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Abstract. Due to the large number of design variables that can be present in complex systems incorporating visco-elastic damping,
this work examines the application of genetic algorithms in optimizing the response of these structures. To demonstrate the
applicability of genetic algorithms (GAs), the approach is applied to a simple viscoelastically damped constrained-layer beam.
To that end, a finite element model (FEM) derived by Zapfe, which was based on Rao’s formulation, was used for a beam with
constrained-layer damping. Then, a genetic algorithm is applied to simultaneously determine the thicknesses of the viscoelastic
damping layer and the constraining layer that provide the best response. While the targeted response is ultimately at the discretion
of the designer, a few different choices for the fitness function are shown along with their corresponding impact on the vibratory
response. By integrating the FEM code within the GA routine, it is easier to include the frequency-dependence of both the shear
modulus and the loss factors for the viscoelastic layer. Examples are provided to demonstrate the capabilities of the method. It is
shown that while a multi-mode optimization target provides significant reductions, the response for that configuration is inferior
to the response when only single-mode reduction is considered. The results also reveal that the optimum configuration has a
lower response level than when a thick layer of damping material is used. By demonstrating the applicability of GA for a simple
beam structure, the approach can be extended to more complex damped structures.
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1. Introduction

For many engineering structures, such as beam and plate-like structures, it is often desired to reduce the vibration
levels. One vibration reduction technique involves the application of constrained-layer damping, which incorporates
the use of a viscoelastic material sandwiched between the primary structure and a constraining layer. In transverse
vibration, the viscoelastic layer in this composite structure will strain in shear with hysteresis effects such that
damping occurs. Ross et al. [1] proposed the first damping model for constrained layer damping. Their model, which
assumes damping is only caused by shear deformation of the damping layer, is widely accepted for many applications
and will be referred to here as the RUK model. Mead and Markus [2] derived a high-order partial differential
equation for the viscoelastic-damped beam under different boundary conditions. That model can be considered an
extension of the RUK model. Rao [3] derived a mass matrix and a stiffness matrix using Hamilton’s principle,
which can be used to solve the complex eigenvalue problem of constrained layer damping (CLD) structures. Rao’s
formulation was developed under four basic assumptions:
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Fig. 1. The single-layer plate element used to represent a three layer structure.
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Fig. 2. Multi-layer solid element used to represent a three layer structure.

(1) The transverse displacements of all three layers are equal.

(2) The longitudinal displacement is linearly distributed across the thickness of each layer.
(3) All materials are isotropic and linear.

(4) There is no slip between the layers.

The sandwich beam in the Rao model has four longitudinal degrees of freedom, one for each of the outer and
layer contacting surfaces, and one for the transverse displacement of the beam. This model includes the effect of
longitudinal motion of each layer, which simultaneously allows for shear damping and extensional damping in the
structure. These analytical models are very convenient for examining the impact of various design decisions on
the response of the structure. Since all of the models mentioned thus far are for relatively simple beam structures,
though, their direct application to more complex structures is quite limited.

In order to facilitate the consideration of more complex structures, numerous designs, and allow for the exchange
of information among the various design entities, finite element methods (FEM) are often employed. There are
two main methods used to model constrained-layer damped structures when using FEM: the single-layer-element
method and multi-layer-element method, which are illustrated in Figs 1 and 2, respectively. The single-layer-element
integrates the degrees of freedom (DOF) for all three layers. That is, the base layer, the viscoelastic layer, and
the constraining layer are simultaneously modelled using one single-layer element. The multi-layer element, in
which one element layer is used to represent each layer of the structure, more closely mimics the real structure.
Obviously, the multi-layer-element method has more DOFs and thus will take more time in the mesh generation
and computation stages. Although the multi-layer element can produce more precise results because it more closely
mimics the actual structure, the increase in model complexity can sometimes be overwhelming, especially when
the viscoelastic layer is very thin. The use of these two types of model formulations to analyze constrained-layer
damping FEM applications will now be reviewed.

The approach used in this work will be based on a single-layer formulation. There are various approaches to
modelling a three-layer structure with a single layer of finite elements. In one modelling approach, the theoretical
RUK model is used with the single-layer method to construct a discretized single-layer-element that simultaneously
represents all of the layers. Akanda et al. [4] used NASTRAN to set up a single-layer-element FEM shell element
model of an automobile part. In that work, a subroutine was developed that would calculate the effective bending
stiffness of a composite beam by using the equations from the RUK model. FEM modelling was then used to find
the response of the structure under excitation. In that approach, the viscoelastic material is modelled with damping
properties in whatever manner is provided by the modelling software. Although it is well known that the viscoelastic
layer’s shear modulus and loss factor typically vary with frequency, constant values are sometimes assumed for those
properties. Rikards [5] assumed a constant loss factor of unity for the damping layer so that a standard eigenvalue
method could be employed, as opposed to using the direct response method. Then a single-layer beam finite element
was proposed to predict the loss factors and natural frequencies for the structure. In order to prove that the new
element proposed by Rikards [5] performed better, Rikards compared the results for that element with other results
that had been previously verified. Zapfe et al. [6] proposed a single-layer element which can be seen as the FEM
implementation of Rao’s [3] assumptions. Zapfe derived the stiffness and mass matrices for each layer first and
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then assembled those together to form the matrices for the combined three layers. The resulting mass and stiffness
matrices can be used to obtain the eigenvalues, which contain the natural frequencies and modal loss factors of the
sandwich beam.

Since it is often desired to obtain the best performance for a particular application, design optimization can often
be a significant issue. Many optimization methods are available, such as calculus-based methods like the conjugate
gradient method and differential correction. When these methods are not suitable, Genetic Algorithms (GAS) is
a good choice because of its robustness. The GA is a method based on stochastic search, which requires only
knowledge of the objective function and not any of its derivatives. GAs use natural evolutionary principles to obtain
offspring that provide characteristics that are better than those of the parents. The optimization results are typically at
or close to the global optimum. Some GA optimization methods have been applied to the constrained-layer damping
problem. Trindade et al. [7] constructed a coupled FEM model for both active and passive damping, in which the
core layer acts as passive damping and the piezoelectric layers act on the two outer layers. This model was combined
with GAs to obtain an optimum configuration under hybrid (active and passive) damping control. Zheng et al. [8]
used the assumptions of the RUK model in order to derive the governing equations for a constrained damping patch,
which is made up of part of the constrained (i.e. part of the visco) layer on the beam. These equations were then
used with GAs to minimize the vibration energy over a certain frequency range. Note that reference [8] considered
the loss factor to be constant despite the fact that this property usually varies with frequency.

The purpose of this work is to reconsider the structure optimization problem for visco-elastically damped beams
via the use of GAs. First, the frequency dependent properties of the viscoelastic layer are included in the single-
layer-element developed by Zapfe [6], which was based on Rao’s model [3] as noted earlier. This model is then
used to obtain the frequency response of a composite beam with a viscoelastic damping layer. A GA approach is
then used with this model in order to find the thickness values for both the constrained layer and the constraining
layer that provide an optimized structural response. The details of the specific optimization will be provided later.
Basically, the GA relies on an evaluator to determine the “goodness” of a candidate solution and the FEM solver
used herein offers some advantage. Specifically, compared with the assumption of the RUK model in which only
shear damping is considered, the Zapfe element includes both shear damping and extensional damping. As such, this
model is more accurate when extensional damping cannot be neglected. The precision of this FEM will be shown
later in this work. In the following discussion, the mechanism of constrained layer damping and a brief background
of GAs are provided. Then, a discussion of the current approach is provided along with results from a case study
where the first goal is to simultaneously reduce the sum of the squares of the amplitudes for the first three modes.
Then a comparison is made to the optimum solutions where the goal is to reduce the response of individual modes.
The approach taken here is to demonstrate the applicability of GA to optimizing the simple beam problem. Once
demonstrated for the cases and materials selected, the approach can easily be extended without much additional
effort to optimize more complex damped structures that, unlike beam structures, don’t have simple closed-form
solutions.

2. Damping mechanism in composite beams

The damping layer of the sandwich beam is made up of a viscoelastic material with properties that can be described
as

E* =e(1+jne), @
and
G* = G(1 + jng), (2)

where E* is the complex Young’s Modulus, G * is the complex shear modulus, 7. is the Young’s Modulus loss factor,
and ), is the shear modulus loss factor. Note that E is the real value of the Young’s Modulus, and G is the real
value of the shear modulus. Although the loss factors 7. and n, are each temperature- and frequency-dependent,
these two values are often treated as equal to each other. Furthermore, these values are often simplified and treated
as constants that do not vary with frequency. While the two parameters will be treated as equal in this work, the
frequency dependence will be considered.
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In the Rao model, which is the basis for the formulation used here, the damping results from both the shear
strain and extensional strain in the viscoelastic layer. Although temperature variations impact material properties
and therefore should be considered in a detailed analysis, the temperature of the structure is assumed constant in
this work. Note that the frequency-dependence of the properties has been considered. The goal of this work is to
determine the thickness of the visco and constraining layers that will provide the structure with the lowest response
amplitude given a particular excitation. There are several issues that must be considered prior to performing such an
optimization.

Due to the frequency-dependence of the shear modulus in the viscoelastic layer, the complex-valued stiffness
matrix [K] in the vibration equation

{[K] —w? [M]} {X} = {F} )

varies with frequency. In this expression, the response for a given force vector {F'} is given by the vector {X}.
Since the stiffness matrix varies with frequency, it is impossible to directly obtain the natural frequencies with
the eigenvalue method. Only a direct method can be used to conveniently obtain the response and the resonance
frequencies. That is, the equation

(X} = {[K] - ? M)} {F} 4)

must be solved directly and the peak values for { X } used to estimate the resonance frequencies. In performing an
optimization, the response of the beam at certain frequencies and under different configurations is used by the GA
code to calculate the fitness. The fitness and objective function will be described below after the GA method is
reviewed.

As noted above, the single-layer element proposed in [6] has been used and will be shown to perform well. Once
the FEM code is formulated and the dynamic response is found, the GA code then searches for the optimal results.
Numerical examples are provided below.

3. Optimization via Genetic Algorithms (GAS)

GA:s are not new to the field of mechanical design. In 1975, Holland published the book ‘Adaptation in Natural
and Artificial System’ [9], which systematically described the topic of GAs as applied to biological research. Since
that time, GAs have been widely used in many fields such as structure optimization. In general, GAs use stochastic
search and natural evolutionary principles as the basis for optimization. The algorithms first create a population of
“individuals”, which are typically binary strings coded to represent the parameters of the problem. The best elements
of the population are then selected for various operations, which will be described below. The goal of each step in
the algorithm is to obtain a new generation, referred to as offspring, which is closer to the optimal solution than the
parent generation. This basic approach is illustrated in Fig. 3. Details associated with the steps in this optimization
process will be discussed later.

In this work, the thickness of the constrained (i.e. viscoelastic) layer and the thickness of the constraining layer
are the variables encoded into a binary string using a multi-parameter, mapped, fixed-point coding (Chapter 3 of
Reference [10]). Each of the thicknesses is coded using 20 bits, so the total length of the string needed to describe the
configuration of the sandwich beam is 40 bits. The population of each generation is made up of a specified number
of such strings. The corresponding dynamic response of the beam, associated with each string is used to calculate the
string’s “goodness” or fitness. The fitness is used to ultimately determine the survivability of the particular string in
the evolution. In one of the examples below the fitness is the reciprocal of the summation of the maximum amplitudes
of the structural response at its first three resonant frequencies. The main steps in the GA are selection, crossover,
and mutation. The population is propagated by first selecting two parent strings from the current generation and
then mating these to produce two offspring. Selection of parents is biased toward those with higher fitness through
a roulette wheel selection scheme. In the roulette wheel scheme, the binary string which has higher fitness will be
apportioned a bigger part in the wheel and therefore will have a higher chance of being selected. The wheel spins
twice consecutively to select two strings for mating. Mating is accomplished using a simple crossover operation in
which the two parent strings exchange their bits from a randomly selected position, as illustrated in Fig. 4. After
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Fig. 3. Procedure for genetic algorithm.

Parent 1: 10011101 1011
Parent 2: 10001001 0011
Offspring 1: 10011101 0011
Offspring 2: 10001001 1011

Crossover from this bit

Fig. 4. Crossover operation in GAs.

String before mutation: 1010011101001100
String after mutation: 1010011111001000
Mutate these bits

Fig. 5. Mutation operation in GAs.

the new generation is created, mutation is applied to the strings in order to introduce variations into the population
which are not present in the original generation. This operation selects one or several bits in the string and flips
them, from 1 to O or O to 1, as illustrated in Fig. 5. Mutation plays a secondary role in the GA [10] by expanding the
search space into regions not covered by the original populations, but should be used sparingly (perhaps with 1%
to 5% probability). Although only two physical length measures are coded in this problem, any number of design
parameters needed for a complex system design could be coded. For example, material cost could be a parameter
varied in the optimization.

The entire flow of the GA code is shown back in Fig. 3. The initial population is created randomly within the
range of allowed thickness for the constrained and constraining layers. The fitness of each string is then calculated
in the FEM code. Selection, crossover, and mutation are then operated on this parent generation in order to obtain
a new generation. Because of the evolution, the maximum fitness of the offspring generations should be better than
the ancestor generations in the long run. The cycle continues until a specified number of generations have been
created. The string with the maximum fitness of the last generation is the returned best optimal configuration for
the sandwich beam. In this work, these GA operations are coded in Matlab, and the FEM code is based on the
single-layer element given in Reference [6]. Note that here a beam element is used while the element illustrated
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Table 1
Parameters for the verification under different cases from [5]
Parameters CASE1 CASE2 CASE3 CASE4 CASES
Layer Young’s Modulus
E1(N/ mm2) 45540 45540 45540 45540 45540
Eg(N/me) 15.9 145 290 7.25 72.5
Es (N/mm2) 45540 45540 45540 45540 45540
Layer Density
p1(g/cm?3) 2.04 2.04 2.04 2.04 2.04
pa2(g/cm3) 1.2 1.2 1.2 1.2 1.2
p3(glem3) 2.04 2.04 2.04 2.04 2.04
Layer Height
H1(mm) 3 3 3 4.2 42
Ha(mm) 3 3 3 0.6 0.6
Hs(mm) 3 3 3 4.2 42
Layer Poisson’s Ratio
21 0.33 0.33 0.33 0.33 0.33
125} 0.45 0.45 0.45 0.45 0.45
V3 0.33 0.33 0.33 0.33 0.33
Constraining Layer H;
v Visco Layer H,
l - Base Layer H,
Beam width b

Fig. 6. Cross-section of the composite beam.

in Fig. 1 is a plate element. The FEM code reads the strings generated from the GA code and then calculates the
dynamic response for each configuration. The dynamic response is then used in the embedded objective function
in order to calculate the fitness for that particular solution. The particular objective functions considered for the
optimization used herein are discussed below. This combination of GAs and FEM can also be used for optimizations
in other, more complex, structures with appropriate modifications of the FEM and fitness functions.

4. Approach verification

Before using the single-layer FEM model in the GA optimization, this modelling approach should be validated. In
the comparison provided by Rikards [5], a 0.27 m long sandwich beam simply-supported on both ends is considered,
with the cross section shown in Fig. 6. Table 1 shows the five configurations of the sandwich beam from Reference [5]
for comparison, with each configuration having a different Young’s Modulus and a different thickness for each layer.
Further details about each configuration can be found in Reference [5]. That work showed a good match between
the results with Rikards’ element and previous results. Consequently, Rikards results can be taken as accurate and
used for validating the finite element formulation in the present work.

Table 2 shows a comparison between Rikards’s and the FEM approach used in this work under the same conditions
listed in Table 1. Clearly, the new element matches previous results well, especially when predicting the loss factors.
Consequently, the performance of the current FEM is acceptable and the FEM code formulated here can be used to
obtain the structure’s dynamic response and used with the GA to optimize the response of the structure. In this work
the beam is divided into 9 equal elements, which is more than enough to make the FEM computation converge.
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Table 2
Comparison of Rikards solution [5] to FEM results from this work
Case  Mode Loss Factor Frequency(rad/s)
Rikards Current % Diff Rikards Current % Diff
analytical FEM analytical FEM
results results
1 1 0.50 0.496 0.8 878 928 5.7
2 0.34 0.335 15 2458 2536 3.2
3 0.20 0.195 25 4927 5041 23
2 1 0.20 0.196 2.0 1538 1554 1.0
2 0.43 0.431 0.2 4549 4758 4.6
3 0.50 0.494 1.2 7929 8419 6.2
3 1 0.11 0.112 1.8 1643 1650 0.4
2 0.31 0.313 1.0 5456 5601 2.7
3 0.45 0.448 0.4 9877 10391 5.2
4 1 0.32 0.321 0.3 1106 1134 25
2 0.20 0.202 1.0 3481 3533 15
3 0.11 0.111 0.9 7300 7419 1.6
5 1 0.10 0.104 4.0 1581 1586 0.3
2 0.26 0.26 0 5357 5456 1.8
3 0.32 0.317 0.9 10187 10492 3.0
Table 3
Parameters for structure used in optimization
Properties Layer1  Layer?2 Layer 3
Density(kg/m3) 2040 1200 2040
Young’s modulus ~ 45.54e9  Frequency dependent  45.54e9
Shear modulus N/A Frequency dependent  N/A
Thickness(m) 0.0042 For optimization For optimization
Length(m) 0.27 0.27 0.27
Width(m) 0.015 0.015 0.015

5. Numerical study and optimization

In order to examine the capabilities of the code, one can consider a sandwich beam simply supported at both ends
with parameters as given in Table 3. For the GA parameters, the population size is 40 with single point crossover.
Furthermore, forty bits are allocated for strings which represent the two design variables with twenty bits for each.
The mutation rate is set as the reciprocal of the string length, which is 0.025. For this study, the vibration amplitude
of the beam due to a force that has unit amplitude in the frequency domain will be minimized. Consequently, the
response will be presented in the frequency domain. While the structural response is minimized here for convenience,
a designer may have stricter requirements that dictate minimizing some other response variable. So long as the
fitness function is appropriately defined, any desired approach can be used. A schematic of the beam showing the
location of the force is given in Fig. 7. The circles in the figure are used to denote the locations of the FE nodes on
the beam.

In order to model the frequency dependence of the viscoelastic material, Lifshitz et al. [11] used two mathematical
expressions that can be duplicated in this work. According to that work, the shear modulus is given by

G =1.007% 1073 f 4+ 1.386 M Pa, (5)

where f isthe frequency (Hz). A plot of this expression is shown in Fig. 8. Note that the shear modulus monotonically
increases throughout the frequency range considered. Correspondingly, the frequency-dependent loss factor is given

by
n =1.608%10"*f + 0.256 M Pa. (6)

The loss factor is plotted in Fig. 9 for reference purposes.
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Fig. 7. Schematic of sandwich beam finite element model for the numerical study.
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Fig. 8. The frequency-dependent amplitude of shear modulus.

Depending on the goals of the design, one can specify different objective functions for use in the GA optimization.
Nakra [12] tried to maximize the system loss factor for certain modes. Zheng et al. [8] set minimization of the
vibration energy as the objective. Because the response at the resonant frequencies is typically the most harmful, the
initial objective function used here involves minimizing the overall response amplitude that would result from the
simultaneous excitation of the first three modes each at their respective resonance frequency. For this case, the fitness
of each population member is defined as F'S = WM so that (R7 + R3 + R3) can be minimized when the GA
finds the configuration of maximum fitness. Here, R, R, and Rs are the peak responses of each population member
for the first three resonant frequencies, respectively, at the location where the force is applied. Using squared values
of the peak responses can increase the difference of fitness between the population members of each generation and
this is beneficial for GAs optimization [10], though not required. As noted earlier, there are two design variables: 1)
the thickness of constrained layer H- and 2) the thickness of constraining layer H 3, as illustrated in Fig. 7. In order
to make the optimization practical, it is also necessary to specify limits on the thickness of the two layers. For this
problem, it will be specified that the thickness for these two layers must be kept within a predefined practical range,
which can be expressed as

H2min < H2 < H2max and H3min < H3 < HSmax; (7)

where the maximum and minimum values of both layers are H 5 0x = H3zmax = 0.002 m and Hs i = Hs min =
0.0001 m, respectively. The decoded values of the binary strings will be mapped into the range between the upper
and lower limits automatically.
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Fig. 9. The frequency-dependent loss factor.
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By using the above objective function and these layer thickness limits, the GA code will find the two layer
thicknesses within those limits that provide a maximum value for FS. This case, where the first three resonances are
considered simultaneously, will be referred to as the overall optimum case.

With the above settings, the GA and the FEM work together effectively such that the population appears to
converge after the evolution of about sixteen generations, as shown in Fig. 10. The overall optimization, in which
40 generations are evaluated, takes several hours running on a 3.2 GHz PC. If a larger population size and more
generations are used, the optimization can take correspondingly longer. Given that calculus-based methods do not
apply in these cases, though, time many not be such an issue.

Figure 11 shows the response for the overall optimum configuration. In this configuration, the resulting thicknesses
for the layers are 0.0042 m, 0.00023 m and 0.002 m for the base layer, damping layer and constraining layer,
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Fig. 11. Comparsion between the bare beam, the overall optimum configuration and the configuration with maximum thickness of damping layer
and constraining layer.

respectively. The response for a bare beam with a thickness of 0.0042 m is also shown for comparison purposes.
The response for a damped beam having layer thicknesses that are the maximum allowed by the configuration limits
(i.e. Ho = Homax and Hs = Hspay) s also shown. Not surprisingly, the overall optimum configuration performs
better than the maximum thickness configuration. Clearly, the response for both damped configurations is much
lower than when using no damping.

In order to further examine the effectiveness of the overall optimum configuration, the three optimum configurations
for the maximum suppression of the individual peak responses for the first, second and third resonances are also
found. The location of response for these three cases is at the same as for the overall optimization case, at the
location of the force. For each of these individual cases, the fitness can be written as 'S ; = RLJ_, where the response

amplitude R; is for the 5" mode. Unlike the overall optimum, these optimum configurations provide the absolute
lowest response possible for an individual resonance within the geometric limits given above. These three optimum
configurations are referred to as the local optimum configurations. The response for these three configurations will
each be compared with the overall optimum configuration results in order to see how the configuration and resulting
response will differ given a different objective.

Figures 12 through 14 show the response for the optimum configurations when the objective is to minimize the
response from individual modes. The layer thicknesses for each configuration are provided in the figure captions.
The overall optimum is close to the first mode optimum. The reason for the small difference between the overall
optimum and the local optimum of the first mode is the trade-off between the first mode optimum and optimums of
the second and the third mode under the overall objective function. Because the first mode has a larger displacement
amplitude for the case being considered, utilizing a sum of squared displacements for the first three modes results
in the first mode dominating. For comparison purposes, the response shown in Fig. 11 for the overall optimum
configuration is repeated in each of these figures. The response for using the maximum allowed thicknesses is
also shown, again repeated from Fig. 11. In these three figures, it can be seen that the response is improved when
optimizing for the response of the individual mode. That is, there is a slight trade-off in increased response when the
objective is an overall reduction of the first three modes. This result is not surprising given the additional requirement
of suppressing two additional modes. Obviously, each of the three optimum configurations performs better than the
maximum thickness configuration. Depending on the goal of the design, one of the optimized solutions is preferable.

Upon further comparison of Figs 12, 13, and 14, it can be seen that the first mode of the damped beam has a
higher response than the response for the other two modes. Since it is common to excite the first resonant frequency,
the optimization of the first mode is important and may be more important than the alternative selection of the
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Fig. 13. Comparsion between the local optimum configuration in the second mode, the overall optimum configuration and the configuration with
maximum thickness of damping layer and constraining layer. The visco and constraining layer thicknesses for the local optimum are 0.0001 m
and 0.002 m, and for maximum thickness configuration are 0.002 m and 0.002 m, respectively.

overall optimum. Nevertheless, the selection of the best optimum approach must be based on some knowledge of
the excitation and the critical response characteristics.

6. Conclusion

In this work, Zapfe’s element was used to construct a single-layer-model for use in a FEM code. This element was
used to obtain the response for a beam with frequency-dependent constrained layer viscoelastic material. In order to
find the geometric configurations that provided the best desired structural response, a GA was used to minimize the
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Fig. 14. Comparsion between the local optimum configuration in the third mode, the overall optimum configuration and the configuration with
maximum thickness of damping layer and constraining layer. The visco and constraining layer thicknesses for the local optimum are 0.0001 m
and 0.002 m, and for maximum thickness configuration are 0.002 m and 0.002 m, respectively.

response level of the sandwich beam in a frequency range that includes the first three modes. The GA method can
obtain the response of the sandwich beam with a high efficiency, particularly when considering that calculus-based
approaches may not be convenient or even applicable as the system complexity increases. The numerical examples
showed that this approach has a good capability of optimizing a simple structure that includes constrained layer
damping with both shear and extensional damping. In the cases examined, an overall objective function was set
to minimize the simultaneous resonant response of the first three modes and the result shows that it can yield a
satisfactory solution even when compared to the configurations for optimizing the response of individual modes.
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