equation
(the compatibility equation). In the paper, D’Alembert’s travelling wave solution is applied to the partial differential equation
(PDE). Substituting the solution into the compatibility and boundary conditions, the governing equation is obtained in terms of
the dynamic tension increment. This equation has been named the force method dynamic equation (FMDE). In this way the
infinite-degree-of-freedom dynamic system is effectively simplified to a system with only one unknown. Explicit solutions for
both single-span and multi-span cable systems are derived. The natural frequencies obtained from the FMDE are shown to be
identical to those deduced using the conventional displacement method (DM). Nonlinear governing equations are developed by
considering the effect of quadratic and cubic displacement terms. Finally, two examples are presented to illustrate the accuracy
of the proposed force method for single and multi-span cable systems subjected to harmonic forces.
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1. Introduction

Cables and cable suspended structures have a wide range of practical applications in both the civil and electrical
engineering industries, where their dynamic behaviour is often of crucial importance. The required dynamic analyses
have most frequently been carried out in the time domain and based on the displacement method (DM). The prominent
linear theory developed by Irvine [4] describes the in-plane and out-of-plane small amplitude free vibration of a
suspended elastic cable with small sag. The finite element method has also been used for forced vibration response
analysis [7]. However, for cables with complex dynamic geometry, the method needs a quantity of pre-stressed link
elements or curved cable elements. To reduce the number of degrees of freedom, low order linear modes are employed
to synthesise the dynamic curve of the cable, based on which, discretised models with 2 to 4 displacement modes
(d.o.f) have been applied to dynamic analysis of cable-stayed structures [1,9,10]. Unfortunately, in some complex
circumstances, the conventional displacement method using a few linearised mode functions may lead to inaccurate
response prediction. As a new research approach, Ni, Lou and Ko [8] developed a hybrid pseudo-force/Laplace
transform method for transient response of suspended cables.

In practical applications, the force method is an ideal structural analysis tool when dealing with pre-stressed
structures. You [12] employed the force method to optimise a guyed mast. However, there is no literature available
on the use of the force method in dynamic analysis. In dynamic analysis of shallow cables with sag-span ratios
smaller than 1/8, the component of additional dynamic tension may be assumed constant in the chord direction if the
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Fig. 1. Model of a suspended cable.

longitudinal inertia forces are omitted [4,6,9,11,13]. Thus there is only one unknown in the governing equation if the
force method is employed, offering the possibility of reducing the infinite-degree-of-freedom system (deformation
method model) to a single-degree-freedom system (force method model) without loss of precision.

For an oscillating shallow cable, the dynamic model reduces to a partial differential equation (equation of motion)
and an integral equation (compatibility condition). There are two normal methods for PDE solving [5]: the stationary
wave method and the travelling wave method. The stationary wave method is applicable to finite length cables, where
a series solution for displacement response can be achieved. This approach is also known as the mode superposition
method. However, there is a relatively simple integral formula for displacement response which may be derived
based on the travelling wave method. In this paper, in order to employ the travelling wave method to solve the PDE,
the support reaction forces are considered as excitations, allowing D’Alembert’s solution to be used. Substituting the
solution into the compatibility and boundary condition equations leads to the governing equation expressed in terms
of dynamic tension – in which form it has been given the name force method dynamic equation (FMDE). Considering
the quadratic and cubic terms of the dynamic displacements, nonlinear governing equations are developed. In this
way the infinite-degree-of-freedom dynamic system is reduced to a single-degree-of-freedom system.

2. Linearised undamped model for a single-span cable

2.1. Equation of motion and D’Alembert solution

Consider a transversely loaded single cable spanning a distance l, as shown in Fig. 1. For an undamped vertically
oscillating shallow cable, the linearised equation of motion is [4].

H
∂2w

∂x2
+ h

d2z

dx2
+ q = m

∂2w

∂t2
(1)

where m is the mass density; H and h(t) are respectively the horizontal components of static tension and the
increment of dynamic tension; x is the axial coordinate; w(x, t), q(x, t) are respectively the dynamic displacement
response and excitation load in the z direction. z(x) is the static equilibrium curve of the cable under static gravity
loading (q = 0).

Considering support reaction forces as excitations, Eq. (1) is then rewritten as

∂2w

∂t2
= a2 ∂

2w

∂x2
+ F (x, t) (2)

where

F (x, t) =
{

h
m

d2z
dx2 + f1δ(x)+f2δ(x−l)+q

m
0 � x � l and t � 0

0 others
(3)

and

a =
√

H/m (4)

If the static equilibrium load includes only the self-weight of the system, we get
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d2z

dx2
= −mg

H
(5)

f1(t), f2(t) are the support reaction forces and δ(x) is the unit impulse or Dirac delta function, defined as

δ(x) =
{ ∞ x = 0

0 x �= 0 and
∫ +∞
−∞ δ(x)dx = 1 (6)

The D’Alembert solution to Eq. (2) with initial displacement and velocity of zero is

w(x, t) =
1
2a

∫ t

0

∫ x+a(t−τ)

x−a(t−τ)

F (ξ, τ)dξdτ (7)

2.2. Boundary conditions

The boundary conditions are

w(0, t) = w(l, t) = 0 (8)

and

dw(0, t)
dt

=
dw(l, t)

dt
= 0 (9)

Substituting Eq. (7) into Eq. (9) and changing the integral sequence, we get

a

∫ t

t−l/a

{
q [a(t− τ), τ ] − mg

H
h(τ)

}
dτ + f1(t) + f2

(
t− l

a

)
= 0 (10a)

and

a

∫ t

t−l/a

{
q [l − a(t− τ), τ ] − mg

H
h(τ)

}
dτ + f2(t) + f1

(
t− l

a

)
= 0 (10b)

where the support forces may be expressed as

f1(t) =

{
0 t < 0

−f2(t− l
a ) + a

∫ t

t−l/a

{
mg
H h(τ) − q [a(t− τ), τ ]

}
dτ t � 0 (11a)

f2(t) =

{
0 t < 0

−f1(t− l
a ) + a

∫ t

t−l/a

{
mg
H h(τ) − q [l − a(t− τ), τ ]

}
dτ t � 0 (11b)

Differentiating Eq. (7) with respect to x and substituting x = 0, we get

∂w

∂x
(0, t) =

1
2am

{∫ t

t−l/a

q [a(t− τ), τ ] dτ − mg

H

∫ t

t−l/a

h(τ)dτ − 1
a
f1(t) +

1
a
f2

(
t− l

a

)}
(12)

Considering Eq. (11a), and recalling a =
√

H/m, Eq. (12) may be rewritten as

∂w

∂x
(0, t) = −f1(t)

H
(13)

Similarly, for x = l, we have

∂w

∂x
(l, t) =

f2(t)
H

(14)

Equations (13) and (14) show that the dynamic rotational displacements at the cable ends are equal to the ratios
between dynamic vertical support forces and the static horizontal tension.
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2.3. Force method dynamic equation (FMDE)

When oscillating with small amplitude, the displacement compatibility equation of the cable is [4]

h = −EA

le

∫ l

0

d2z

dx2
wdx =

EA

le

mg

H

∫ l

0

wdx (15)

where le, l, E, and A are respectively curve length, chord length, elastic modulus and cross sectional area of the
cable.

Integrating Eq. (1) with respect to x in domain (0, l), and considering Eqs (8), (13), (14) and (15), leads to the
governing equation of the system expressed in terms of the dynamic tension increment,

d2h

dt2
+ η2h =

η2

r1

[
f1 + f2 +

∫ l

0

q(x, t)dx

]
(16a)

where

η2 =
lmg2EA

leH2
, r1 =

mgl

H
,

and f1(t), f2(t) may be obtained through Eq. (11).
Equation (16a) is the force method dynamic equation (FMDE) for oscillating cables. The explicit solution of

Eq. (16a) with initial displacement and velocity of zero may be expressed as

h(t) =
1
η

∫ t

0

F̃ (τ) sin(ηt− ητ)dτ (16b)

where

F̃ (t) =
η2

r1

[
f1 + f2 +

∫ l

0

q(x, t)dx

]
.

Equation (16b) is known as the Duhamel integral equation and may be evaluated numerically using the procedure
described in [3].

2.4. Free vibration equation

Substituting Eq. (11) into Eq. (16a) and assuming q(x,t)=0, we get

d2h

dt2
+ η2h =

η2

r1

{
2r1

r2

∫ t

t−l/a

h(τ)dτ − f1

(
t− l

a

)
− f2

(
t− l

a

)}
(17)

where

r2 =
l

a
.

Differentiating Eq. (17) with respect to t, we get

d3h

dt3
+ η2 dh

dt
− 2η2

r2
h =

η2

r1

[
−2r1

r2
h

(
t− l

a

)
− df1

(
t− l

a

)
dt

− df2

(
t− l

a

)
dt

]
(18)

Substituting h(t) = h̃eiωt, f1(t) = f̃1e
iωt, f2(t) = f̃2e

iωt, into Eqs (11) and (18), we obtain the nonlinear equation
defining the natural cable frequencies, ω

ω̄

2
− ω̄3

2λ2
= tan

ω̄

2
(19)

where ω̄ = ωl/a,λ2 = η2 (l/a)2. Equation (19) is the same as the frequency equation derived by means of the
displacement method [4].
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(a) Mechanical model; (b) free-body diagram of the ith cable segment; (c) forces on the cable system 

Fig. 2. Definition diagram for a multi-span cable system.

3. Force method model for a multi-span cable

Consider a multi-span cable system (Fig. 2a), which is anchored on rigid supports at each end and supported on
rollers at intermediate points [4]. Definitions of the main parameters are as follows: n is the span number; l i is the
span of the ith cable segment, l is the total horizontal length of the cable system.

Similar to Eqs (3) and (11), the dynamic displacement and reaction forces for the ith cable segment with two
vertically unmovable ends (Fig. 2b) may be developed as

wi(xi, t) =
1
2a

∫ t

0

∫ xi+a(t−τ)

xi−a(t−τ)

Fi(ξ, τ)dξdτ (20a)

with

Fi(xi, t) =

{
h
m

d2zi

dx2
i

+ fi,1δ(xi)+fi,2δ(xi−li)+qi

m
0 � xi � li and t � 0

0 others
(20b)

fi,1(t) =

{
0 t < 0

−fi,2(t− li
a ) + a

∫ t

t− li
a

{
mg
H h(τ) − qi [a(t− τ), τ ]

}
dτ t � 0 (20c)

fi,2(t) =

{
0 t < 0

−fi,1(t− li
a ) + a

∫ t

t− li
a

{
mg
H h(τ) − qi [li − a(t− τ), τ ]

}
dτ t � 0 (20d)

where xi is the axial coordinate; m is the mass density; H and h(t) are respectively the horizontal components of
static tension and the increment of dynamic tension; f i,1(t), fi,2(t), qi(xi, t) are the reaction forces and the external
load; wi (xi, t), zi (xi) are respectively the dynamic displacement response and the static curve of the cable under
equilibrium load (qi = 0).
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Considering all the forces acting on the whole cable system (Fig. 2c), the dynamic force method equation of (16a)
may be rewritten as

d2h

dt2
+ η2h =

n∑
i=1

F̃i(t) (21a)

with the explicit solution expressed as

h(t) =
1
η

∫ t

0

n∑
i=1

F̃i(τ) sin(ηt− ητ)dτ (21b)

where

F̃i(t) =
η2

r1
[fi,1 + fi,2 +

∫ li

0

qi(x, t)dx], η2 =
lmg2EA

leH2
, r1 =

mgl

H
, le

is the curve length of the whole cable, other parameters have the same meanings as the single cable system.
For free-vibration analysis, assuming qi = 0 and substituting

h(t) = h̃eiωt, fi,1(t) = f̃i,1e
iωt, fi,2(t) = f̃i,2e

iωt

into Eqs (20c), (20d) and (21a), we obtain the nonlinear equation defining the natural cable frequencies, ω

ω̄

2
− ω̄3

2λ2
=

n∑
i=1

tan(
αiω̄

2
) (22)

where

ω̄ = ωl/a, λ2 = η2 (l/a)2 , αi = li/l.

Equation (22) is the same as the frequency equation derived by means of the displacement method [4].

4. Nonlinear model

4.1. Single-span cable model

Considering damping forces and the nonlinear effects on the dynamic response, the motion Eq. (1) may be
rewritten as

(H + ĥ)
∂2ŵ

∂x2
+ ĥ

d2z

dx2
+ q = m

∂2ŵ

∂t2
+ c

∂ŵ

∂t
(23)

where ĥ and ŵ are respectively the horizontal component of the additional dynamic tension and the dynamic
displacement response, where the values of both take account of nonlinear effects; c is the damping coefficient.

The displacement compatibility Eq. (15) may be rewritten as

ĥ =
EA

le

[
mg

H

∫ l

0

wdx +
1
2

∫ l

0

(
∂w

∂x

)2

dx

]
(24)

Assuming

ĥ =
N∑

k=1

εkĥk (25a)

ŵ =
N∑

k=1

εkŵk (25b)
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q = εq̂1 (25c)

c = εĉ (25d)

where ε is an arbitrarily small parameter; and substituting Eq. (25) into Eqs (23) and (24), considering N = 3 and
equating all terms of like order, ε, ε2, andε3, produces

ε : H
∂2ŵ1

∂x2
+ ĥ1

d2z

dx2
+ q̂1 = m

∂2ŵ1

∂t2
(26a)

ĥ1 =
EA

le

mg

H

∫ l

0

ŵ1dx (26b)

ε2 : H
∂2ŵ2

∂x2
+ ĥ2

d2z

dx2
+ ĥ1

∂2ŵ1

∂x2
− ĉ

∂ŵ1

∂t
= m

∂2ŵ2

∂t2
(27a)

ĥ2 =
EA

le

[
mg

H

∫ l

0

ŵ2dx +
1
2

∫ l

0

(
∂ŵ1

∂x

)2

dx

]
(27b)

ε3 : H
∂2ŵ3

∂x2
+ ĥ3

d2z

dx2
+ ĥ1

∂2ŵ2

∂x2
+ ĥ2

∂2ŵ1

∂x2
− ĉ

∂ŵ2

∂t
= m

∂2ŵ3

∂t2
(28a)

ĥ3 =
EA

le

[
mg

H

∫ l

0

ŵ3dx +
∫ l

0

(
∂ŵ1

∂x

) (
∂ŵ2

∂x

)
dx

]
(28b)

where Eq. (26) is the same as the linearised model of Eqs (1) and (15) with

εĥ1 = h and εŵ1 = w (29)

Assuming

ĥ2 = ĥ2a +
EA

2le

∫ l

0

(
∂ŵ1

∂x

)2

dx

and

ĥ3 = ĥ3a +
EA

le

∫ l

0

(
∂ŵ1

∂x

) (
∂ŵ2

∂x

)
dx,

Equations (27) and (28) may be rewritten as

H
∂2ŵk

∂x2
+ ĥka

d2z

dx2
+ q̂k = m

∂2ŵk

∂t2
k = 2, 3 (30a)

ĥka =
EA

le

mg

H

∫ l

0

ŵkdx k = 2, 3 (30b)

q̂2 = ĥ1
∂2ŵ1

∂x2
− mg

H

EA

2le

∫ l

0

(
∂ŵ1

∂x

)2

dx − ĉ
∂ŵ1

∂t
(30c)

and

q̂3 = ĥ1
∂2ŵ2

∂x2
+ ĥ2

∂2ŵ1

∂x2
− mg

H

EA

le

∫ l

0

(
∂ŵ1

∂x

) (
∂ŵ2

∂x

)
dx− ĉ

∂ŵ2

∂t
(30d)
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where Eqs (30a) and (30b) have similar form to Eqs (1) and (15). The force method governing equation and explicit
solution for ĥka are

d2ĥka

dt2
+ η2ĥka = F̂k(t) k = 2, 3 (31a)

ĥka(t) =
1
η

∫ t

0

F̂k(τ) sin(ηt− ητ)dτ (31b)

with

F̂k(t) =
η2

r1

[
f̂1,k + f̂2,k +

∫ l

0

q̂k(x, t)dx

]
(31c)

f̂1,k(t) =

{
0 t < 0

−f̂2,k(t− l
a ) + a

∫ t

t− l
a

{
mg
H ĥka(τ) − q̂k [a(t− τ), τ ]

}
dτ t � 0

k = 2, 3 (31d)

f̂2,k(t) =

{
0 t < 0

−f̂1,k(t− l
a ) + a

∫ t

t− l
a

{
mg
H ĥka(τ) − q̂k [l − a(t− τ), τ ]

}
dτ t � 0

k = 2, 3 (31e)

4.2. Multi-span cable model

Similar to the single-span cable model, assuming the nonlinear tension response has the same form as Eq. (25a),
the external loading and nonlinear displacement response of the ith cable segment may be expressed as

qi = εq̂i,1 (32a)

ŵi =
N∑

k=1

εkŵi,k (32b)

where the linearised displacement response wi,1 for the ith cable segment may be calculated based on Eqs (20a) and
(20b).

Thus loads due to nonlinear responses may be expressed as

q̂i,2 = ĥ1
∂2ŵi,1

∂x2
i

− mg

H

EA

2le

∫ li

0

(
∂ŵi,1

∂x

)2

dx− ĉ
∂ŵi,1

∂t
(33a)

and

q̂i,3 = ĥ1
∂2ŵi,2

∂x2
i

+ ĥ2
∂2ŵi,1

∂x2
i

− mg

H

EA

le

∫ li

0

(
∂ŵi,1

∂x

) (
∂ŵi,2

∂x

)
dx− ĉ

∂ŵi,2

∂t
(33b)

The nonlinear response hka may be calculated based on the following equation

d2ĥka

dt2
+ η2ĥka =

n∑
i=1

F̂i,k(t) k = 2, 3 (34a)

with the explicit solution of

ĥka(t) =
1
η

∫ t

0

n∑
i=1

F̂i,k(τ) sin(ηt− ητ)dτ (34b)

where



X. Ma and J.W. Butterworth / A force method model for dynamic analysis of flat-sag cable structures 631

Table 1
Natural frequencies for a single span cable

No. 1 2 3 4 5 6 7 8

fz (Hz) 0.149 0.256 0.356 0.416 0.479 0.579 0.682 0.787

-2

-1.5
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-0.5

0

0.5

1

1.5

2

0 10 20 30 40

t(s)

h(
t)/

(q
0l

)

FM DM(n=8) DM(n=4)

Fig. 3. Linearised dynamic response h (t) of a single-span cable (f=0.1Hz ).

F̂i,k(t) =
η2

r1

[
f̂i,1,k + f̂i,2,k +

∫ li

0

q̂i,k(x, t)dx

]
(34c)

f̂i,1,k(t) =

{
0 t < 0

−f̂i,2,k(t− li
a ) + a

∫ t

t− li
a

{
mg
H ĥka(τ) − q̂i,k [a(t− τ), τ ]

}
dτ t � 0 (34d)

f̂i,2,k(t) =

{
0 t < 0

−f̂i,1,k(t− li
a ) + a

∫ t

t− li
a

{
mg
H ĥka(τ) − q̂i,k [li − a(t− τ), τ ]

}
dτ t � 0 (34e)

5. Examples

Example 1 Consider a single-span cable with the following parameters [8]: l = 1369.36 m, sag d = 123.52 m,
m = 5951.04 kg/m, E = 2.0 × 1011N/m2, A = 0.759 m2, H = 122600 kN. Based on Eq. (19), the first eight
natural frequencies for in-plane symmetric modes may be obtained as shown in Table 1. The first three frequencies
with the same values were also given in [8].

To verify the force methods presented in the paper, we consider a uniformly distributed excitation q(x, t) =
q0 sin 2πft, f = 0.1 Hz . For small amplitude excitation the linearised model is applicable, and the undamped
responses from the force method (FM) are compared with those from the mode superposition method using just
the first 4 modes (DM, n = 4) and also when using the first 8 modes (DM, n = 8). The comparison of results
in Fig. 3 shows good agreement between the FM and DM (n = 8) models. The comparison also shows that a
traditional displacement method, DM (n = 4) including only a few linear mode functions (usually 2 to 4) may result
in inaccurate predictions for long cables.

The nonlinear responses of the structure subjected to excitations with different amplitudes and frequencies are
compared with ABAQUS results in Figs 4 and 5. In the ABAQUS model, the structure was divided into 1000 truss
elements and a dynamic-implicit analysis procedure was implemented.
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Table 2
Table 2 Natural frequencies fz (Hz) for a three-span cable system

No. ABAQUS Equation (22) Mode type

1 0.228 0.228 symmetric
2 0.302 – asymmetric
3 0.306 – asymmetric
4 0.437 0.438 symmetric
5 0.529 0.538 symmetric
6 0.612 – asymmetric
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0
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0 5 10 15 20 25 30 35 40
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Fig. 4. Nonlinear dynamic response h (t) of a single-span cable (f=0.1Hz , q0 = 0.3H/l ).
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Fig. 5. Nonlinear dynamic response h (t) of a single-span cable (f=0.3Hz , q0 = 0.03H/l ).

Example 2 Consider a three-span cable system with the following parameters [2]: l = 800 m, l 1 = 200 m, l2 =
400 m, l3 = 200 m, m = 2.3 kg/m, EA = 53,000,000 N, H = 34,500 N, c = 0.04 N-s/m 2. The first six natural
frequencies for in-plane modes are shown in Table 2 with the corresponding vibration modes shown in Fig. 6.

To verify the force method model presented, two uniformly distributed excitations with different amplitudes and
frequencies are applied on the structure, the nonlinear response is compared with ABAQUS results in Figs 7 and 8. In
the ABAQUS model, the structure was divided into 1000 truss elements and a dynamic-implicit analysis procedure
was implemented.
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Mode 1 (fz=0.228 Hz)                       Mode 2 (fz=0.302 Hz)

        

Mode 3 (fz=0.306 Hz)                       Mode 4 (fz=0.437 Hz)

         

Mode 5 (fz=0.529 Hz)                        Mode 6 (fz=0.612 Hz) 

Fig. 6. Vibration modes of a three-span cable based on ABAQUS.
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Fig. 7. Dynamic response h (t) of a three-span cable (f = 0.1Hz , q0 = 0.1H/l ).
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Fig. 8. Dynamic response h (t) of a three-span cable (f = 0.4Hz , q0 = 0.01H/l ).
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Fig. 9. Accelerogram from 1940 El Centro earthquake (vertical component).
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Fig. 10. Dynamic response h(t) of a three-span cable subject to vertical earthquake excitation.

To illustrate a practical engineering application a vertical ground motion excitation based on the vertical component
of the 1940 El Centro earthquake record (Fig. 9) was applied, and the nonlinear force method model used to calculate
the cable responses shown in Fig. 10.

6. Conclusions

An analysis method, named the force method dynamic equation (FMDE), for the oscillation of shallow, single
or multi-span cables, has been developed in the form of a single-degree-of-freedom (SDOF) system in terms of the
additional dynamic tension. The natural frequencies derived from the FMDE are shown to be identical to those
obtained from the conventional displacement method (DM).

Nonlinear governing equations are developed by considering the quadratic and cubic terms of the dynamic dis-
placements. Numerical results show that the FM model provides dynamic response predictions that are significantly
more accurate than those obtained by a traditional DM mode superposition with 2 to 4 linear modes included.
Accuracy is comparable with a DM mode superposition analysis using an appropriately larger number of linear
modes (8 in the example considered). Comparison with ABAQUS simulations confirms the good accuracy of the
FM model.
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