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Abstract. This paper analyses the free vibration response of sandwich curved and flat panels by introducing the zig-zag function
(−1)kζk (ZZF) in the displacement models of classical and higher order two-dimensional shell theories. The main advantage
of ZZF is the introduction of a discontinuity in the first derivative, zig-zag effect, of the displacements distribution with
correspondence to the core/faces interfaces. Results including and discarding ZZF are compared. Several values of face-to-core
stiffness ratio (FCSR) and geometrical plate/shell parameters have been analyzed. Both fundamental vibration modes and those
corresponding to high wave numbers are considered in the analysis. It is concluded that: (1) ZZF is highly recommended in the
free vibration analysis of sandwich plates and shells; (2) the use of ZZF makes the error almost independent by FCSR parameter;
(3) ZZF is easy to implement and its use should be preferred with respect to other ‘more cumbersome’ refined theories.

1. Introduction

Nowadays sandwich structures are used to build large portions of advanced structural elements for aerospace,
automotive and ship vehicles. Typical sandwich structures are constituted by assembling of flat and/or curved panels.
The analysis and design of these structures involve various topics. An accurate evaluation of the vibration response
is one of the key-point for a rational use of sandwich structures [16].

As significant features sandwich structures are characterized by a soft core between two stiffer faces. They
consist of a three layered structure. The discontinuity of mechanical properties between faces and core introduces
a discontinuity of deformed core-faces planes at the interfaces, see Fig. 1. This is also known as Zig-Zag effect in
laminated structures [5]. These discontinuities make difficult the use of classical theories such as Kirchhoff [15] or
Reissner-Mindlin [20] type theories. In order to trace an accurate vibration response of sandwich structures see the
books by Zenkert [25], Bitzer [2] and Vinson [24]. So called layer-wise models, in which the three layers are treated
as three independent layers, can be used to capture the above ZZ form, see the overviews by Burton and Noor [4],
Noor, Burton and Bert [19], Altenbach [1], Librescu and Hause [17], Vinson [23], Carrera and Brischetto [8],
Demasi [13]. These models could result computational expensive.

In the framework of mixed multilayered plate theories, Murakami [18] proposed a Zig-Zag function ZZF able to
reproduce the described slope discontinuity. Equivalent single layer models (the three layers are treated as one-layer
equivalent plate) with only displacement unknowns can be developed on the basis of ZZF. The advantages of using
the ZZF to analyse the multilayered anisotropic plates and shells as well as the Finite Element implementation
have been discussed by Carrera [6] and Demasi [12], respectively. Recent papers have shown the effectiveness of
ZZF in the bending analyses of sandwich plates with soft core [3,13]. The obtained results have encouraged the
present analysis which is direct to explore the effectiveness of ZZF in the free vibration response of sandwich plates
and shells. Various values of geometrical parameters (length, thickness, radius) are considered along with several
face-to-core stiffness ratios to highlight the capability of ZZF.
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Fig. 1. Undeformed and deformed plane of a sandwich structure.
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Fig. 2. Geometry and notations for the Ren (left) and the Varadan and Baskar (right) shell.

2. The Zig-Zag function

A sandwich plate/shell composed by 3 layers,perfectly bonded together, is considered. z is the thickness coordinate
of the whole structure, zk is the layer thickness coordinate. h is the plate/shell thickness. The not dimensioned layer
coordinate ζk = (2zk)/hk is further introduced (hk is the thickness of the kth layer). α and β are the shell orthogonal
curvilinear coordinates over the reference surface Ω. Plates have orthogonal rectilinear coordinates (x,y,z). Results
will be restricted to cylindrical shell geometries and the correspondent radius of curvature will be denoted by R β ,
see Fig. 2.

Murakami’s Zig-Zag Function Z(z) was defined according to the following formula [18]:

Z(z) = (−1)kζk . (1)

Z(z) has the following properties:

1. it is piece-wise linear function of the layer coordinates zk;
2. Z(z) has unit amplitude for the whole layers;
3. the slope Z ′(z) = dZ

dz assumes opposite sign between two-adjacent layers. Its amplitude is layer thickness
independent.

A plot of Z(z) is given in Fig. 3. ZZF can be used in displacement u(z) to introduce discontinuous slopes with
correspondence to layer interfaces. If a linear polynomial is considered, in order to expand the displacement along
the thickness, one has:

u(z) = c0 + c1z , (2)

where c0, c1 are the amplitudes of the uniform and linear terms of u(z), respectively. By adding ZZF one has:

u(z) = c0 + c1z + cZZ(z) , (3)
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Fig. 3. Effect of adding the Zig-Zag function: linear case (left) and higher order case (right).

cZ is the amplitude of ZZF. Displacements with and without ZZF are compared in Fig. 3, which makes evident how
Z(z) emulates ZZ effects, that are very relevant in sandwich structures. Z(z) can be also used in conjunction to
higher N -order expansions (see Fig. 3):

u(z) = c0 + c1z + c2z2 + . . .+ cN−1zN−1 + cNzN + cZZ(z) . (4)

3. Considered theories

Classical theories for sandwich shells, such Kirchhoff (Classical Lamination Theory, CLT), Reissner-Mindlin
(First order Shear Deformation Theory, FSDT) and Higher order Shear Deformation Theory (HSDT), see the review
papers by Librescu and Hause [17] and Vinson [23], do not account for ZZ effect. A possible use of ZZF would
consist to enhance classical models by ’simply’ adding Z(z) in their displacement fields. Let consider a linear
distribution of a displacement component in the thickness direction z, as it is in CLT and FSDT:

u(α, β, z) = u0(α, β) + zu1(α, β), (5)

where u(α, β, z) is the displacement component along the α or β direction of the generic pointP in a given Cartesian
reference system; u0(α, β) is the value of uwith correspondence to the reference surface Ω to which correspondence
one has z = 0; u1(α, β) is an additional variable (u1 has the geometrical meaning of rotation of the normal to Ω
in P ). If FSDT applications are considered, Eq. (5) is retained only for the in-plane components (u 1 coincides to
the derivative of the transverse displacement with respect to the in-plane coordinates in the CLT case). ZZF offers a
possibility to introduce ZZ effect in Eq. (5), in fact:

u(α, β, z) = u0(α, β) + zu1(α, β) + (−1)kζkuZ(α, β) . (6)

The following remarks can be made:

1. the additional degree of freedom uZ has a meaning of displacement;
2. the amplitude uZ is layer independent: uZ has an intrinsic equivalent single layer description. At a first glance

this fact could appear as a strong limitation of ZZF. Actually ZZF does not differ from other Zig-Zag theories,
such as Ambartsumian Multilayered Theories and Lekhnitskii Multilayered Theories, as it has been detailed
in [5];

3. ZZF can be used for both in-plane and out-of-plane displacement components.
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Table 1
Number of degrees of free-
dom for the considered sand-
wich plate/shell theories

Theory d.o.f.

CLT 3
FSDT 5
ED1 6
EDZ1 9
ED4 15
EDZ3 15

3.1. Refinements of FSDT

The applications of ZZF to FSDT lead to the following displacement model:

u1(α, β, z) = u0
1(α, β) + zu1

1(α, β) + (−1)kζkuZ
1 (α, β)

u2(α, β, z) = u0
2(α, β) + zu1

2(α, β) + (−1)kζkuZ
2 (α, β)

u3(α, β, z) = u0
3(α, β) (7)

Subscripts 1, 2 and 3 denote displacement components in the three orthogonal directions of a given plate/shell
reference system. The third one refers to the thickness-transverse z-direction. The enhanced FSDT model has seven
degrees of freedom, while the classical FSDT one has only five.

3.2. Refinement of FSDT by inclusion of ZZ effects and transverse normal strains ε zz

The displacement model which includes transverse normal strains as well as ZZ effect in FSDT is:

u1(α, β, z) = u0
1(α, β) + zu1

1(α, β) + (−1)kζkuZ
1 (α, β)

u2(α, β, z) = u0
2(α, β) + zu1

2(α, β) + (−1)kζkuZ
2 (α, β)

u3(α, β, z) = u0
3(α, β) + zu1

3(α, β) + (−1)kζkuZ
3 (α, β) (8)

The related theories are denoted as ED1 and EDZ1 depending on the inclusion or not of the ZZF, respectively. The
letter E means Equivalent Single Layer theory, D states for Displacements formulation, the number indicates the
order of expansion in z direction (form linear (1) to fourth (4)). The adding of Z means inclusion of zig-zag function.

3.3. Higher order theories with ZZ function

ZZF can be used to introduce ZZ effect in any HSDT type expansions. The expansions considered in this work
make use of power of z polynomials:

ui(α, β, z) = u0
i (α, β) + zu1

i (α, β) + z2u2
i (α, β) + ...+ zNuN

i (α, β) + (−1)k
ζku

Z
i (α, β),

i = 1, 2, 3 . (9)

N is the order of expansion. The casesN = 1, 2, 3, 4 will be considered in the numerical discussion. The application
will refer to the cases of ED4 and EDZ3 theories that correspond to N = 4 and N = 3, respectively (the latter
includes ZZF). A summary of degrees of freedom for the considered theories is given in Table 1. It appears clear
that the computational cost of EDZ1 theory is much more less than ED4 theory. EDZ3 theory has the same number
of degrees of freedom of the ED4.
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Table 2
Comparison of various theories to evaluate the fundamental frequency amplitude for the plate.

m = n = 1. ω = ω

√
a4(ρ)skin
(E)skinh2

a/h 4 Err. 10 Err. 100 Err. 1000 Err.

FCSR = 10
3D 5.0921 % 7.4092 % 8.3960 % 8.4150 %
CLT 7.6822 (50.8) 8.2782 (11.7) 8.4070 (0.13) 8.4083 (0.08)
FSDT 6.3942 (25.6) 7.9276 (7.00) 8.4030 (0.08) 8.4083 (0.08)
ED1 6.3942 (25.6) 7.9276 (7.00) 8.4030 (0.08) 8.4083 (0.08)
ED4 5.2422 (2.95) 7.4801 (0.96) 8.3970 (0.01) 8.4082 (0.08)
EDZ1 5.0607 (0.62) 7.3860 (0.31) 8.3956 (0.00) 8.4082 (0.08)
EDZ3 5.1149 (0.45) 7.4110 (0.02) 8.3960 (0.00) 8.4082 (0.08)

FCSR = 105

3D 0.6093 % 0.6355 % 1.9864 % 8.5150 %
CLT 8.4625 (> 100) 9.2802 (> 100) 9.4627 (> 100) 9.4646 (11.1)
FSDT 6.8462 (> 100) 8.7970 (> 100) 9.4570 (> 100) 9.4645 (11.1)
ED1 6.8462 (> 100) 8.7970 (> 100) 9.4570 (> 100) 9.4645 (11.1)
ED4 2.0922 (> 100) 4.5512 (> 100) 9.3079 (> 100) 9.4630 (11.1)
EDZ1 0.6096 (0.04) 0.6357 (0.03) 1.9865 (0.00) 8.5061 (0.10)
EDZ3 0.7088 (16.3) 0.7319 (15.2) 2.0168 (1.53) 8.5064 (0.10)

4. Numerical results and discussion

The various plate/shell models described above have been adopted in the framework of Carrera’s Unified Formu-
lation CUF [14] for plates and shells which has been detailed in previous works [7]. Closed form solutions are herein
discussed for the case of simply supported sandwich plates/shells made of isotropic layers. Navier-type closed form
solutions can be found by assuming the following harmonic forms for unknown displacements:

uτ
1 =

∑
m,n

U τ
1 cos

mπα

a
sin

nπβ

b
eiωmn t̂

uτ
2 =

∑
m,n

U τ
2 sin

mπα

a
cos

nπβ

b
eiωmn t̂

uτ
3 =

∑
m,n

U τ
3 sin

mπα

a
sin

nπβ

b
eiωmnt̂ τ = 0, 1, 2, 3, 4, Z (10)

which correspond to simply-supported boundary conditions. a k and bk are the shell lengths in the αk and βk

directions, respectively; m and n are the correspondent wave numbers; t̂ denotes time; i=
√−1; ωmn is the circular

frequency. The free vibration response leads to an eigenvalue problem. Details of related governing equations and
solution procedures are herein omitted, but can be found in [7,11].

Poisson’s locking phenomena has been approached according to the findings in [9,10]. The attention has been
focused to evaluate the effectiveness of ZZ function to improve the results accuracy in the case of vibration response
of sandwich shells. These models are more efficient than classical and refined theories that do not make use of ZZ
function. CLT, FSDT and higher order theories (ED1, ED4) are compared to theories that use ZZ functions (EDZ1,
EDZ3). Results related to intermediate cases such as ED2, ED3 either EDZ2 have been omitted for sake of brevity.
3D solution has been provided via layer-wise mixed theories, see [7]. Degrees of freedom for the compared theories
are given in Table 1, that permits to estimate the computational cost of each plate/shell theory.

Three different geometries have been considered: square plate; cylindrical panel; closed cylindrical shell. Various
values of length-to-thickness ratio LTR (a/h), and radius-to-thickness ratio RTR (R β/h) have been considered. The
physical reason of Zig-Zag form for displacements field in the thickness direction is strongly due to the variation
of mechanical properties between core and faces. A mechanical parameter FCSR (face-to-core-stiffness ratio) has
been introduced to make evident such a discontinuity. Faces made of aluminum alloy (Al2024, E = 73000 [MPa],
ν = 0.34) with thickness hf = 1 [mm] have been considered. An isotropic foam core with thickness h c = 8 [mm]
has been addressed (ν = 0.34); the mechanical properties of the core have been varied from 10 −1 to 10−5, that
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Table 3
Comparison of various theories to evaluate the fundamental frequency amplitude for the plate.

m = n = 100. ω = ω

√
a4(ρ)skin
(E)skinh2

a/h 4 Err. 10 Err. 100 Err. 1000 Err.

FCSR = 10
3D 1024.0 % 2369.0 % 15431 % 74092 %
CLT 1085.6 (6.01) 2713.9 (14.5) 27139 (75.9) 82782 (11.7)
FSDT 1085.4 (6.00) 2711.8 (14.5) 25348 (64.3) 79275 (7.00)
ED1 1085.4 (6.00) 2711.8 (14.5) 25348 (64.3) 79275 (7.00)
ED4 1076.0 (5.07) 2581.1 (8.95) 16464 (6.69) 74801 (0.96)
EDZ1 1073.5 (4.83) 2555.7 (7.88) 16568 (7.37) 73860 (0.31)
EDZ3 1075.2 (5.00) 2753.4 (16.2) 16934 (9.74) 74110 (0.02)

FCSR = 105

3D 1015.1 % 2309.7 % 5854.5 % 6356.0 %
CLT 1085.6 (6.94) 2714.0 (17.5) 27139 (> 100) 92802 (> 100)
FSDT 1085.5 (6.93) 2712.3 (17.4) 25681 (> 100) 87970 (> 100)
ED1 1085.5 (6.93) 2712.3 (17.4) 25681 (> 100) 87970 (> 100)
ED4 1061.2 (4.54) 2410.6 (4.37) 6146.6 (4.98) 45512 (> 100)
EDZ1 1061.0 (4.52) 2407.3 (4.22) 5873.0 (0.31) 6357.3 (0.02)
EDZ3 1061.3 (4.55) 2410.0 (4.34) 6101.0 (4.20) 7319.5 (0.02)

Table 4
Comparison of various theories to evaluate the fundamental frequency amplitude for the shell with

Ren’s geometry. m = 0 and n = 1. ω = ω

√
R4

β
(ρ)skin

(E)skinh2

Rβ/h 4 Err. 10 Err. 100 Err. 1000 Err.

FCSR = 10

3D 2.4318 % 3.0453 % 3.2308 % 3.2280 %
CLT 3.1915 (31.2) 3.2258 (5.93) 3.2328 (0.06) 3.2329 (0.15)
FSDT 2.8586 (17.5) 3.1588 (3.73) 3.2321 (0.04) 3.2329 (0.15)
ED1 2.8570 (17.5) 3.1582 (3.71) 3.2321 (0.04) 3.2329 (0.15)
ED4 2.4891 (2.36) 3.0625 (0.56) 3.2310 (0.01) 3.2329 (0.15)
EDZ1 2.4368 (0.20) 3.0414 (0.13) 3.2308 (0.00) 3.2329 (0.15)
EDZ3 2.4443 (0.51) 3.0471 (0.06) 3.2308 (0.00) 3.2329 (0.15)

FCSR = 105

3D 0.2329 % 0.2585 % 1.0654 % 3.4480 %
CLT 3.5651 (> 100) 3.6265 (> 100) 3.6389 (> 100) 3.6390 (5.53)
FSDT 3.1251 (> 100) 3.5323 (> 100) 3.6379 (> 100) 3.6390 (5.53)
ED1 3.1233 (> 100) 3.5316 (> 100) 3.6379 (> 100) 3.6390 (5.53)
ED4 1.1397 (> 100) 2.2757 (> 100) 3.6106 (> 100) 3.6387 (5.53)
EDZ1 0.2431 (4.38) 0.2767 (7.04) 1.2172 (14.2) 3.4526 (0.13)
EDZ3 0.2776 (19.2) 0.2983 (15.4) 1.0742 (0.82) 3.4516 (0.10)

means the values FCSR = 101, 102, 103, 104, 105. Results in tables are given only for the two extreme cases which
emulate the cases of hard core and very soft core, respectively.

Plate vibration problems are considered in Tables 2 and 3. These refer to fundamental mode m = n = 1 (m,n
are the wave numbers in the two plate directions) and to higher modesm = n = 100. Table 2 refers to fundamental
frequency parameter of square plates. Soft and very soft core cases (FCSR parameter) are compared for various
values of plate thickness parameter a/h. The convenience of using ZZ function is evident mainly for the two
following reasons: 1. it leads to an error almost independent by FCSR; 2. EDZ1 and EDZ3 are more efficient than
ED1 and ED4 in both thick and thin sandwich cases (the error is reduced from 11.1% to 0.10%). The convenience of
using ZZF is more evident in the higher order modes case of Table 3 (errors larger than 100% are reduced to .002%).
In some cases the EDZ1 theory appears better than the EDZ3 one, because of the use of reduced elastic coefficients
as suggested in [9,10].

Ren shell geometries [21] are considered in Tables 4 and 5. The following inputs are used: a = 1, b = 10.471963,
1

Rα
= 0, 1

Rβ
= 0.1 and b

Rβ
= π

3 . The conclusions given for plates are confirmed in both cases of fundamental and
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Table 5
Comparison of various theories to evaluate the fundamental frequency amplitude for the shell

with Ren’s geometry. m = 0 and n = 100. ω = ω

√
R4

β
(ρ)skin

(E)skinh2

Rβ/h 4 Err. 10 Err. 100 Err. 1000 Err.

FCSR = 10
3D 602.89 % 1404.2 % 10385 % 36021 %
CLT 743.33 (23.3) 1836.7 (30.8) 18325 (76.4) 38063 (5.67)
FSDT 667.62 (10.7) 1765.6 (25.7) 16037 (54.4) 37278 (3.49)
ED1 667.62 (10.7) 1765.6 (25.7) 16037 (54.4) 37278 (3.49)
ED4 648.68 (7.59) 1589.7 (13.2) 10942 (5.36) 36200 (0.50)
EDZ1 660.58 (9.57) 1623.4 (15.6) 10665 (2.70) 35961 (0.16)
EDZ3 653.64 (8.41) 1628.1 (15.9) 10874 (4.71) 36023 (0.00)

FCSR = 105

3D 593.50 % 1338.9 % 2698.1 % 3053.6 %
CLT 746.90 (25.8) 1838.1 (37.3) 18326 (> 100) 42763 (> 100)
FSDT 659.01 (11.0) 1756.1 (31.1) 16421 (> 100) 41662 (> 100)
ED1 659.01 (11.0) 1756.1 (31.1) 16421 (> 100) 41662 (> 100)
ED4 627.17 (5.67) 1415.7 (5.74) 4333.8 (> 100) 27134 (> 100)
EDZ1 643.54 (8.43) 1459.2 (8.98) 2725.1 (1.00) 3054.2 (0.02)
EDZ3 627.90 (5.80) 1418.4 (5.94) 2954.4 (9.50) 3473.2 (13.7)

Table 6
Comparison of various theories to evaluate the fundamental frequency amplitude for the shell with

Bhaskar and Varadan’s geometry. m = 1 and n = 8. ω = ω

√
R4

β
(ρ)skin

(E)skinh2

Rβ/h 4 Err. 10 Err. 100 Err. 1000 Err.

FCSR = 10
3D 4.1315 % 5.7896 % 7.3593 % 36.527 %
CLT 6.1222 (48.2) 6.3897 (10.4) 7.3700 (0.14) 36.528 (0.00)
FSDT 5.1639 (25.0) 6.1564 (6.33) 7.3677 (0.11) 36.528 (0.00)
ED1 5.1610 (24.9) 6.1501 (6.23) 7.1174 (3.29) 31.233 (14.5)
ED4 4.2581 (3.06) 5.8415 (0.90) 7.3599 (0.01) 36.527 (0.00)
EDZ1 4.1454 (0.34) 5.7761 (0.23) 7.1130 (3.35) 31.233 (14.5)
EDZ3 4.1626 (0.75) 5.7937 (0.07) 7.3593 (0.00) 36.527 (0.00)

FCSR = 105

3D 0.4478 % 0.6105 % 3.9470 % 36.557 %
CLT 6.6779 (> 100) 7.1693 (> 100) 8.0849 (> 100) 36.679 (0.33)
FSDT 5.5626 (> 100) 6.8458 (> 100) 8.0816 (> 100) 36.678 (0.33)
ED1 5.5602 (> 100) 6.8394 (> 100) 7.8584 (> 100) 31.409 (14.1)
ED4 1.7482 (> 100) 3.7193 (> 100) 7.9891 (> 100) 36.677 (0.33)
EDZ1 0.5318 (18.7) 0.6228 (2.01) 3.5481 (10.1) 31.269 (14.5)
EDZ3 0.5459 (21.9) 0.6742 (10.4) 3.9565 (0.24) 36.557 (0.00)

higher in-plane vibration modes. Similar percentage errors of plate cases have been found. The vibration response
of cylindrical shell by Bhaskar and Varadan [22] is analyzed in Tables 6 and 7. The following inputs are used:
a = 40, b = 62.831853, a

Rβ
= 4, 1

Rα
= 0 and 1

Rβ
= 0.1. It is concluded that the benefits (already found in the plate

analysis) of using ZZF are fully confirmed for shell geometries.

5. Conclusions

The present paper has demonstrated the convenience of using the Zig-Zag function to build higher order theories to
evaluate the free vibration response of sandwich plates and shells. Soft and very soft core cases have been considered
along with different values of plate/shell geometrical parameters. Frequency parameters related to fundamental
and higher vibration modes are compared. The conducted numerical investigation has shown that very significant
improvements are obtained by using the ZZF for both fundamental and higher vibration modes of sandwich plates
and shells. The use of EDZ1 theory is highly recommended for thin sandwich structures with soft core. Such
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Table 7
Comparison of various theories to evaluate the fundamental frequency amplitude for the shell with

Bhaskar and Varadan’s geometry. m = 1 and n = 100. ω = ω

√
R4

β
(ρ)skin

(E)skinh2

Rβ/h 4 Err. 10 Err. 100 Err. 1000 Err.

FCSR = 10
3D 66.767 % 171.50 % 911.81 % 1062.6 %
CLT 123.92 (85.6) 306.15 (78.5) 1043.9 (14.5) 1064.3 (0.03)
FSDT 112.48 (68.5) 289.56 (68.8) 989.52 (8.52) 1063.7 (0.10)
ED1 112.48 (68.5) 288.62 (68.3) 989.52 (8.52) 1063.7 (0.10)
ED4 79.158 (18.5) 184.86 (7.79) 922.28 (1.15) 1062.7 (0.01)
EDZ1 89.193 (33.6) 189.33 (10.4) 908.47 (0.37) 1062.5 (0.01)
EDZ3 88.189 (33.6) 192.06 (12.0) 912.16 (0.04) 1062.6 (0.00)

FCSR = 105

3D 51.687 % 67.519 % 79.682 % 227.04 %
CLT 124.53 (> 100) 306.39 (> 100) 1169.0 (> 100) 1198.0 (> 100)
FSDT 110.85 (> 100) 292.88 (> 100) 1094.7 (> 100) 1197.1 (> 100)
ED1 110.84 (> 100) 291.22 (> 100) 1094.7 (> 100) 1197.1 (> 100)
ED4 55.126 (6.65) 73.022 (8.15) 525.69 (> 100) 1173.3 (> 100)
EDZ1 62.846 (21.6) 73.876 (9.41) 79.705 (0.03) 227.22 (0.08)
EDZ3 55.267 (6.93) 72.746 (7.74) 91.989 (15.4) 231.37 (1.91)

improvements are almost independent by the face-to-core stiffness ratio; this is not if ZZF is discarded by the
considered sandwich theory. What above confirms the conclusions already drown in recent papers devoted to the
bending analysis of sandwich plates [3]. The proposed results show the effectiveness and benefits of using ZZF in
the free vibration analysis of sandwich structures. The simplicity of its implementation makes it very attractive.
The main limitation of the ZZF appears in case of very soft cores and moderately thick sandwiches, in particular to
evaluate the transverse displacements and the transverse shear/normal stresses, in this case the use of Layer Wise
theory is recommended with respect to Equivalent Single Layers ones including or not the ZZF.
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