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Reflections on the hysteretic damping model
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Abstract. This paper presents a reflection on a recently proposed solution to the problem of the free vibration response with
the constant hysteretic damping model, that has been presented in some conferences in recent years, by the author himself and
some of his colleagues. On the one hand, as expected, the subject has been received with natural criticism, mainly due to the
well-known non-causal behaviour of the model in free vibration. On the other hand, it was not easy to understand what could
be wrong in that proposal, as apparently everything was perfect from a mathematical point of view. The author decided that this
subject deserved a more careful and detailed analysis and – in this kind of tutorial paper – the issue seems to have been clarified.
It is concluded that the proposed solution involving the constant hysteretic damping corresponds in fact to an equivalent viscously
damped model; it is therefore concluded that the application of the constant hysteretic damping to model the free vibration of
practical engineering problems should be considered only in the perspective of an equivalent viscously damped model.
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1. Introduction

The most popular model for damping is the viscous one, where the force developed by the damping element is
directly proportional to the velocity of the response, i.e., f = cẋ (c is the damping coefficient). But models are
models, i.e., mathematical abstractions that try to match as closely as possible the reality without being completely
perfect. For instance, although the viscously damped model is quite accurate in describing the free vibration of a
system, one should not forget that it tells us that the system never comes to a halt! The response only goes to zero at
infinity, or if preferred, the system vibrates forever. . . So, the model is not perfect in the description of free vibration,
but it is good enough from an engineering point of view and quite “friendly” from a mathematical perspective. It is
also often used in the frequency domain, although in that case one must be careful, as when the frequency range of
interest is considerably large some deviations between the response of the model and the true response may become
apparent. Strictly speaking about damping, such a deviation may be due to the fact that the viscous model implies

energy dissipation per cycle that is linearly proportional to the frequency (W diss. =
∫ 2π/ω

0 f ẋ dt = πcωX2). It is
a well known result that the energy dissipated per cycle on most metallic structures is a consequence of the internal
friction of the material itself, known as material hysteresis, and the experience shows that it is practically independent
on the frequency of excitation [1]. This observation led to the introduction of the hysteretic model. Thinking in
terms of the single-degree-of-freedom system (SDOF), while the force due to the viscous damping is proportional to
the velocity, the force due to the hysteretic damping is proportional to the displacement, although still in phase with
the velocity, as it is a dissipative force. With such a definition, the dissipated energy becomes independent of the
frequency, as desired: Wdiss. = πdX2, where d is the hysteretic damping coefficient (note that its units are N/m, as
a stiffness). For an SDOF system subjected to a harmonic force, the equilibrium equation is now given by:

mẍ(t) + k (1 + iη) x(t) = F eiω t (1)

where η = d/k is the hysteretic damping factor and k (1 + iη) is a complex stiffness. The steady-state solution
(corresponding to the particular solution of (1)) presents no problem:
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x(t) = Xeiω t =
F

k − ω2m+ ikη
eiω t (2)

and the frequency response function is given by:

H(ω) =
1/m

ω2
n − ω2 + i ω2

nη
(3)

where ωn is the undamped natural frequency of the system. This model, valid only for ω > 0, is quite satisfactory
in many engineering applications, namely in structural dynamics. The problem arises when one wishes to evaluate
the free vibration response, i.e, when one tries to solve the homogeneous equation related to Eq. (1):

mẍ(t) + k (1 + iη) x(t) = 0 (4)

How to obtain the free vibration response for a system with hysteretic damping has been the motive of all kind of
discussions and it is amazing the interest that it has raised along so many decades (e.g. [2–9]). Eq. (4) seems absurd,
as the solution has to be necessarily complex. From a physical point of view, it does not make any sense indeed. For
instance, Inaudi and Kelly [10] state that the force k (1 + iη) x(t) in Eq. (4) is clearly incorrect, as it would mean
that a real response implies a complex force. Both the real part of the complex stiffness (the storage modulus) and
the imaginary part (the loss modulus) are independent of the frequency and, as already mentioned, the dissipated
energy becomes independent of the frequency. It is also very well known that the constant hysteretic damping model
is non-causal (see, for instance [8,9,11,12]). In fact, as reminded by Inaudi and Kelly [10] and discussed in [13], it is
not possible to formulate a causal model that has simultaneously a storage modulus and a loss modulus independent
of the frequency. Back in 1958, Biot [14] proposed a viscoelastic damping model whose variation with frequency
is very weak with respect to the loss modulus, and that can therefore come close – in practice – to the constant
hysteretic model, although it leads to a storage modulus that increases with frequency.

As stated above, Eq. (4) does not make sense. However, in recent papers, Ribeiro et al. [15,16] have proposed to
look at Eq. (4) from a different perspective: Eq. (4) has a mathematical complex solution x(t) that is not the physical
response of the system; the physical response of the system should be the real part of x(t). As shown in [15], the
solution is given by (after discarding the unstable part of the solution):

x(t) = Ce−ωnateiωnbt (5)

where C is a complex constant and a and b are given by:

a =

√
−1 +

√
1 + η2

2
b =

√
1 +

√
1 + η2

2
(6)

Note that in order to solve Eq. (5) it is necessary to give two initial conditions, which must be complex quantities
and – once more – the rationale is that the physical (measurable) quantities that one is used to (initial displacement
and velocity) are the real parts of those complex initial conditions. In fact, such an approach is not really new.
Similar results had already been reported by Sorokin [17,18]. Denoting the initial displacement and velocity as x 0

and v0, it was shown [15] that:

x(t) =
(
x0 − i v0 + ωnax0

ωnb

)
e−ωnateiωnbt (7)

And from this mathematical solution, the physical one – the response of the system – would be its real part:

x(t) = e−ωnat

(
x0 cosωnbt+

v0 + ωnax0

ωnb
sinωnbt

)
(8)

In this paper a discussion on the validity of this kind of approach will be carried on.
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2. Impulse response function versus  frequency response function

It is a known fact that the free response of a system modeled with the constant hysteretic damping has been reported
over the years by various authors as having a non-causal behaviour (e.g. [8,9,11,12]), i.e., the system, initially at
rest, has a response other than zero before any perturbation occurs, which clearly is not physically realizable. The
effect cannot precede the cause. For a system with a real-valued time response x(t), the impulse response function
(IRF) h (t) (response to a Dirac impulse) and the frequency response function H(ω) constitute a Fourier pair, i.e.,
H(ω) = F(h(t)) and h (t) = F−1(H(ω)), where F means Fourier transform and F−1 its inverse. But for the
response to be real-valued (the only one physically admissible), H(ω) must be Hermitian, or conjugate-even (real
part even, imaginary part odd), i.e., H(−ω) = H ∗(ω), where * means complex conjugate. And the inverse is also
true, ifH(ω) is Hermitian, the impulse response is real. This can be easily proven:

h (t) = F−1(H(ω)) =
1
2π

∫ +∞

−∞
H(ω) eiω tdω =

1
2π

(∫ 0

−∞
H(ω) eiω tdω +

∫ +∞

0

H(ω) eiω tdω
)

=
1
2π

(
−
∫ −∞

0

H(ω) eiω tdω +
∫ +∞

0

H(ω) eiω tdω
)

=
1
2π

(
−
∫ +∞

0

H(−ω) e−iω td(−ω) +
∫ +∞

0

H(ω) eiω tdω
)

(9)

=
1
2π

∫ +∞

0

(
H∗(ω) e−iω t +H(ω) eiω t

)
dω =

1
2π

· 2Re
∫ +∞

0

H(ω) eiω t dω

2.1. Viscous damping

For a system with viscous damping and harmonic excitation, the frequency response function is

H(ω) =
1/m

ω2
n − ω2 + i2ξωnω

=
1
m

·
(

ω2
n − ω2

(ω2
n − ω2)2 + (2ξωnω)2

+
−i2ξωnω

(ω2
n − ω2)2 + (2ξωnω)2

)
, (10)

whereξ is the viscous damping factor. It is clear thatH(ω) is a Hermitian function ofω. The graphical representation
of the real and imaginary parts of H(ω) against frequency (in a dimensionless way) is illustrated in Fig. 1a, b.
Therefore, from Eq. (10), its impulse response function will be real. Applying Eq. (9), namely by contour integration,
it can be shown that the impulse response function is given by:

h(t) =
1
mωd

e−ξωnt sinωdt (11)

where ωd = ωn
√

1 − ξ2 is the damped natural frequency. It is clear that the system is at rest for t = 0, as h(0) = 0.
The system has a causal behaviour.

2.2. Hysteretic damping

Let us now take the hysteretic damping case. Writing Eq. (3) as:

H(ω) =
1
m

·
(

ω2
n − ω2

(ω2
n − ω2)2 + (ηω2

n)
2 +

−i ηω2
n

(ω2
n − ω2)2 + (ηω2

n)2

)
, (12)

one notices that both the real and complex parts are even (Fig. 2a, b) and therefore, the impulse response function
will not be real.

In order to force h(t) to be real, it is usual to modify the frequency response function to

H(ω) =
1/m

ω2
n − ω2 + i ηω2

nsgn (ω)
(13)
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a)  Real part of H( )ω  (viscous damping case).         b) Imaginary part of H( )ω  (viscous damping case). 

Fig. 1.
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a)  Real part of H( )ω  (hysteretic damping case). b) Imaginary part of H( )ω  (hysteretic damping case). 

Fig. 2.

where sgn (ω) is the signum function, defined as:

sgn (ω) =




1 for ω > 0
0 for ω = 0
−1 for ω < 0

(14)

Such a modification has no effect on the steady-state response of the system and has the virtue of allowing the
impulse response function to become real valued. Writing Eq. (13) in its real and imaginary parts,

H(ω) =
1
m

·
(

ω2
n − ω2

(ω2
n − ω2)2 + (ηω2

n)
2 +

−i ηω2
nsgn (ω)

(ω2
n − ω2)2 + (ηω2

n)2

)
(15)

One can clearly observe thatH(ω) is now Hermitian. In order to obtain the expression for the frequency response
function with the signum function as in Eq. (13), Inaudi and Kelly [10] state that the correct formulation of Eq. (1)
in the time domain should be:

mẍ(t) + kx(t) + kη H (x(t)) = f(t) (16)
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Fig. 3. a) Force and response in the complex plane for ω > 0; b) Force and response in the complex plane for ω < 0 with an incorrect phase
angle; c) Force and response in the complex plane for ω < 0 with the correct phase angle.

where H (x(t)) represents the Hilbert transform of x(t), defined in the time domain as:

H (x(t)) = − 1
π

∫ +∞

−∞

x(τ)
t− τ dτ (17)

or

H (x(t)) = x(t) ⊗
(
− 1
π t

)
, (18)

where ⊗ is the convolution operator. In fact, applying Fourier transforms to both sides of Eq. (18), it turns out that

F (H (x(t))) = F (x(t)) F
(
− 1
π t

)
⇒ H (X(ω)) = X(ω) isgn(ω) (19)

Therefore, in the frequency domain, Eq. (16) becomes:

−mω2X(ω) + kX(ω) + ikηsgn(ω)X(ω) = F (ω) (20)

and the frequency response function is given by

H(ω) =
X(ω)
F (ω)

=
1

k −mω2 + ikηsgn(ω)
=

1/m
ω2
n − ω2 + iω2

nηsgn(ω)
(21)

as in Eq. (13). Moreover, the use of the signum function to change the sign for negative frequencies is also a
necessary condition to have a force preceding the response. In fact, the phase angle between the response and the
force (see Fig. 3a) is given by:

α = tg−1

(
ηω2

nsgn (ω)
ω2
n − ω2

)
(22)

Without the signum function, the angle would remain positive for negative frequencies and the response would
lead the force (see Fig. 3b), something that cannot happen. Figure 3c illustrates the correct position of the response
with respect to the applied force.

As the impulse response function is the inverse Fourier transform of the frequency response function, one must
solve the following problem:
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h (t) = F−1 (H(ω)) =
1
2π

∫ +∞

−∞

1/m
ω2
n − ω2 + iω2

nηsgnω
· eiω tdω (23)

Things become a bit complicated, as the signum function introduces a discontinuity at ω = 0 in the imaginary
part ofH(ω) (see Fig. 4), which precludes the calculation of the impulse response function (for instance by contour
integration) in a closed form.

Gaul et al. [11] succeeded in calculating an approximate solution for the impulse response function from Eq. (23)
by contour integration, overcoming the singularity at ω = 0, as will be explained in Section 3.1. They obtained, of
course, a real valued solution for h (t), but confirmed the non-causality of the model, as they found out a negative
value (though small) for h (0) (a precursor). Similar findings have been reported by other authors (e.g. [12,19]).
Using the result expressed in Eq. (9), Eq. (23) can alternatively be written as

h (t) =
1
πm

∫ +∞

0

(
ω2
n − ω2

)
cosωt+ ω2

nη sinωt

(ω2
n − ω2)2 + (ω2

nη)
2 dω (24)

which can be evaluated numerically. The non-causal behaviour is again verified, but by using an iterative technique,
Inaudi and Kelly [10] managed to obtain a solution that converged to an approximate response, where the non-
causality has little expression.

Makris [20] states that the term k (1 + iηsgn(ω)) leads to a non-causal behaviour, because the frequency response
function does not verify the Kramers-Kroning conditions, which establish that for a linear, causal and stable system
the real and imaginary parts of the frequency response function should constitute an Hilbert pair, where the imaginary
part can be calculated from the real part and vice-versa:

Re (H(ω)) = − 2
π

∫ +∞

0

Im (H(Ω)) Ω
Ω2 − ω2

dΩ; Im (H(ω)) =
2ω
π

∫ +∞

0

Re (H(Ω))
Ω2 − ω2

dΩ (25)

With this in mind, assuming a constant imaginary part (= ηksgn (ω/ε), where ε is an arbitrary constant just to
account for the right dimensions), the real part must be related to the imaginary one through the Hilbert transform.
In this way, Makris [20] obtains a real part that is necessarily a function of the frequency ω and that ensures the
causal behaviour, i.e., the impulse response function results real and it is null for t < 0. With such a model (which
he named “causal hysteretic element”), where the real part (the storage modulus) varies with frequency, instead of
k (1 + iηsgn(ω)) , Makris obtained the expression k

(
1 + 2

πη ln
∣∣ω
ε

∣∣+ iηsgn (ωε )) , which is practically the same
as Biot’s model [14]. In fact, this model is the limiting case of Biot’s linear viscoelastic model, with nearly frequency
independent dissipation. However, the model is not valid for ω = 0.

The question arises as “What about the solution expressed in Eq. (7)”? Does it correspond to a non-causal
behaviour as well? It seems that it does not make much sense to talk about causality referring to Eq. (7), as it is a
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pure mathematical result. Equation (8) is (supposedly) the one representing the response. Introducing in Eq. (7) the
initial conditions of a unitary impulse at t = 0, x0 = 0, v0 = 1/m, the solution becomes:

h (t) = −i 1
mωn b

e−ωnateiωnbt =
1

mωn b
e−ωnat (−i cosωn bt+ sinωn bt) (26)

As the physical solution should be its real part, one has:

Re (h (t)) =
1

mωn b
e−ωnat sinωn bt (27)

which is a very similar result to the viscously damped model. For the complex solution, (Eq. (26)), one has
Im (h (0)) = − 1

mωn b
�= 0, but it is not clear the meaning of this result. However, the real part, expressed in Eq. (27)

givesRe (h (0)) = 0. This means that apparently the solution proposed in [15] shows a causal behaviour! However,
this solution comes from the free vibration equation (4) and the corresponding frequency response function still
is Eq. (3), the one that is not Hermitian and therefore has a complex solution. So, in principle and ignoring any
physical argument, it could seem logical to try and deduce the (complex) impulse response function from Eq. (3)
and compare it to Eq. (26). However, as discussed before and illustrated in figure 3, from a physical point of view it
does not make sense to integrate along negative frequencies without changing the sign of the imaginary part of the
frequency-response-function, through the use of the signum function (or any other with a similar effect). Therefore,
one concludes that the solution given in Eq. (26) does not make sense, as it cannot be obtained from any of the
frequency response functions of either Eq. (3) or Eq. (13) through an inverse Fourier transform. In other words, one
may say that the physics cannot be ignored all the way until the very end as in Ribeiro’s et. al. approach, where
one simply takes the real part of a complex result. The physical meaning must come into play earlier. If one does
not attempt to reproduce those results by doing an inverse Fourier transform, then it may be difficult to understand
where the mistake occurred.

In the next section, one will see how to compute, or come close to a practical solution for the IRF, using contour
integration, for the hysteretic and mixed models. Taking a tutorial perspective, considerable detail is put in the
developments that follow.

3. Calculating the IRF using contour integration

3.1. The hysteretic damping case

As discussed in Section 2.2, the impulse response function is given by Eq. (23), from which

2πmh (t) =
∫ +∞

−∞

eiω t

ω2
n − ω2 + iω2

nηsgnω
dω (28)

One will follow the explanation given in [11], using Cauchy’s Residue Theorem. One extends ω to the complex
plane, defining a new variable z = ω + iσ. As

∫ +∞
−∞ should be understood as its principal value, i.e., P. V.

∫ +∞
−∞ =

lim
R→∞

∫ +R

−R , one needs to evaluate:

lim
R→∞

∫ +R

−R

eiz t

ω2
n − z2 + iω2

nηsgn (Re(z))
dz = lim

R→∞

∫
C

f(z)dz = 2πi
∑
j

Res. (f, zj) (29)

Because one has simple poles and f(z) can be written as f(z) = φ (z)
ψ (z) , the residues can be given by:

Res. (f, zj) =
φ (zj)
ψ ′ (zj)

(30)

One has two possibilities for the roots of the denominator:

z2 − ω2
n (1 + iη) = 0 for ω > 0 (31a)
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Fig. 6. Upper half-plane integration contour.

z2 − ω2
n (1 − i η) = 0 for ω < 0 (31b)

which are:

z1 = ωnb+ i ωna
z2 = −ωnb− i ωna for ω > 0 and

z3 = ωnb− iωna
z4 = −ωnb+ iωna

for ω < 0 (32)

with a and b given by Eq. (6). The four poles are represented in Fig. 5.
The contour in the upper half-plane has to be split in two, to avoid the singularity at ω = 0 (as discussed in

Section 2.2), which in the complex plane corresponds to avoid the imaginary axis by a small quantity δ (Fig. 6).
These contours only encompass poles z1 and z4.

Therefore, one has:

lim
R→∞
δ→0

∫
C

f(z)dz = lim
R→∞
δ→0

∫
Cω

f(ω)dω + lim
R→∞

∫
Cγ1

f(z)dz + lim
R→∞

∫
Cδ

f(iσ)d(iσ)

+ lim
R→∞
δ→0

∫
C−ω

f(ω)dω + lim
R→∞

∫
Cγ2

f(z)dz + lim
R→∞

∫
C−δ

f(iσ)d(iσ) (33)

= 2πi (Res. (f, z1) +Res. (f, z4))

where

lim
R→∞

∫
Cγ1

f(z)dz = lim
R→∞

∫ π/2

0

eiR e
iϕt

ω2
n −R2 i ei2ϕ + iω2

nη
R i eiϕdϕ
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= lim
R→∞

∫ π/2

0

eiR e
iϕt

z2
1
−R2 i ei2ϕ

R i eiϕdϕ (34)

lim
R→∞

∫
Cγ2

f(z)dz = lim
R→∞

∫ π

π/2

eiR e
iϕt

z2
4
−R2 i ei2ϕ

R i eiϕdϕ

lim
R→∞

∫
Cδ

f(iσ)d(iσ) = lim
R→∞

∫ 0

R

ei(iσ)t

ω2
n − (iσ)2 + iω2

nη
i dσ = lim

R→∞

∫ 0

R

e−σt

z21 + σ2
i dσ

lim
R→∞

∫
C−δ

f(iσ)d(iσ) = lim
R→∞

∫ R

0

e−σt

z24 + σ2
i dσ

As

2πmh (t) =
∫ +∞

−∞

eiω t

ω2
n − ω2 + iω2

nηsgnω
dω = lim

R→∞
δ→0

∫
Cω

f(ω)dω+ lim
R→∞
δ→0

∫
C−ω

f(ω)dω, (35)

one has

2πmh (t) = − lim
R→∞

∫
Cγ1

f(z)dz − lim
R→∞

∫
Cγ2

f(z)dz − lim
R→∞

∫
Cδ

f(iσ)d(iσ) (36)

− lim
R→∞

∫
C−δ

f(iσ)d(iσ) + 2πi (Res. (f, z1) +Res. (f, z4))

As f(z) = ei z t

ω2
n−z2+iω2

n ηsgn (Re(z)) , the residues are given by (from Eq. (30)):

Res. (f, z1) = −e
iz1 t

2z1
Res. (f, z4) = −e

iz4 t

2z4
(37)

As the first two integrands on the r.h.s. of Eq. (36) are of order R
/
(1 +R2), they tend to zero as R tends to

infinity; having this into account and substituting Eqs (34) and (37) in Eq. (36), it follows that

2πmh (t) = − lim
R→∞

i

(∫ 0

R

e−σt

σ2 + z21
dσ +

∫ R

0

e−σt

σ2 + z24
dσ

)
− πi

(
eiz1 t

z1
+
eiz4 t

z4

)
(38)

Substituting the values of z1 and z4, and after some development, it is not difficult to obtain:

mωnh (t) =
e−ωnat

a2 + b2
(b sinωnbt− a cosωnbt) +

ω3
nη

π
lim

R→∞

∫ R

0

e−σt

(σ2 + ω2
n)

2 + ω4
nη

2
dσ (39)

The residual integral in Eq. (39) cannot be evaluated analytically. However, it converges by an order of 1
/
R3

as R → ∞ and decays exponentially in time. Therefore, it is possible to have an upper-bound for this integral at
t = 0 [11]. Let us call it I(0) :

I(0) =
ω3
nη

π
lim

R→∞

∫ R

0

1

(σ2 + ω2
n)

2 + ω4
nη

2
dσ (40)

In terms of z1 and expanding in partial fractions, I(0) can be expressed as:

I(0) = −ωn
2π
Im

(
1
i z1

lim
R→∞

( ∫ R

0

1
σ − i z1 dσ −

∫ R

0

1
σ + i z1

dσ

))
(41)

and in this form, it can be directly calculated. Let u = σ−iz1 = σ+ωna−iωnb and v = σ+iz1 = σ−ωna+iωnb:

I(0) = −ωn

2π Im

(
1
i z1

lim
R→∞

[
ln |u| + i tg−1 Im(u)

Re(u) −
(
ln |v| + i tg−1 Im(v)

Re(v)

)]R
0

)

= −ωn

2π Im

(
1
i z1

lim
R→∞

[
ln |u|

|v| + i tg−1 −ωnb
σ+ωna

− i tg−1 ωnb
σ−ωna

]R
0

)
= −ωn

2π Im
(

1
i z1

(
0 − i

(
tg−1 −b

a − tg−1 b
−a
)))

= ωn

2π Im
(

1
z1

(−θ − (−θ + π))
)

= a
2(a2+b2)

(42)
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Thus, Eq. (39), at t = 0, leads to:

mωn h (0) = − a

2 (a2 + b2)
(43)

which demonstrates the non-causal behaviour of the hysteretic model. However, this negative value is very small
for small damping factors, approaching −η/4 for η 2 � 1. Moreover, as I(t) dies out, the response approaches:

h (t) =
e−ωnat

mωn (a2 + b2)
(b sinωnbt− a cosωnbt) (44)

3.2. The mixed damping case

For a single degree of freedom with both viscous and hysteretic damping subjected to a harmonic force, the
frequency response function, for ω > 0, is

H(ω) =
1/m

ω2
n − ω2 + i (2ξωnω + ω2

nη)
(45)

Once again, in order to obtain the impulse response function via an inverse Fourier transform, one must have a
Hermitian function in order to have a real response and to contemplate the correct phase angle between response and
force. Introducing again the signum function for the hysteretic damping factor,

2πmh (t) =
∫ +∞

−∞

eiω t

ω2
n − ω2 + i (2ξωnω + ω2

nηsgnω)
dω (46)

Note that for the mixed damping case, Ribeiro et al. [16] obtained the following solution:

h(t) =
(
−i 1
mωnb

)
e−ωn(ξ+a) teiωnbt (47)

from which the real part would be the physical response:

Re (h(t)) =
1

mωnb
e−ωn(ξ+a) t sinωnb t (48)

where a and bare now given by:

a =

√√√√− (1 − ξ2) +
√

(1 − ξ2)2 + η2

2
b =

√√√√1 − ξ2 +
√

(1 − ξ2)2 + η2

2
(49)

Eqs (47) and (48) are similar to Eqs (26) and (27). Going back to Eq. (46), one must again extend ω to the complex
plane, making z = ω + iσ. As before, one has two possibilities for the roots of the denominator:

z2 − i2ξωn z − ω2
n (1 + iη) = 0 for ω > 0 (50a)

z2 − i2ξωn z − ω2
n (1 − iη) = 0 for ω < 0 (50b)

which are:

z1 = ωnb+ i ωn(ξ + a)
z2 = −ωnb+ i ωn(ξ − a) for ω > 0 and

z3 = ωnb+ iωn (ξ − a)
z4 = −ωnb+ iωn (ξ + a) for ω < 0 (51)

where a and b are given by Eq. (49). One has again four poles (Fig. 7). Note that one must have a > ξ, which
means η > 2ξ. Otherwise, there would be 4 poles in the upper-half plane and that would not replicate the viscously
damped case when η = 0.

This case is very similar to the hysteretic one, as there is also a singularity at ω = 0, precluding a closed form
solution. Following the same steps as before, one ends up with a similar expression to Eq. (38):
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(        )

(        )
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Fig. 7. Poles z1, z2, z3 and z4 for the mixed damping case.

2πmh (t) = − lim
R→∞

i

(∫ 0

R

e−σt

σ2 − 2ξωnσ + ω2
n(1 + iη)

dσ +
∫ R

0

e−σt

σ2 − 2ξωnσ + ω2
n(1 − iη) dσ

)

−πi
(

eiz1 t

z1 − iξωn +
eiz4 t

z4 − ξωn

)
(52)

And thus, after some manipulation,

mωnh (t) =
e−ωn(ξ+a) t

a2 + b2
(b sinωnbt− a cosωnbt) +

ω3
nη

π
lim

R→∞

∫ R

0

e−σt

(σ2 − 2ξωnσ + ω2
n)

2 + ω4
nη

2
dσ(53)

The upper-bound of the integral in Eq. (53) at t = 0 is now:

I(0) =
ω3
nη

π
lim

R→∞

∫ R

0

1

(σ2 − 2ξωnσ + ω2
n)

2 + ω4
nη

2
dσ

=
1
2π
Im

{
1

2 (a− ib) lim
R→∞

∫ R

0

(
1

σ − ωn (ξ − a) − iωnb −
1

σ − ωn (ξ + a) + iωnb

)
dσ

}

=
1
2π
Im

{
1

2 (a− ib)
[

lim
R→∞

(
ln

|R− ωn (ξ − a) − iωnb|
|R− ωn (ξ + a) + iωnb| + i

(
tg−1 −ωnb

R− ωn (ξ − a) (54)

−tg−1 ωnb

R− ωn (ξ + a)

))
+ ln

|− (ξ + a) + ib|
|− (ξ − a) − ib| + i

(
−tg−1 −b

− (ξ − a) + tg−1 b

− (ξ + a)

)]}

=
1

4π (a2 + b2)

(
1
2
b ln

(ξ + a)2 + b2

(ξ − a)2 + b2
+ a∆

)

and therefore, at t = 0 one has:

mωnh (0) =
−a

a2 + b2
+

1
4π (a2 + b2)

(
1
2
b ln

(ξ + a)2 + b2

(ξ − a)2 + b2
+ a∆

)
(55)

For small values of the damping factors ∆ ≈ π, and Eq. (55) becomes:

mωn h (0) ≈ − 3a
4 (a2 + b2)

(56)

As I(t) dies out, the response approaches:

h (t) =
e−ωn(ξ+a) t

mωn (a2 + b2)
(b sinωnbt− a cosωnbt) (57)

It is obvious that expression Eq. (57) encompasses the particular cases of the viscous and hysteretic models.
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4. Alternative: To find an equivalent viscous model

One possibility to circumvent the problem of obtaining a free response with constant hysteretic damping is to
find an equivalent viscous damping model. One way to do this is to state that the roots of the denominator of
the frequency response function containing the hysteretic damping term are the same as for an equivalent viscous
damped case [11]. Let us take again the mixed damping case in the complex plane, where

H(z) =
1/m

ω2
n − z2 + i (2ξωnz + ω2

nηsgn (Re(z)))
(58)

The roots are given by Eqs (51). For the equivalent system,

Heq(z) =
1/m

ω2
neq

− z2 + i2ξeqωneq z
(59)

with the roots:

z1eq = ωneq

√
1 − ξ2eq + iξeq ωneq z2eq = −ωneq

√
1 − ξ2eq + iξeq ωneq (60)

The roots of the equivalent system stay in the upper half-plane, and so they must be equaled to z 1 and z4,
respectively, which corresponds to assume ξ < a, i.e., η > 2ξ. The equivalent parameters are

ωneq = ωn

√
(ξ + a)2 + b2 ξeq =

ξ + a√
(ξ + a)2 + b2

(61)

One will see in the next sub-section the implications of this result in the impulse response function.

4.1. The IRF for an equivalent viscous damping model

From Eq. (11) it is clear that the impulse response function is given by

h(t) =
1

mωneq

√
1 − ξ2eq

e−ξeqωneq t sin
(
ωneq

√
1 − ξ2eq

)
t (62)

But from Eqs (51) and (60),

ωneq

√
1 − ξ2eq = ωnbξeq ξeqωneq = ωn (ξ + a) (63)

Therefore,

h(t) =
1

mωnb
e−ωn(ξ+a) t sinωnb t (64)

But this is precisely the result of Eq. (48), obtained by Ribeiro et al. [16] (and of course equals Eq. (27) when there
is only hysteretic damping). So, one concludes that the results proposed by those authors correspond in fact to an
equivalent viscously damped model. That justifies the causal behaviour of the solutions. The differential equation
corresponding to the free vibration of such a system is:

m ẍ+ 2mωn (ξ + a) ẋ+ k
(
(ξ + a)2 + b2

)
x = 0 (65)

which, for the hysteretic damping case becomes (after applying Eq. (6)):

m ẍ+ 2mωn

√
−1 +

√
1 + η2

2
ẋ+ k

√
1 + η2 x = 0 (66)
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4.2. The logarithmic decrement

Note that the logarithmic decrement is the natural logarithm of the damping rate (rate between two consecutive
amplitudes):

δ = ln
xi
xi+1

= 2π
ξeq√

1 − ξ2eq
= 2π

ξ + a
b

(67)

In the case of hysteretic damping, δ = 2πa/b can be used to evaluate the damping factor η.

5. Conclusions

From the study developed in this paper, one can draw the following conclusions:

– only a real solution of the differential equation describing the free vibration of a system makes sense from the
physical point of view;

– if the homogeneous differential equation has a complex solution, as assumed in [15], the application of complex
initial conditions makes sense. The mistake in [15] and [16] is that neither the real part of those conditions
represents the physical measured quantities, nor the physical response is the real part of the complex solution;

– from points 1 and 2, it can be concluded that for a physically real system the homogeneous differential equation
cannot have a complex solution and therefore the genuine impulse response function can only come from a
Hermitian frequency response function;

– the reason why the real solutions proposed in [15] and [16] correspond to a causal behaviour and make sense is
because they are – in fact – the solutions of an equivalent viscously damped system, and not the solutions of the
initial problem.

Acknowledgements

The current investigation had the support of FCT, under the project POCI2010.

References

[1] B.J. Lazan, Damping of Materials and Members in Structural Mechanics, Oxford: Pergamon Press, 1968.
[2] W.W. Soroka, Notes on the relations between Viscous and Structural Damping Coefficients, Journal of the Aeronautical Sciences 16

(1949), 409–410, 448.
[3] N.O. Miklestad, The Concept of Complex Damping, Journal of Applied Mechanics 19 (1952), 284–286.
[4] R.E.D. Bishop, The Treatment of Damping Forces in Vibration Theory, Journal of the Aeronautical Society 59(539) (1955), 738–742.
[5] T.J. Reid, Free Vibration and Hysteretic Damping, Journal of the Royal Aeronautical Society 60 (1956), 283.
[6] P. Lancaster, Free Vibration and Hysteretic Damping, Journal of the Royal Aeronautical Society 64 (1960), 229.
[7] T.K. Caughey, Vibration of Dynamic Systems with Linear Hysteretic Damping, Proceedings of the 4th U.S. National Congress on Applied

Mechanics, ASME New York, (1962), 87–97.
[8] S.H. Crandall, Dynamic Response of Systems with Structural Damping, in: Air, Space and Instruments, S. Lees, ed., MaGraw-Hill, New

York, 1963, pp. 183–193.
[9] S.H. Crandall, The Role of Damping in Vibratioin Theory, Journal of Sound and Vibration 11 (1970), 3–18.

[10] J.A. Inaudi and J.M. Kelly, Linear Hysteretic Damping and the Hilbert Transform, Journal of Engineering Mechanics 121(5) (1995),
626–632.

[11] L. Gaul, S. Bohlen and S. Kelly, Linear Hysteretic Damping and the Hillbert Transform, Journal ofEngineering Mechanics 121(5) (1995),
626–632.

[12] H.K. Milne, The Impulse Response Function of a Single Degree of Freedom System with Hysteretic Damping, Journal of Sound and
Vibration 100(4) (1985), 590–593.

[13] N. Makris and J. Zhang, Time-domain viscoelastic analysis of earth structures, Earthquake Engineering and Structural Dynamics 29(6)
(2000), 745–768.

[14] M.A. Biot, Linear thermodynamics and the mechanics of solids, Proceedings of the 3rd US National Congress of Applied Mechanics
(1958), 1–18.



542 N. Maia / Reflections on the hysteretic damping model

[15] A.M.R. Ribeiro, N.M.M. Maia, J.M.M. Silva, M. Freitas, L. Reis, Free Vibration Response Using the Constant Hysteretic Damping Model,
Proceedings of the XIth Int Conf on Vibration Engineering Timisoara, Roménia, (2005), 65–70.

[16] A.M.R. Ribeiro, N.M.M. Maia and J.M.M. Silva, On the Modelling of Damping in Structural Vibrations, Proceedings of ISMA 2006,
Noise and Vibration Engineering, Leuven, Belgium, 2006.

[17] E.C. Sorokin, Method for account of non-elastic strength of material in construction vibration, in: Structural Dynamics Researches,
Gosstroiizdat, 1951, (in Russian).

[18] E.C. Sorokin, On Theory of Internal Damping in Elastic System Vibration, Gosstroiizdat, 1960, (in Russian).
[19] D.I.G. Jones, The Impulse Response Function of a Damped Single Degree of Freedom System, Journal of Sound and Vibration 106(2),

(1986), 353–356.
[20] N. Makris, Causal hysteretic element, Journal of Engineering Mechanics 123(11) (1997), 1209–1214.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


