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Abstract. The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a
non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase
angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of
coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and
the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase
difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous
operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their
product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only
dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio
of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.
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1. Introduction

In the first part of the present investigation [23], an analytical approach was proposed to study the feature of
frequency capture for two non-identical coupled exciters in a non-resonant vibrating system of linear motion, which
converts the problem of frequency capture and synchronization of two exciters into that of existence and stability
of zero solution of Equations of Frequency Capture. The moment of inertia of each exciter in the Equations of
Frequency Capture reduces and there is a coupling moment of inertia between two exciters. This phenomenon has
a significant effect on the stability of synchronous operation of two motors. Other researchers had found that the
dynamic stability of a system with multi-rigid bodies depends on the inertia coupling in the system. Ye et al. [9]
studied the dynamic coupling characteristics of 6-DOF parallel robots and found that there are strong couplings
among each channel, which affect the load inertia acting on them. Thus, it was difficult to control 6-DOF parallel
robots. In the investigation of the control of two pendulums coupled by a spring, Fradkov and Andrievsky [8]
confirmed that the perturbations stemming from both the inertia of the coupling link and that of the motor can
provide different influences upon the perturbed system behavior. To our knowledge, no attempt has yet been made to
discuss the characteristics of inertia coupling for the mechanical systems with multi-rigid bodies. It is fundamentally
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important to investigate the characteristics of inertia couplings, which can provide the theories for the structural
design and control of mechanical systems with multi-rigid bodies.

This paper is aimed at the quantitative analysis of the coupling characteristics of the considered system by virtue
of numerical method. The coupling characteristics of the exciters are categorized into load coupling and inertia
coupling. The load coupling has an effect on the position of the steady-state operation, i.e., the values of ω ∗

m0 and α∗;
the inertia coupling has an effect on the synchronization stability of two motors. As mentioned in the first paper [23],
one half of product of the torque of frequency capture and the sine of phase difference between two exciters acts on
the motor (leading phase) as load torque to decrease its angular velocity, and the other half acts on another motor
(lagging phase) as driving torque to increase its angular velocity. This phenomenon demonstrates that the torque of
frequency capture transmits the electromagnetic torque from one motor (with the bigger electromagnetic torque) to
the other motor in the system. In particular, after the synchronous rotation of two motors at the steady-state, the
power supply of one motor is cut off, i.e., the power source is only supplied to one motor. However, the synchronous
rotation of two motors can continue by re-adjusting phase difference between two exciters if the torque of frequency
capture is big enough to transmit the driving torque from the motor (with power supply) to another (without power
supply) to overcome its load torque. This specific synchronous rotation using only one motor’s power supply is
called vibratory synchronization transmission [18,20–22].

The rest of this paper is organized as follows: Section 2 analyzes the coupling characteristics of two exciters and
Section 3 describes the numerical method used in this paper. In Section 4, we discuss the numeric results of the
coupling characteristics of two exciters and Section 5 shows our conclusions of this paper.

2. Analysis of coupling characteristics of two exciters

The coupling characteristics of two exciters in a vibrating system are referred to as the characteristic of the load
and inertia coupling of two exciters. When two motors operate synchronously at the steady-state, i.e., ε̄ 1 = ε̄2 = 0,
the load torques of two motors can be respectively rewritten as follows [23]

T̄L1 =
1
2
m1r

2ω2m0 ·m1Ws0 +
1
2
mcr

2ω2m0 ·mcWs cos 2α∗ +
1
2
mcr

2ω2m0 ·mcWc sin 2α∗

T̄L2 =
1
2
m2r

2ω2m0 ·m2Ws0 +
1
2
mcr

2ω2m0 ·mcWs cos 2α∗ − 1
2
mcr

2ω2m0 ·mcWc sin 2α∗ (1)

where mc =
√
m1m2 is the coupling mass of two exciters; mcr

2ω2m0/2 the coupling kinetic energy of two exciters.
Note: in order to be convenient for the analysis, m0 and m0η are replaced by m1 and m2 in Eq. (1), respectively.

The coupling inertia of two exciters influences the stability of synchronous operation in a vibrating system. When
the items relative to sin γx, sin γy and sin γψ in the coefficients of ˙̄ε1 and ˙̄ε2 are considered in integrating the
differential equations of motion of two exciters, the denominator of coefficients of the characteristic equation can be
rewritten as [23]

E = ω∗2
m0(4J

′
01J

′
02 +m2

cr
4 ·m2

cW
2
s sin2 2α∗ −m2

cr
4 ·m2

cW
2
c cos2 2α∗) (2)

and

J ′
01 = m1r

2(1 −m1Wc0/2)

J ′
02 = m2r

2(1 −m2Wc0/2) (3)

During the operation of the vibrating system, exciters 1 and 2 respectively excite the motions of the system in
x−, y− and ψ−directions at the same time, and the vibrations of the system are the linear superposition of these
motions. Because two exciters move with the vibrating system, the motions of the system have an effect on the load
torques and the moments of inertia of two exciters, as shown in Eqs (1), (2) and (3). In these equations, m 1Wc0

and m1Ws0 represent the effect of motions excited by exciter 1 on exciter 1, and m 2Wc0 and m2Ws0 represent the
effect of motions excited by exciter 2 on exciter 2. While m cWs and mcWc represent the effect of motions excited
by one exciter on the other exciter; hence they are the parameters that describe the coupling characteristic of two
exciters. Ws0 and Wc0 are relative to the sine and cosine of the phase angles in three directions of the vibration,
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respectively; and each item in three directions is positive. Ws and Wc are also relative to the sine and cosine of the
phase angles, respectively. However, the item in Ws is positive in y-direction (the exciting forces of the two exciters
are in the same direction) and the items in Ws are negative in x- and ψ-direction (the exciting forces of the two
exciters are in opposite directions). It is consistent with the principle of superposition of a linear vibrating system.
On the other hand, the item in Wc is negative in y-direction and the items in Wc are positive in x- and ψ-direction.
The effects of Ws and Wc on the load torques and the moments of inertia of two exciters also depend on the phase
difference between two exciters. According to the expressions of W s0 and Wc0 [23], the items mi sin γx/m′

x,
mi sin γy/m′

y and mil
2
0 sinγψ/J ′ are called the coefficients of sine effect of phase angle for exciter i in x-, y- and

ψ-directions (simplified as the coefficient of sine effect), respectively; and the items m i cos γx/m′
x, mi cos γy/m′

y

and mil
2
0 cos γψ/J ′ are called that of cosine effect of phase angle for exciter i, i = 1, 2 (simplified as the coefficient

of cosine effect). Hence, m1Ws0 andm2Ws0 are called the coefficients of sine effect of exciter 1 and 2, m1Wc0 and
m2Wc0 the coefficients of cosine effect of exciters 1 and 2, respectively. m cWs andmcWc are called the coefficients
of coupling sine and cosine effect of two exciters, respectively.

From Eq. (1) and (2), it can be seen that mcWs and mcWc influence both the load torques and moments of inertia
of two exciters due to the occurrence of phase difference between the two exciters. While m 1Ws0 and m2Ws0 have
only an effect on the torque of its motor, respectively; and m 1Wc0 and m2Wc0 have only an effect on the moment
of inertia of its exciter, respectively.

In Eq. (1), the load torque of each motor consists of three items. The first is equal to the product of the kinetic
energy,mir

2ω2m0/2, and the coefficient of sine effect of its exciter, m iWs0, which is called the torque of sine effect
of the exciter; the second is the product of the coupling kinetic energy, m crω

2
m0/2, the efficient of sine coupling

effect,mcWs, and the cosine of phase difference of two exciters, cos 2α, which describes the torque of coupling sine
effect; and the last is the product of the coupling kinetic energy,m crω

2
m0/2, the coefficient of cosine coupling effect,

mcWc, and the sine of phase difference of two exciters, sin 2α, which expresses the torque of coupling cosine effect.
The last two items stem from the coupling effect of two exciters; and their values for two motors are same. However,
the load torques stemming from the coupling sine effect for two motors have the same sign, while that stemming
from the cosine coupling effect (torque of frequency capture) have the reverse sign, i.e., it is the load torque for the
motor with the leading phase and the driving torque for the other with the lagging phase. When W c > 0, the stable
phase difference 2α∗ is in the interval of (−π/2, π/2); otherwise, 2α∗ ∈ (π/2, 3π/2). These facts demonstrate that
the frequency capture stems from the action of the coupling cosine effect of two exciters on the load torques of two
motors. The motions of the system excited by two exciters in the same direction makes their phase difference close
to π; and that in opposite directions makes their phase difference close to 0.

In Eq. (2), there are also three items. The first 4J ′
01J

′
02 is four times product of the relative moments of inertia of

two exciters; the last two items result from the coupling sine and cosine effects of two exciters, respectively. Eq. (3)
demonstrates that the relative moments of inertia of the two exciters reduce due to their cosine effect of the phase
angle; and the amount of reduction of each exciter is equal to the product of its moment of inertia and its coefficient
of the cosine effect. It decreases the stability of synchronous operation. The coupling cosine effect also decreases
the stability of the synchronous operation and the sine coupling effect increases the stability of the synchronous
operation. The bigger the damping constants of the system are, the stronger the stability of the system is.

3. Numerical approach

3.1. Calculation of capture angular velocity and the phase difference

Equations of Frequency Capture is Aε̇ = Bε + u, while u = 0 is the necessary condition of implementing
frequency capture of the considered system. Rearranging u 1 = 0 and u2 = 0 [23], we have

2ᾱ = sin−1 Te2(s0) − Te2(s0) − Pms
2
0(1 − η2)Ws0 − ∆fs0ωs

np

2Pms20ηWc
(4)

F (ᾱ, s0) = Te2(s0) + Te2(s0) − (fd1 + fd2)ωss0 − Pms
2
0[(1 + η2)Ws0 − 2ηWs cos 2ᾱ] (5)
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where ∆f = fd1 − fd2 and Pm = 1
2m

2
0r

2ω2s . To maintain the continuous operation of two motors, the angular
velocity of the synchronous operation must be less than their rated ones, i.e., the slip of the synchronous operation
of two motors must be less than the smaller one of their rated slips. If the rated slips of the two motors assumed to
be se1 and se2, respectively, the slip of the synchronous operation s 0 satisfies

0 < s0 ≤ se(min{se1, se2}) (6)

F (ᾱ, s0) in Eq. (5) is a function of α, and satisfies

F (ᾱ, 0) < 0 and F (ᾱ, se) � 0 (7)

Because F (ᾱ, s0) is the monotonous increasing function of s0, it has a unique root in the interval of [0, se]. The
method of bisection [16] is employed to solve the roots of ᾱ and s 0. The steps of this algorithm are summarized as
follows

Step 1: Input the parameters of the system. They are the structural parameters of the vibrating system, and the
parameters of the two motors, the eccentric radius and the masses of two eccentric lumps and a tolerance δ.

Step 2: Calculate se.
Step 3: Let s0 = se and calculate the torque of frequency capture, TCaptrue, and the residual electromagnetic

torques of two motors, TDiffenrence [23], respectively.
Step 4: CompareTCaptrue with TDiffenrence. If TCaptrue is less than TDiffenrence, the program is terminated because

it is impossible to implement the frequency capture; otherwise, go to Step 5.
Step 5: Calculate 2ᾱ by using Eq. (4).
Step 6: Insert 2ᾱ into Eq. (5) to find the value of F (ᾱ, s0).
Step 7: CompareF (ᾱ, s0) with zero. IfF (ᾱ, s0) < 0, the program is terminated because the power of two motors

is not enough to drive the vibrating system; otherwise, go to Step 8.
Step 8: Let a = 0 and b = se.
Step 9: Let s0 = (a+ b)/2, i.e., s0 is assumed to be the midpoint of [a, b].
Step 10: Calculate 2ᾱ by using Eq. (4).
Step 11: Insert 2ᾱ into Eq. (5) to find the value of F (ᾱ, s0).
Step 12: Compare |F (ᾱ, s0)| with the positive tolerance δ. If |F (α, s0)| < δ, the program is terminated with the

solved 2α∗ and ω∗
m0 = (1 − s0)ωs. Otherwise, go step 13.

Step 13: Compare F (ᾱ, s0) with zero, if F (ᾱ, s0) < 0, let a = s0; otherwise, let b = s0, then return Step 9.

3.2. Calculation of stability domain

The characteristic equation for the eigenvalue of equations of frequency capture is rewritten as the following [23]

λ3 + c1λ
2 + c2λ+ c3 = 0 (8)

By introducing the following non-dimensional parameters:

µ1 = 1 − m0Wc0

2
, µ2 = η(1 − η

m0Wc0

2
),

κ1 =
fd1

m0r20ω
∗
m0

+
ke1

m0r20ω
∗2
m0

,

κ2 =
fd2

m0r20ω
∗
m0

+
ke2

m0r20ω
∗2
m0

,

into the expressions of c1, c2 and c3 [23], the coefficients of Eq. (8) can be expressed as

c1 =
4ω∗

m0H1

H0
, c2 =

2ω∗2
m0H2

H0
, c3 =

2ω∗3
m0H3

H0

where,
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H0 = 4µ1µ2 + η2m2
0W

2
s sin2 2α∗ − η2m2

0W
2
c cos2 2α∗

H1 = µ1κ2 + µ2κ1

H2 = 4κ1κ2 + η2m2
0W

2
c (1 + cos2 2α∗) + 2(µ1 + µ2)ηm0W

2
c cos 2α∗

H3 = (κ1 + κ2)ηm0Wc cos 2α∗

H0, H1, H2, H3, µ1 and µ2 are the dimensionless parameters of the system, in which µ1 and µ2 are the
dimensionless relative moment of inertia of two exciters, respectively; andκ 1 andκ2 are called the non-dimensionless
coefficients of velocity stiffness of two motors, respectively.

The equivalent rotating radius of the vibrating system about its centriod is expressed as

le =

√
J + (m1 +m01)l20 + (m2 +m02)l20

(m+m1 +m01 +m2 +m02)
(9)

where J is the moment of inertia of the machine body rotating about its centroid; m the mass of the vibrating body;
m01 and m02 the masses of motors 1 and 2.

Then, m0Ws0, m0Ws, m0Wc0 and m0Wc can be expressed as

m0Wc0 = rm(
cos γx

1 − ω2nx/ω
∗2
m0

+
cos γy

1 − ω2ny/ω
∗2
m0

+
r2l cos γψ

1 − ω2nψ/ω
∗2
m0

)

m0Wc = rm(
cos γx

1 − ω2nx/ω
∗2
m0

− cos γy
1 − ω2ny/ω

∗2
m0

+
r2l cos γψ

1 − ω2nψ/ω
∗2
m0

) (10)

m0Ws0 = rm(
sin γx

1 − ω2nx/ω
∗2
m0

+
sinγy

1 − ω2ny/ω
∗2
m0

+
r2l sinγψ

1 − ω2nψ/ω
∗2
m0

)

m0Ws = rm(− sin γx
1 − ω2nx/ω

2
m0

+
sin γy

1 − ω2ny/ω
2
m0

− r2l sin γψ
1 − ω2nψ/ω

2
m0

)

where rm = m0/M denotes the ratio of mass of lump 1 (assuming m1 � m2) to that of the machine body and
rl = l0/le denotes the ratio of the distance between an exciter and the centroid of the machine body to the equivalent
radius of the machine body.

When H0 < 0, the synchronous operation is unstable [23]. Therefore, the stability condition of the system can be
expressed as follows

H0 > 0, H1 > 0, 4H1H2 −H0H3 > 0, H3 > 0 (11)

3.3. Numerical simulation

Rearranging the equations of motion of the vibrating system [23], we have

Y = GF (12)

where Y = {x y ψ ϕ1 ϕ2}; G and F are expressed as follows

G =




M 0 0 −m1r sinϕ1 m2r sinϕ2
0 M 0 m1r cosϕ1 m2r cosϕ2
0 0 J −m1rl0 cos(ϕ1 + β) m2rl0 cos(ϕ2 + β)

−m1r sinϕ1 m1r cosϕ1 −m1rl0 cos(ϕ1 + β) J01 0
m2r sinϕ2 m2r cosϕ2 m2rl0 cos(ϕ2 + β) 0 J02




−1

(13)

F =




−kxx− fxẋ+m1rϕ̇
2
1 cosϕ1 −m2rϕ̇

2
2 cosϕ2

−kyy − fy ẏ +m1rϕ̇
2
1 sinϕ1 +m2rϕ̇

2
2 sinϕ2

−kψψ − fψψ̇ + Te2 − Te1 −m1rl0ϕ̇
2
1 sin(ϕ1 + β) +m2rl0ϕ̇

2
2 sin(ϕ2 + β)

Te1 − fd1ϕ̇1
Te2 − fd2ϕ2




(14)
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Choosing the stator current and the rotor flux as the state variables and the stator voltage as input variables, the
state equation of an induction motor with the d− q coordinates fixed in the stator (stator reference frame (α, β)) can
be expressed as [14]{

i̇s
φr

}
=

[
ρ11 ρ12
ρ21 ρ22

]{
is
φr

}
+

[
E1

0

]
us (15)

where

is = {iαs iβs}T, φr = {φαr φβr}T,
ρ11 = −[Rs/(σLs) − (1 − σ)/(στr)]I = ρr11I,

ρ21 = (Lm/τr)I = ρr21I

ρ12 = Lm/(σLsLr)[(1/τr)I − ωrJ] = ρr12I− ρi12J

ρ22 = −(1/τr)I + ωrJ = ρr22I + ρi22J

us = {uαs uβs}T

E1 = 1/(σLs)I = e1I

I =
[
1 0
0 1

]
, J =

[
0 −1
1 0

]
.

Assuming x1 = x, x2 = y, x3 = ψ, x4 = ϕ1, x5 = ϕ2, x6 = iαs1, x7 = iβs1, x8 = φαr1, x9 = φβr1, x10 = iαs2,
x11 = iβs2, x12 = φαr2, x13 = φβr2, x14 = ẋ, x15 = ẏ, x16 = ψ̇, x17 = ϕ̇1, x18 = ϕ̇2, and substituting them into
Eqs (12) and (15), we obtain the equivalent first order equations of the considered system.

Ẋ = W(X,us1, us2,F) (16)

where us1 = {uαs1 uβs1}T and us2 = {uαs2 uβs2}T are input voltages of stator of motors 1 and 2. W =
{w1 w2 · · · w18}T is the nonlinear function of X, as shown in Eqs (12) and (15).

The integration of Eq. (16) can be carried out using a Runge-Kutta routine with adaptive stepsize control [16].

4. Results and discussion

In this section, an example is presented to investigate the main results of theoretical analysis [23]. To verify the
feature of frequency capture of the considered system, two motors are assumed to be different and their parameters
are listed in Appendix.

To determine the stability domain that satisfies Inequation (11), rm is fixed to solve rl that satisfies H0 = 0,
H1 = 0, 4H1H2−H0H3 = 0 andH3 = 0, respectively. The power of the system should be less than or equal to the
sum of power of two motors. The radius of the eccentric lumps is adjusted to meet the requirement of the power of
two motors. If the phase difference between the two exciters satisfies sin 2α∗ ≈ 0, the sum of external load torques
of two motors, denoted by TSL, can be approximately simplified as the follows

TSL ≈ 1
2
m2
0r

2ω2m0[(1 + η2)Ws0 + 2ηWs] (17)

When two motors operate at the angular velocity ωme = (1 − se)ωs/np, the electromagnetic torques of motors 1
and 2 are denoted by Te01andTe02. Hence, the eccentric radius of two exciters is calculated by

r =
√
χ

m0ωme

√
2(Te01 + Te02)

(1 + η2)Ws0 − 2ηWs
(18)

where χ = 0.95 ∼ 1.0 denotes the coefficient of power use of the two motors in the vibrating system.



C.Y. Zhao et al. / Synchronization of two non-identical coupled exciters in a non-resonant vibrating system 523

rm is assumed in the range of 0.01 to 0.2 and χ = 0.95. To ensure the torque of frequency capture high
enough to overcome the difference between the residual torques of the two motors, the structural parameter of the
vibrating system must satisfy |H3| > 0. Considering c3 > 0, we can adjust 2α∗ in the intervals of (−π/2, π/2) and
(π/2, 3π/2) to ensure that the sign of H3 is the same as that of H0. Therefore, the stability domain of synchronous
operation of two motors depends on the signs of H0, H1 and H = 4H1H2 −H0H3.
H is a function of higher order of the variables rm and rl. Figure 1(a) shows the relationships between H and

rl when rm is 0.03, 0.05, 0.06, 0.1 and 0.2, respectively. It should be noticed that there is only one zero point in
each curve (the corresponding value of r l is denoted by rl0). The less rm is, the greater rl0. According to the
stability condition of Inequation (11), r l < rl0 satisfies c1c2 > c3. Figure 1(b) shows the distribution diagram of
zero points of H0(rm, rl) in rmrl−plane. H0(rm, rl) is a second order function of the parameters (rm, r2l ), so there
are two branch curves (H01 andH02) to satisfyH0(rm, rl)=0. H0(rm, rl) is less than zero in the region between two
branches H01 and H02, and H0(rm, rl) > 0 beyond this region. Figure 1(c) shows the stability regions (diagonally
hatched) of synchronous operation of two motors in the terms of the parameter (rm, rl) and the distributions of
H1 = 0 and H = 0. It can be seen that H0 firstly becomes negative, then H followed by H1. Therefore, H0 > 0,
µ1 > 0 and µ2 > 0 are the conditions of stability of synchronous operation. This result is consistent with theoretical
results [23]. Figure 1(d) shows the relationship between the torque of frequency capture and r l, which is independent
on rm. When rl varies initially from its minimum, the torque of frequency capture is approximately proportional
to rl. However, with the increase of rl, the torque of frequency capture is gradually close to a limit value. The
reason for this phenomenon is that the mass difference between two exciters leads to the swing vibration of the
machine body that increases the damping energy consumption of the swing vibration. The greater r l is, the bigger
the damping energy consumption of the swing vibration. This results in a less value of the eccentric radius, r, as
shown in Eq. (18).

Tables 1 and 2 list the critical rl-values at which the synchronous operation begins to un-stabilize when the mass
ratio (η) of the two exciters and the ratios of exciting frequency to natural frequencies of the vibrating system vary.
From Tables 1 and 2, it can be seen that the difference in the ratios of exciting frequency to natural frequencies has
very limited effect on the stability of synchronous operation in a non-resonant vibrating system. With the comparison
of Fig. 1 and Tables 1 and 2, H0 always firstly passes the zero line and becomes negative. When H1 pass their zero
lines, at least one of µ1 and µ2 has become negative, see the expression of H1in Eq. (8).

Figure 2 shows the cosine of phase difference along the curve H 0 = 0 in Fig. 1(c) when the system operates
at the steady-state. It can be seen that the cosine of phase difference at the critical point of the stability of the
synchronous operation is very close to 1, i.e., sin 2α is very close to 0. Therefore, the coefficient of coupling sine
effect onH0-value can be ignored. The dimensionless parameterH 0, which determines the stability of synchronous
operation, can be rewritten as

H0 = 4µ1µ2 −m2
0η

2W 2
c > 0 (19)

Equation (19) demonstrates that the stability of the synchronous operation is dependent on the structural parameters
of the vibrating system and independent of the parameters of two motors. The parameters of two motors have an
effect on implementing the frequency capture. The less the difference in the residual torque of two motors, the easier
the realization of frequency capture is. When the magnetic torques of two motors are respectively equal to their
load torques, the difference in their residual torques is zero. By designing the suitable mass ratio of two exciters to
match electromagnetic torques of two motors, two exciters can operate synchronously at the zero phase difference.
If 2α is zero, the nominator of Eq. (4) is zero, thus the condition of implementing frequency capture can expressed
as follows [23]

Te01 + Te02 − 1
2
m2
0r

2ω2m0[(1 + η2)Ws0 − 2ηWs] − ωm0(fd1 − fd2) = 0

Te01 − Te02 − 1
2
m2
0r

2ω2m0(1 − η2)Ws0 − ωm0(fd1 − fd2) = 0 (20)

Solving Eq. (20) by numerical method to obtainωm0 and η, η is the optimal match ratio of the masses of two exciters.
If η satisfies Eq. (20) and ωm0 satisfies Eq. (6), the stability domain of synchronous operation reaches its maximum.

Figure 3 shows the results of computer simulation of the vibrating system that the parameters are listed in appendix.
When the system starts to operate, the phase of exciter 1 leads that of exciter 2, and the phase difference between
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Fig. 1. Numeric results when ωnx/ω∗
m0 = ωny/ω∗

m0 = ωnψ/ω
∗
m0 = 4.5 and η = 0.5: a- distribution diagram of H zero value points; b-the

distribution diagram of zero point in rmrl-plane; c-the stability domain of synchronous operation; d-torque of frequency capture.

them increases gradually because the electromagnetic torque of motor 1 is greater than that of motor 2, as shown in
Fig. 4(b). When the phase difference is in the interval of (−180 ◦, 0◦), the torque of frequency capture acts on motor
1 as driving torque, and on motor 2 as load torque, which makes the phase difference increase rapidly and tends to
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Table 1
Table 1 Effect of mass ratio (η) of the two exciters on the
stability of the synchronous operation

η rm rl(H0 = 0) rl(H1 = 0) rl(H = 0)
1.0 0.01 10.00 14.15 10.33

0.1 3.02 4.26 3.66
0.2 2.01 2.85 2.64

0.5 0.01 11.55 18.0 15.92
0.1 3.51 5.53 5.08
0.2 2.37 3.78 3.57

0.2 0.01 12.94 19.08 18.94
0.1 3.93 5.88 5.85
0.2 2.64 4.04 4.02

Table 2
Effect of ratio of exciting frequency to natural frequencies of the vibrat-
ing system on the stability of the synchronous operation

Ratio of Freq. rm rl(H0 = 0) rl(H1 = 0) rl(H = 0)
λx=2.5, 0.01 10.87 16.94 15.25
λy=2.5, 0.05 3.29 5.19 4.84
λψ=2.5. 0.1 2.20 3.53 3.38
λx=4.5, 0.01 10.86 16.91 14.98
λy=2.5, 0.1 3.28 5.18 4.79
λψ=4.5. 0.2 2.20 3.52 3.35
λx=2.5, 0.01 10.87 16.95 15.24
λy=4.5, 0.1 3.29 5.19 4.83
λψ=2.5. 0.2 2.20 3.53 3.36

Note: λx = ω∗
m0/ωnx, λy = ω∗

m0/ωny, λψ = ω∗
m0/ωnψ .

Fig. 2. Cosine of phase difference between the two eccentric rotors along the curve H0 = 0 in Fig. 1(c).

enter in the interval of (0◦, 180◦). During this process, the rotational speed of motor 1 is over its synchronous value
(1033 r/min). When the phase difference enters into the interval of (0 ◦, 180◦), the torque of frequency capture acts
on motor 1 as load torque and on motor 2 as driving torque. The rotational speed of motor 1 decreases rapidly and
that of motor 2 increases (the maximum is 1045 r/min). Finally, the phase difference reaches 7.9 ◦ and the system
operates synchronously.

Because the load torques acting on two motors is periodic, their rotational speeds are also periodic as shown in
Fig. 3(a). When t = 2 s, the power supply of motor 2 is cut off, i.e., the electric source is only supply to motor 1.
The phase difference increases to 15.7◦ and the synchronous operation of two motors continues, which means the
vibratory synchronous transmission. When t = 3 s, a 90◦ phase disturbance is added to exciter 2. The system can
automatically adjust the phase difference and re-reaches the steady-state of vibratory synchronous transmission.
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Fig. 3. Results of computer simulation of a vibrating system with two non-identical exciters.

5. Conclusions

In the vibrating system with dual-exciters, the vibration of the system excited by two exciters has an effect on
the load torques and the moments of inertia of two exciters. The load torque of each motor consists of three items,
such as the torque of sine effect, that of coupling sine effect and that of coupling cosine effect. The first item
stems from the vibration of the system excited by one exciter on its own motor. The last two items stem from the
vibration excited by one exciter on the other motor, which represent the coupling effect of two exciters. The torque of
frequency capture stems from the action of coupling cosine effect on two motors. The motions of the system excited
by two exciters in the same direction makes their phase difference close to π and that in opposite directions makes
their phase difference close to 0. The condition of implementing the frequency capture depends on the parameters
of two motors and the coefficient of coupling cosine effect of the two exciters. The matching of the mass ratio of
two exciters and the parameters of two motors promotes the implement of frequency capture.

The stability of the synchronous operation is only dependent on the structural parameters of the system, including
the mass ratio of two exciters to that of the vibrating system, rm, and the ratio of the distance between one exciter
and the centroid of the system to the equivalent radius of the system about its centroid, r l. The condition of stability
of synchronous operation is that the dimensionless relative moments of inertia of two exciters are all greater than
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zero, and four times of their product is greater than the square of their coefficient of coupling cosine effect. The less
rm, the bigger is rl. To guarantee the reliable stability of synchronous operation and torque of frequency capture
high enough to overcome the difference in the residual toques of two motors, the exciters should be designed to have
the greater eccentric radius and the less mass.

When the torque of frequency capture is greater than the bigger one of electromagnetic torques of two motors, the
vibratory synchronous transmission can be realized. During the vibratory synchronous transmission, the torque of
frequency capture transmits the driving torque of the motor supplied with electric source to the other motor that its
power supply is cut off.
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Appendix: Parameters of the vibrating system

Table A1
Parameters of two induction motors

Parameters Motor 1 Motor 2
Rated power (kW) 3.7 0.75
Poles 6 6
Rated frequency (Hz) 50 50
Rated voltage (V) 220 220
Rated angular velocity (r/min) 1780 1760
Stator resistance (Ω) 0.54 3.35
Rotor resistance referred to stator (Ω) 0.56 3.40
Stator inductance (H) 0.075 0.17067
Rotor inductance referred to stator (H) 0.075 0.17067
Magnetizing inductance (H) 0.0738 0.16373
Damping coefficient of axis (N.m s/rad) 0.02 0.005

Table A2
Parameters of the vibrating system

Parameter Value
Mass of body of the vibrating system, M , kg; 1200
Moment of Inertia of about its centriod, J , kg·m2; 1058
Mass of eccentric lump 1, m01, kg; 40
Mass of eccentric lump 2 m02, kg; 20
Spring constant in the direction of x, kx, N/m; 630500
Spring constant in the direction of y, ky , N/m; 630500
Spring constant in the direction of ψ, kψ , N·m/rad; 556000
Damping constant in the direction of x, fx, N/(m/s) 3850
Damping constant in the direction of y, fy , N/(m/s); 3850
Damping constant in the direction of ψ, fψ , N·m/(rad/s); 3400
Distance between the lumps and the center of mass, l0, m; 0.8
Radius of the eccentric lumps, r, m. 0.08
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