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Abstract. In this paper an analytical approach is proposed to study the feature of frequency capture of two non-identical coupled
exciters in a non-resonant vibrating system. The electromagnetic torque of an induction motor in the quasi-steady-state operation
is derived. With the introduction of two perturbation small parameters to average angular velocity of two exciters and their
phase difference, we deduce the Equation of Frequency Capture by averaging two motion equations of two exciters over their
average period. It converts the synchronization problem of two exciters into that of existence and stability of zero solution for the
Equation of Frequency Capture. The conditions of implementing frequency capture and that of stabilizing synchronous operation
of two motors have been derived. The concept of torque of frequency capture is proposed to physically explain the peculiarity of
self-synchronization of the two exciters. An interesting conclusion is reached that the moments of inertia of the two exciters in
the Equation of Frequency Capture reduce and there is a coupling moment of inertia between the two exciters. The reduction of
moments of inertia and the coupling moment of inertia have an effect on the stability of synchronous operation.
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1. Introduction

Synchronization of two self-excited oscillatory system is a classical problem in the theory of synchronization [8].
The earliest detailed accounts on synchronized motion was made by Huygens [6], who observed that two clock
pendulums suspended from stiff wooden beams could run in a steady-state and move in opposition to each other at the
same angular velocity. Subsequently, Van der Pol [12] observed the synchronization of certain electrical-mechanical
system and Rayleigh [9] found that two organ tubes could produce a synchronized sound when the outlets are
close to each other. Belhman [2,3] proposed the theory of self-synchronization of vibrating machinery with double
exciters. Recently, Teufel and Torger [11] studied the synchronization of two aerodynamically excited pendulums
and Czolczynski et al. [5] investigated the synchronization of two non-identical self-excited oscillators suspended
on the elastic structure by computer simulation.

Vibrating machines are categorized into non-resonant system and near-resonant system [16]. The operation
frequency of a non-resonant system is far over from its natural frequency and that of a near-resonant system is close
to its natural one. In a vibrating system with two-motor drives, the operation frequencies of two motors will keep a
particular ratio due to the motion of the vibrating system. This ratio can be an integer or a fraction. The process that
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the system implements this particular ratio of operation frequency of two motors is called the frequency capture, and
the result of frequency capture is called synchronization. According to the value of frequency ratio, the frequency
capture can be divided into three groups, i.e., the foundational frequency capture (ratio = 1), the times frequency
capture (ratio is an integer and > 1) and the fractional frequency capture (ratio is a fraction, p/q, p and q are coprime
integrals). Foundational frequency capture can occur in a linear vibrating system and times frequency capture or
fractional frequency capture can occur in a nonlinear vibrating system [16].

Although small parameter and averaging method developed by Blekhman [2,3] and Wen [13–16] can allow
for a better understanding and theoretical explanation of the mechanism of self-synchronization, there are some
deficiencies in current method. First, this method ignores the feature of frequency capture, i.e., the average angular
velocity of two motors is assumed to be a constant and only phase difference between two exciters is considered to
a variable small parameter. Two differential equations of motion of the exciters were merged into one differential
equation of phase difference, and it is only suitable to analyze the synchronization of a vibrating system with two
identical coupled exciters driven by two induction motors [2,3,13–16]. When there are significant differences in the
parameters of two induction motors, the synchronization of the system can not even be implemented [16]. Next, the
dynamic characteristics of induction motor are less considered. Actually, self-synchronization of a vibrating system
stems from the effect of electric-mechanic motors coupling and the operation frequency of the system is dependent
on the dynamic parameters of two induction motors.

In this paper, an analytical approach is employed to investigate the frequency capture of two non-identical coupled
exciters in a non-resonant vibrating system. By introducing two variable perturbation parameters to average angular
velocity of two exciters and their phase difference, the problem of synchronization is converted into that of existence
and stability of zero solution for the Equation of Frequency Capture. The rest of this paper is organized as follows:
Section 2 describes the dynamic model of the system. In Section 3, we derive the electromagnetic torque of an
induction motor operating at the quasi-steady-state. In Section 4, we derive the Equation of Frequency Capture by
averaging the equations of motion of two exciters over their average period, and deduce the condition of implementing
frequency capture and that of stabilizing synchronous operation of the two exciters. The results of theoretical analysis
are discussed in Section 5 and Section 6 shows our conclusions.

2. Equations of motion of a vibrating system

The dynamic model of a vibrating system is illustrated in Fig. 1, in which the springs are symmetrically connected
to the body of the machine and two induction motors are symmetrically installed in the system. The two motors,
which drive one eccentric lump to excite the system, respectively, are supplied with same electric source and rotate
in opposite directions. When the phase difference between two exciters is zero and the masses of two lumps are
equal, the motion of the vibrating system is a straight line in y-direction. This system is called a vibrating system of
linear motion. oxyis the fixed frame and its origin ois the balance point of centroid of the machine body. Using the
Langrangian Equations and choosing the variables x, y, ψ, ϕ 1and ϕ2as the generalized coordinates, the differential
equations of motion of the system can be derived as [3,15,16]:

Mẍ + fxẋ + kxx = m1r1(ϕ̇2
1 sinϕ1 + ϕ̈1 sinϕ1) −m2r(ϕ̇2

2 cosϕ2 + ϕ̈2 sinϕ2)

Mÿ + fyẏ + kyy = m1r(ϕ̇2
1 sinϕ1 − ϕ̈1 cosϕ1) + m2r(ϕ̇2

2 sinϕ2 − ϕ̈2 cosϕ2)

Jψ̈ + fψψ̇ + kψψ = (Te2 − Te1) −m1rl0[ϕ̇2
1 sin(ϕ1 + β) − ϕ̈1 cos(ϕ1 + β)]

+m2rl0[ϕ̇2
2 sin(ϕ2 + β) − ϕ̈2 cos(ϕ2 + β)]

J01ϕ̈1 + fd1ϕ̇1 = Te1 −m1r[ÿ cosϕ1 − ẍ sinϕ1 − l0ψ̈ cos(ϕ1 + β)]

J02ϕ̈2 + fd2ϕ̇2 = Te2 −m2r[ÿ cosϕ2 + ẍ sinϕ2 + l0ψ̈ cos(ϕ2 + β)] (1)

where M is the mass of the vibrating system (including that of two eccentric lamps, m 1 and m2); J the moment
of inertia of the machine body; kx, ky and kψ the spring constants and fx, fy and fψ the damping constants in
x-, y- and ψ-directions, respectively; J01 and J02 the moments of inertia of two eccentric rotors; Te1 and Te2 the
electromagnetic torques of two motors; fd1 and fd2 the damping coefficients of motor axes; ( ˙ ) and (¨) denote d/dt
and d2/dt2.
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Fig. 1. Dynamic model of a vibrating system with two motors rotating in opposite directions.

Fig. 2. Reference frames and space vector representation.

3. Electromagnetic torque of an induction motor in the quasi-steady-state operation

Figure 2 shows three different reference frames for a three-phase squirrel cage induction motor: stator reference
frame (α, β); rotor reference frame (ar, br) and arbitrary reference frame (d, q). If the direction of q−axis is assumed
to be that of the stator voltage vector, the frame is called the synchronous frame of stator voltage [4]. By referring
to the synchronous frame of stator voltage, the dynamic model of a three-phase, balanced, single excited induction
motor can be expressed as [4]:

0 = Rsids +
dφds

dt
− ωsφqs

Us0 = Rsiqs +
dφqs

dt
+ ωsφds

0 = Rridr +
dφdr

dt
− φqr

dθr

dt

0 = Rriqr +
dφqr

dt
+ φdr

dθr

dt
(2)

and

φds = Lsids + Lmidr

φqs = Lsiqs + Lmiqr
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φdr = Lridr + Lmids

φqr = Lriqr + Lmiqs (3)

where Us0 is the amplitude of the stator voltage vector; ids and iqs the d- and q-axis stator currents; idr and iqr the
d- and q-axis rotor currents; Rs the stator resistance and Rr the rotor resistance; φds and φqs the d- and q-axis stator
flux linkages; φdr and φqr the d- and q-axis rotor flux linkages; Ls the stator inductance; Lr the rotor inductance;
Lm the mutual inductance; ωs the synchronous electric angular velocity.

The electromagnetic torque of an induction motor can be expressed as [4]:

Te = np
Lm

Ls
(idrφqs − iqrφds) (4)

where np is the number of pole pairs.
When the motor operates at the steady-state, the voltage, current or field variables are constant [4]. Based on a

negligible Rs, ψqs ≈ 0 can be deduced from Eq. (2) [4]. Substituting Eq. (3) into Eq. (2) and eliminating i ds, iqs,
ψdr and ψqr, the equations of an induction motor operating at the steady-state can be simplified as follows

φds0 = Us0
ωs

idr0 − ωss0στriqr0 = 0
ωss0στridr0 + iqr0 = −Lm

Ls

1
Rr

ωss0φds0

(5)

where s0 = 1 − npωm0/ωs denotes the motor slip at the steady-state and ωm0 is its mechanical angular velocity of
the rotor; idr0, iqr0, φds0 and φqs0 the constant values of current and field variables, respectively; τ r = Lr/Rr refers
to the rotor time constant and σ = 1 − L2

m/LsLr the leakage coefficient.
Solving iqr0 from Eq. (5) and substituting φds0 andiqr0 into Eq. (4), we obtain the electromagnetic torque of the

motor at the steady-state as the following:

Te0 = np
L2

mU2
s0

L2
sωsRr

s0

1 + (στrωss0)2
(6)

If the variation coefficient of mechanical angular velocity of the motor’s rotor is ε during the steady-state operation of
the vibration system, i.e., ωm = (1+ε)ωm0 and s0 = 1−npωm0(1+ε)/ωs. Substituting s0 = 1−npωm0(1+ε)/ωs

into Eq. (6) as well as applying the first-order Taylor expression around ωm0, we obtain

Te = Te0 − ke0ε (7)

whereTe0 is the steady state electromagnetic torque expressed in Eq. (6); k e0 is called the velocity stiffness coefficient
of the motor operating at the steady-state and expressed as:

ke0 = n2
p

L2
mU2

10

L2
sωsRr

1 − σ2τ2
r ω

2
s s

2
0

(1 + σ2τ2
r ω

2
s s

2
0)2

ωm0

ωs
(8)

Equation (7) is called the electromagnetic torque of an induction motor at the quasi-steady-state operation in this
paper.

4. Frequency capture and stability of synchronous operation

4.1. Equation of Frequency capture of the vibrating system

If the average phase and angular velocity of two eccentric rotors are ϕ and ωm(t) respectively when a vibrating
system operates at the steady-state, we have

ϕ = ϕ0 +
∫ t

t0

ωm(t)dt (9)

where ϕ0 denotes the average phase when the system begins to operate at the steady-state.
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Assuming that the phase of eccentric rotor 1 leads ϕ by α and that of eccentric rotor 2 lags ϕ by α, then we have:

ϕ1 = ϕ + α

ϕ2 = ϕ− α (10)

Because the motion of the vibration is periodic, the change of mechanical angular velocity of the motors is also
periodic. If the least common multiple period of rotors 1 and 2 is T a0, the average value of two rotors’ average
velocity during the interval of Ta0 must be a constant:

ωm0 =
1

Ta0

∫ Ta0

0

ωm(t)dt = constant (11)

Assuming the instantaneous variation coefficients of ϕ̇ and α̇ are ε1and ε2(ε1 and ε2 are the functions of time t),
respectively, i.e., ϕ̇ = (1 + ε1)ωm0, α̇ = ε2ωm0, differentiating Eq. (10) with respect to time t, we obtain

ϕ̇1 = (1 + ε1 + ε2)ωm0

ϕ̇2 = (1 + ε1 − ε2)ωm0 (12)

If two motors operate at the same angular velocity, the average values of ε 1 and ε2 over the single period
T0 = 2π/ωm0 must be zero:

ε̄1 = 0

ε̄2 = 0 (13)

Because the slip of an induction motor is usually less than 0.08 at the steady-state [10], ϕ̈ 1 and ϕ̈2 in the first
three Formulas of Eq. (1) can be neglected when a vibrating system operates at the steady-state [15]. Assuming the
masses of two eccentric lamps, m1 and m2, are m0 and ηm0 (0 < η � 1), respectively, and applying Eq. (12) into
the first three Formulas of Eq. (1), we obtain

Mẍ + fxẋ + kxx = m0rω
2
m0[(1 + ε1 + ε2)2 cos(ϕ + α) − η(1 + ε1 − ε2) cos(ϕ− α)]

Mÿ + fyẏ + kyy = m0rω
2
m0[(1 + ε1 + ε2)2 sin(ϕ + α) + η(1 + ε1 − ε2)2 sin(ϕ − α)] (14)

Jψ̈ + fψψ̈ + kψψ = m0rω
2
m0l0[−(1 + ε1 + ε2)2 sin(ϕ + α) + η(1 + ε1 − ε2)2 sin(ϕ− α)]

For a non-resonant system, the operating frequency of the system is about (4 ∼ 5) times of its natural frequency
and the damping constant is very small [15]. The amplitude of response of the system in x-direction caused by the
exciter 1 can be expressed approximately as [15]:

x0 =
m0r

M

1
1 − ω2

nx/ω
2
m0(1 + ε1 + ε2)2

(15)

where ωnxis the natural angular velocity of a vibrating system in x-direction.
Applying the first-order Taylor expression to Eq. (15) around ωm0, we obtain

x0 =
m0r

M

1
1 − ω2

nx/ω
2
m0

[1 − 2(ωn/ωm0)2

1 − ω2
n/ω

2
m0

(ε2 + ε1)] (16)

When the induction motor operates at the steady-state, |ε1 + ε2| � 0.08 and ωnx/ωm0 � 1/16, therefore the
second term at the right side of Eq. (16) can be neglected. Thus, the responses of Eq. (14) can be expressed as:

x = −m0r

m′
x

[cos(ϕ + α + γx) − η cos(ϕ− α + γx)]

y = −m0r

m′
y

[sin(ϕ + α + γy) + η sin(ϕ− α + γy] (17)

ψ =
m0rl0
J ′ [sin(ϕ + α + β + γψ) − η sin(ϕ + β − α + γψ)]



510 C.Y. Zhao et al. / Synchronization of two non-identical coupled exciters in a non-resonant vibrating system

where m′
x = M − kx/ω

2
m0, m′

y = M − ky/ω
2
m0 and J ′ = J − kψ/ω

2
m0 denote the calculated masses in x- and

y-directions and the calculated moment of inertia of the machine body rotating about its centroid [16]; π−γ x, π−γy
and π − γψ refer to the phase angles of the responses in x-, y- and ψ-directions, respectively.

Applying Eq. (17) into the last two Formulas of Eq. (1), and neglecting the high order terms of ε 1 and ε2 as well
as integrating them over ϕ = 0 ∼ 2π, we have

J01ωm0( ˙̄ε1 + ˙̄ε2) + fd1ωm0(1 + ε̄1 + ε̄2) = Te01 − ke01(ε̄1 + ε̄2) − T̄L1

J02ωm0( ˙̄ε1 − ˙̄ε2) + fd2ωm0(1 + ε̄1 − ε̄2) = Te02 − ke02(ε̄1 − ε̄2) − T̄L2 (18)

where

TL1 = d11 ˙̄ε1 + d12 ˙̄ε2 + dε̄1 − dε̄2 + da + df1

TL2 = d21 ˙̄ε1 + d22 ˙̄ε2 − dε̄1 − dε̄2 − da + df2 (19)

and

d11 = m2
0r

2ωm0(−Wc0 + ηWc cos 2ᾱ)/2

d12 = m2
0r

2ωm0(−Wc0 − ηWc cos 2ᾱ)/2

d21 = m2
0r

2ωm0(−η2Wc0 + ηWc cos 2ᾱ)/2

d22 = m2
0r

2ωm0(η2Wc0 + ηWc cos 2ᾱ)/2

df1 = m2
0r

2ω2
m0(Ws0 + ηWs cos 2ᾱ)/2

df2 = m2
0r

2ω2
m0(η

2Ws0 + ηWs cos 2ᾱ)/2

d = 2da = m2
0r

2ω2
m0ηW sin 2ᾱ

Wc0 = cos γx/m′
x + cos γy/m′

y + l20 cos γψ/J ′

Wc = cos γx/m′
x − cos γy/m′

y + l20 cos γψ/J ′

Ws0 = sinγx/m
′
x + sin γy/m

′
y + l20 sinγψ/J

′

Ws = − sinγx/m
′
x + sin γy/m

′
y − l20 sin γψ/J

′ (20)

Compared with the change of ϕ(ϕ̇ = ωm0) with respect to time t, that of α, ε1, ε2, ε̇1 and ε̇2 are very small. Thus,
these above five parameters are considered to be slow-changing parameters in this study. During the aforementioned
integration over ϕ = 0 ∼ 2π, they can be assumed to be the middle valves of their integration, i.e., ᾱ . . . and
˙̄ε2, respectively [8]. Because the damping constants of the system are very small, sin γ x, sin γy and sinγψ can
be considered to be zero in the coefficients of . . . and ˙̄ε2 in Eq. (20). Assembly of Eq. (18) in the following
manner: adding two Formulas to get the first row, and subtracting two Formulas to obtain the second row as well as
complementing the third row, ˙̄α = ε̄2ωm0, we have

Aε̇ = Bε + u (21)

where ε̇ = {ε̄1 ε̄2 ᾱ}T, u = {u1 u2 0}T.

A =


a11 a12 0
a21 a22 0
0 0 1


 , B =


b b12 0
b21 b 0
bf0 ωm0 0




and

a11 = J01ωm0 + J02ωm0 + d11 + d21

a12 = J01ωm0 − J02ωm0 + d12 + d22

a21 = J01ωm0 − J02ωm0 + d11 − d21
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a22 = J01ωm0 − J02ωm0 + d12 − d22

b = −(K1 + K2), b12 = −(K1 −K2 − 2d)

b22 = −(K1 −K2 + 2d),K1 = ke01 + fd1ωm0

K2 = ke02 + fd2ωm0

u1 = Te01 + Te02 − df1 − df2 − (fd1 + fd2)ωm0

u2 = Te01 − Te02 − (df1 − df2) − (fd1 − fd2)ωm0 − 2da.

Equation (21) is called the Equation of Frequency Capture of the vibrating system.

4.2. Conditions of implementing frequency capture

Substituting Eq. (13) into Eq. (21) yields:

Te01 + Te02 − (df1 + df2) − (fd1 + fd2)ωm0 = 0 (22)

(Te01 − Te02) − (df1 − df2) − (fd1 − fd2)ωm0 − 2da = 0 (23)

In Eq. (22), the first two terms, Te01 +Te02, are the sum of electromagnetic torques of two motors; the second two
terms, (df1 + df2), are the load torques that a vibrating system acts on two motors; the last term, (f d1 + fd2)ωm0,
are the sum of the damping torques of two motor axes. Equation (22) describes the torque balance of the vibrating
system at the steady-state.

In Eq. (23), the first term, (Te01 − Te02), is the difference of electromagnetic torque between two motors; the
second term, (df1 − df2), is that of the load torques that the vibrating system acts on two motors; the third term,
(fd1−fd2)ωm0, is that of damping torque between two motor axes; and the last term, 2d a, is the sum of the additional
torque that the system acts on two motors, as shown in Eq. (19). If the electromagnetic torques and load torques
(including the damping torque of the motor axis) of two motors are the same, their operation angular velocities
must be the same. Thus, the last term, 2da, in Eq. (23) is the torque that the vibrating system acts on two motors
to overcome the differences of electromagnetic torques and load torques between two motors, which is the key to
implement the frequency capture and reach the synchronous operation of two motors. According to the expression
of 2dain Eq. (20), we define the torque of frequency capture of the vibrating system as:

TCapture = m2
0r

2ηω2
m0 |Wc| (24)

and the difference in the residual torques of two motors is defined as

TDiffernece = T 1
Residual − T 2

Residual (25)

where T 1
Residual and T 2

Residual denote the residual torques of two motors operating at the steady-state, respectively,
T 1

Residual = Te01 − df1 − fd1ωm0, T 2
Residual = Te02 − df2 − fd2ωm0.

Applying Eqs (24) and (25) into Eq. (23) and rearranging it, we obtain

2α = arcsin
1
Da

(26)

Da =
TCaptruesign(Wc)

TDifference
(27)

where Da is called the synchronous index of the vibrating system [15,16].
From Eq. (26), it can be seen that the absolute value of the synchronization index must be greater than or equal to

1 to ensure a solution of 2α, i.e., |Da| � 1. Thus,

TCapture � |TDifference| (28)

Inequation (28) demonstrates that the necessary condition of implementing the frequency capture is that the torque
of frequency capture, TCapture, is greater than or equal to the absolute value of difference in the residual torques of
two motors, |TDifference|.

Substituting the relationship s0 = (ωs − npωm0)/ωs, and Te01 and Te02 found by Eq. (6) into Eq. (22) and (23),
we can obtain the nonlinear equations of ᾱ and ωm0. The solutions α∗ and ω∗

m0 of ᾱ and ωm0 can be obtained by
using numerical methods.
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4.3. Conditions of Stability of synchronization operation

As shown in Eq. (29), we can derive a system of three first order differential equations by assembling the set of
equations in the following manner: linearizing Eq. (21) aroundᾱ = α ∗, neglecting the values of sin γx, sin γy and
sin γψ as well as introducing Eqs (22), (23) and relationship ˙̄α− α̇∗ = ω∗

m0ε̄2.

ż = Cz (29)

where C = A−1B′, z = {ε̄1 ε̄2 ᾱ− α∗}T,

B′ =


b b12 0
b21 b -2m2

0r
2ω∗2

m0ηWc cos 2α∗

0 ω∗
m0 0




Assuming a exponential time-dependence form, z = v exp(λt), in Eq. (29) and solving the determinant equation
det(C − λI) = 0, we get a characteristic equation for the eigenvalue λ,

λ3 + c1λ
2 + c2λ + c3 = 0 (30)

where

c1 =
a12b21 + a21b12 − (a11 + a22)b

a11a22 − a12a21
,

c2 =
2a11m

2
0r

2Wcω
∗3
m0η cos 2α∗ + b2 − b12b21

a11a22 − a12a21
,

c3 = −2bm2
0r

2ηWcω
∗3
m0 cos 2α∗

a11a22 − a12a21
.

The zero solution of Eq. (29) is stable only if all roots of λ in Eq. (30) have the negative real parts. Using the
Routh-Hurwitz criterion, Inequations (31) will satisfy the above requirements [7]:

c1 > 0, c3 > 0 and c1c2 > c3 (31)

Substituting the expressions of a11, a12, a21 and a22 in Eq. (21) into the denominator of c1, which will be denoted
by E(E = a11a22 − a12a21) in the following paper, we get

E = ω∗2
m0(4J

′
01J

′
02 −m2

0r
4η2W 2

c cos2 2α∗) � ω∗2
m0(4J

′
01J

′
02 −m2

0r
4η2W 2

c0) (32)

where J ′
01 = J01−m2

0r
2Wc0/2and J ′

02 = J02−η2m2
0r

2Wc0/2 are called the relative moments of inertia of exciters
1 and 2, respectively.

The moment of inertia of the exciter is the sum of that of the eccentric lump and that of the motor’s rotor. The
moment of inertia of the motor’s rotor is much smaller than that of the eccentric lumps in the system and it can be
neglected. Then, the relative moments of inertia of the two exciters can be approximately expressed as:

J ′
01 ≈ m0r

2(1 −m0Wc0/2)

J ′
02 ≈ ηm0r

2(1 − ηm0Wc0/2) (33)

Inserting Eq. (33) into Inequation (32) will yield

E > 4m2
0r

4ω∗2
m0η(1 − 1 + η

2
m0Wc0) (34)

In a non-resonant vibrating system, the exciting frequency is usually (4 ∼ 5) times of the natural one and the
masses of the eccentric lumps are much smaller than that of body of the vibrating machine [15,16]. If the structural
parameters of the system can satisfy m0Wc0 < 1, we have

E = a11a22 − a12a21 > 0 (35)

Inserting the expressions of aij (i = 1, 2; j = 1, 2.), b, b12 and b21 in Eq. (21), m0Wc0 < 1 and Eq. (33) into
the numerator of c1, we obtain
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a12b21 + a21b12 − (a11 + a22)b = 4(J ′
01K2 + J ′

02K1) > 0 (36)

Thus, c1 always meets the requirements of stability of synchronous operation if m 0Wc0 < 1.
Applying Inequation (35) and the expression of b in Eq. (21) into the condition c 3 > 0, we obtain

Wc cos 2α∗ > 0 (37)

Introducing Eq. (33), Inequation (35) and the expressions of a ij (i = 1, 2; j = 1, 2.), b, b12 and b21 in Eq. (21)
into the condition a1a2 > a3, we have

E1Wc cos 2α∗ > −E2 (38)

where

E1 = [4J ′2
01K2 + 4J ′2

02K1 + m4
0r

4
0η

2W 2
c (K1 + K2) cos2 2α∗]m2

0r
2ω∗2

m0η

E2 = 8(J ′
01K2 + J ′

02K1)(K1 + K2 + m4
0r

4ω∗2
m0η

2W 2
c cos2 2α∗)

+ 4m4
0r

4ω∗2
m0W

2
c η

2(J ′
01K2 + J02K1) cos2 2α∗

It can be found that Inequation (37) satisfies Inequation (38), which means that Inequation (37) and relationship
m0Wc0 < 1 are the conditions of stability of the synchronous operation.

When a11a22 − a12a21 < 0, the stability condition c1 > 0 requires J ′
01K2 + J ′

02K1 < 0, see equation (36), and
a3 > 0 requires Wc cos 2α∗ < 0. If J ′

01K2 +J ′
02K1 < 0 and Wc cos 2α∗ < 0, the left of inequation (38) is less than

zero and its right is greater than zero, i.e., a1a2 < a3. So a11a22−a12a21 < 0 does not satisfy the stability condition
of the synchronous operation. Therefore, m 0Wc0 < 1 is the condition of global stability of synchronous operation.
When Wc > 0, the stable interval of phase difference between two exciters is 2α ∈ (−π/2, π/2); otherwise, it is
2α ∈ (π/2, 3π/2).

5. Discussions

From the above theoretical analysis, it can be seen that the analytical approach employed in this paper converts
the problem of synchronization of the two exciters in a vibrating system into that of existence and stability of zero
solution for the Eq. (21). The small parameters ε1 and ε2 in Eq. (21) can describe the change of angular displacements
of two coupled exciters in the system operation. Therefore, the Equation of Frequency Capture is equivalent to the
average of motion equations of the two exciters in Eq. (1). The perturbations of average angular velocity and phase
difference, ε1andε2, are the local small perturbation parameters.

From Eq. (28), it can be seen that if the torque of frequency capture of the vibrating system is equal to or
greater than the difference in the residual toques of two motors, zero solutions of Eq. (21) must exist, and angular
velocity and phase difference of the system operation can be calculated by numerical methods. If the rated angular
velocities of the two motors are ωme1 and ωme2, respectively, and the numerical solutions of Eqs (22) and (23) are
ω∗

m0 and α∗, the angular velocity ω∗
m0 of the system operating at the steady-state must be equal to or greater than

ωme = max{ωme1, ωme2}, i.e., ω∗
m0 � ωme. The reason that the two motors can not synchronize is that there are the

differences in electromagnetic torques and their load torques. While the torque of frequency capture can overcome
these differences and make the two motors synchronous. From Eq. (19), it can be seen that one half of the torque of
frequency capture and the sine of the phase difference between two exciters acts on one motor (leading phase) as load
torque to decrease its angular velocity, as well as the other half acts on other motor (lagging phase) as driving torque
to increase its angular velocity. The bigger the phase difference between two exciters is, the bigger this torque is.
Therefore, the torque of frequency capture has an effect on limiting the increase of the phase difference between two
exciters. When the phase difference, 2ᾱ, reaches a certain value, the angular accelerations of two motors are zero
at the same time and two motors operate at the synchronous state. This fact physically explains the mechanism of
self-synchronization in the considered system. When the system operates at the steady-state, the torque of frequency
capture does not do work.

The stability of synchronous operation is dependent on two conditions, one is W c cos 2α∗ > 0 and the other
is m0Wc0 < 1. If the system satisfies Inequation (28), there must be a phase difference 2α ∗ to meet the first
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condition of the stability of synchronous operation, W c cos 2α∗ > 0, i.e., when Wc >0, 2α∗ ∈ (−π/2, π/2);
otherwise, 2α∗ ∈ (π/2, 3π/2). Therefore Wc cos 2α∗ > 0 is the condition of phase difference for the stability of
synchronous operation. To obtain the linear vibration of the machine body in y-direction, the spring constants in x-
and y-directions are designed to be equal [15,16]. This can ensure that W c >0 and 2α∗ is in the neighborhood of
zero.

Based on the requirement that the denominator (E) of the coefficients of characteristic Eq. (30) needs to be greater
than zero, i.e., E > 0, the condition, m0Wc < 1, is derived. There are two terms that have an effects on the sign of E
in Eq. (32), J ′

01J
′
02 and m2

0r
4η2W 2

c cos2 2α. It can be seen from Eq. (33) that the moments of inertia of two exciters
will reduce and the reduction proportions are m0Wc0/2 and ηm0Wc0/2, respectively. The condition, m0W0 < 1,
can ensure that the relative moments of two exciters, J ′

01 and J ′
02, are all greater than zero and 4J ′

01J
′
02 is greater

than the square of the coupling moment, m2
0η

2W 2
c cos2 2α, see Eq. (32). These facts demonstrate that the stability of

synchronous operation of two exciters is dependent on their relative moments of inertia and their coupling moment
of inertia. The equation of frequency capture can describe the dynamic characteristics of relative motion of two
coupled exciters. These special dynamic characteristics of the two coupled exciters will be discussed quantitatively
in detail in our next paper.

6. Conclusions

From the theoretical investigation given in the above sections, the following remarks can be stressed:

(1) This paper proposes an analytical approach to study the problem of two non-identical coupled exciters in a
vibrating system, which converts the problem of synchronization of two coupled exciters in a vibrating system
into that of existence and stability of solution for Equation of Frequency Capture.

(2) The necessary condition of implementing the frequency capture and resulting in the synchronous operation
of two exciters is that the torque of frequency capture is equal to or greater than the absolute value of the
difference in the residual torques of two motors.

(3) One half of the torque of frequency capture and the sine of the phase difference between two exciters acts on
one motor (leading phase) as load torque to decrease its angular velocity, and another half acts on other motor
(lagging phase) as driving torque to increase its angular velocity. The torque of frequency capture plays the
role of limiting the increase of the phase difference between the two exciters. When the phase difference
reaches a certain value, the angular accelerations of two motors are zero at the same time and two motors
rotate at the same angular velocity. When the system operates at the steady-state of synchronization, the
torque of frequency capture does not do work.

(4) In the Equation of Frequency Capture of the system, the moments of inertia of two exciters reduce due to the
motions of the system and the reduction proportions are m 0Wc0/2 and ηm0Wc0/2, respectively. The residual
is called the relative moment of inertia. There is also a coupling moment of inertia between the two exciters.
They have an effect on the stability of the synchronous operation. The condition of stability of synchronous
operation is that the relative moments of two exciters are all greater than zero and four times product of the
two relative moments is greater than the square of the coupling moment of inertia of two exciters.
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