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Abstract. This paper presents a dynamic model of a rotating flexible beam carrying a payload at its tip. The model accounts
for the driving shaft and the arm root flexibilities. The finite element method and the Lagrangian dynamics are used in deriving
the equations of motion with the small deformation theory assumptions and the Euler-Bernoulli beam theory. The obtained
model is a nonlinear-coupled system of differential equations. The model is simulated for different combinations of shaft and
root flexibilities and arm properties. The simulation results showed that the root flexibility is an important factor that should be
considered in association with the arm and shaft flexibilities, as its dynamics influence the motor motion. Moreover, the effect of
system non-linearity on the dynamic behavior is investigated by simulating the equivalent linearized system and it was found to
be an important factor that should be considered, particularly when designing a control strategy for practical implementation.
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1. Introduction

Dynamic modeling of rotating flexible links has been the focus of extensive research efforts in the past two decades
as an important tool for design and control purposes. In high-speed applications under lightweight constraints a
comprehensive dynamic model that accounts for the arm flexibility and joint flexibilities is highly demanded for
design, operations evaluation and control purposes. Previous models have succeeded in studying the effects of
driving shaft/joint flexibility on the dynamic behavior of rotating flexible arms, such as presented by Al-Bedoor and
Al-Mussalam [4]. A model that accounts for the arm root flexibility in addition to the driving joint flexibility is
expected to be a more comprehensive model that can be used for more accurate dynamic behavior predictions and
control applications.

Likins [13] reported a study on the mathematical modeling of spinning elastic bodies. A comparison between
different modeling techniques like the simple concentrated model and the finite element method was reported. In
the same direction, Kaza and Kvaternik [10], reported results of a study on the nonlinear flap-lag-axial equations
of motion of a rotating beam. They have discussed the matter of inextensibility assumption when the effect of
shortening is to be included. Yokohama [19], investigated the effect of shear deformations on the free vibrations
characteristics of rotating beams. Chapnik et al. [6], reported a dynamic model for a rotating flexible arm impacted
on its tip. They utilized the finite element method in discretizing the beam bending deformations and their model
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resulted in a coupled dynamic model for the beam reference motion and the beam elastic deformations. Lee [12],
studied the vibration of an inclined rotating beam with end mass. The effect of payload on the vibrations of a
rotating beam was reported by Low [14]. The more general case, when the beam is sliding through a rotating hub,
was reported by Al-Bedoor and Khulief [1–3]. In these studies general dynamic models that describe all rigid body
motions and elastic deformations are reported. Most of these investigations were concerned with the arm flexibility
and its effects on the overall performance of the manipulator and no attention to the joint flexibility was given.

The effects of joint flexibility on the dynamics and control of rigid manipulators was the concern of many
investigators as can be seen in Spong [16]. In his work, Spong [16], modeled the joint flexibility as a torsional spring
with more emphasis on simplifying the equations of motion for control purposes. Xi et al. [18], studied the coupling
effects between the joint flexibility and the link flexibility using the system’s natural frequencies. They offered two
ratios, which are the inertia ratio and the stiffness ratio to quantify the coupling effect.

Recently, Huang and Ho [9], reported results of a similar study on the coupled shaft torsion and blade bending
vibrations of a rotating shaft-disk-blade unit. The shaft-torsional and blade-bending deformations were modeled
separately using the assumed modes method. They have used the weighted residual method and utilized the
receptences at the connection between the disk and the blade to artificially couple the shaft-torsional and blade-
bending deformations. The results of their study, in terms of natural frequencies and mode shapes, showed coupling
between the blade and shaft and also coupling between the individual blades. Al-Bedoor and Al-Musallam [4],
reported a study of a flexible-arm and flexible joint manipulator carrying a payload with rotary inertia. A finite
element method is employed in deriving the equations of motion. All the dynamic coupling terms between the system
reference rotational motions, joint torsional deformations and arm bending deformations are accounted for. The
effects of the payload are shown to be increasing the elastic deformation amplitudes and reducing the frequency of
oscillations. Garcia and Inman [7] proposed a model of the slewing control of a flexible structure. They generalized
the boundary condition at the slewing axis to include the effect of the servo system. It is shown that the clamped-free
beam assumption for the dynamics of the structure is a valid assumption if the ratio of the servo stiffness to beam
flexibility is high. However, for moderate or low values of this ratio, the clamped boundary condition leads to
erroneous system models so that it becomes necessary to consider the dynamic effects of the driving servo on the
slewed beam.

In this paper a dynamic model of a rotating flexible link that is attached to a rigid hub with flexible root is
developed. The rigid hub is driven through a shaft and compliant joint that makes the model accounting for all
possible sources of flexibility and inertia. The arm model is developed using the finite element method and the
Lagrangian dynamics. The model accounts for the payload dynamics and the effect of arm axial shortening. The
model simulations using different parameters are presented in graphical forms and their results are discussed.

2. Dynamic model

The schematic diagram of a flexible arm driven by an electrical motor is shown in Fig. 1. The motor is assumed to
have a rigid rotor with inertia Jm and rotating with angle θm. The Motor drives a shaft flexible in torsion modeled
by torsional stiffness Kts, which rotates the rigid hub with inertia Jh and rotates with an angle θ. Angles θm and
θ are measured with respect to the inertial reference frame shown in Fig. 2. The arm is attached to the rigid hub
using a torsional spring with stiffness Kt. The arm is modeled as a slender beam such that the effects of shear
deformations and rotary inertia are neglected and the Euler Bernoulli beam theory is utilized. The arm is rotating
in the horizontal plane and the gravitational forces are neglected. The coordinate systems used in developing the
model are shown in Fig. 2. Wherein, XY is the inertial reference frame, xmym is a body coordinate system attached
to the motor shaft and xhyh is a body coordinate system attached to the hub such that its xh axis is directed along
the undeformed configuration of the arm. The arm is discretized using the finite element method as shown in Fig. 3.
The arm is divided into n finite elements with the ith element having two nodes i and i + 1. Each finite element
has its own coordinate system xy attached to its first node i in its undeformed configuration. The position of the ith
element coordinate system is defined by the position of the first node i in the xhyh body axis. Using Lagrangian
dynamics, which requires developing the kinetic and potential energy expressions, the model is developed in the
following subsections.
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Jm  

Jh  

Fig. 1. Rotating flexible arm driven by a motor through a flexible joint.

Fig. 2. Coordinate system.

2.1. Kinetic energy expression

The kinetic energy of the motor-hub-arm system is constituted of the arm, hub, motor and pay load kinetic
energies. To obtain kinetic energy of the flexible rotating arm, the systematic approach of finding expression for the
material velocity vector in the inertial reference frame is followed. The global position vector of a material p on the
ith element of the beam can be written as:

Rp = [A (θ)] rh
p (1)

where rh
p is the position vector of point p in the hub coordinate system xhyh, [A (θ)] is the rotational transformation

matrix from the hub coordinate system xhyh to the XY inertial reference frame The position vector of point p in the
xhyh coordinate system can be expressed as

rh
p = (Si + x)̂i + u(x, t)̂(j) (2)
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Fig. 3. Finite element discretization.

where u (x, t) and Si are the transverse elastic displacement of point p, and the axial position of node i measured
relative to the xhyh coordinate system, respectively. The rotational transformation matrices [A (θ)] can be represented
in the following form

[A (θ)] =
[
cos θ − sin θ
sin θ cos θ

]
(3)

where θ represents the hub angle measured relative to inertial reference frame. In order to formulate the kinetic
energy of the arm, the velocity vector of the material point p can be obtained by differentiating Eq. (1) as follows

Ṙp = θ̇ [Aθ (θ)] rh
p + [A (θ)] ṙh

p (4)

where [Aθ (θ)] represents the derivative dA/dθ.
The velocity vector in the hub coordinate system can be written as

ṙh
p = u̇ (x, t) ĵh (5)

Now substituting for [A (θ)],[Aθ (θ)] and ṙh
p into Eq. (4), the velocity vector of point p in the inertial reference

frame can be expressed in the following form

Ṙp =
{ −xhθ̇ sin θ − uθ̇ cos θ − u̇ sin θ

xhθ̇ cos θ − uθ̇ sin θ + u̇ cos θ

}
(6)

where

xh = Si + x (7)

The kinetic energy of a typical element i with mass per unit length ρ and length h can be written in the form

Ui =
1
2

∫ h

0

ρ
•
R

T

p

•
Rp dx (8)

substituting Eqs (6) and (7) into Eq. (8) leads to the element kinetic energy in the form

Ui = ρh

(
S2

i + Sih +
1
3
h2

) •
θ

2

+
1
2

∫ h

0

ρ
•
θ

2

u2dx +
∫ h

0

xh

•
θ
•
u dx +

1
2

∫ h

0

ρ
•
u

2
dx (9)

The kinetic energy expressions for the hub-shaft and motor, can be represented, respectively as
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Fig. 4. Simulink of the linearized dynamic system.

Uh =
Jh

•
θ

2

2 (10)

Um =
Jm

•
θ

2

m

2

where Jh and Jm are the hub and motor mass moment of inertia, respectively.
The system kinetic energy can be formed as

U =
n∑

i=1

Ui + Uh + Um (11)
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Fig. 5. Corresponding rigid body motion profile for the motion θ = π in 1.5 s, with linear acceleration.

where n is the number of elements. The remaining kinetic energy expression is that of the payload that is to be
formulated in the section pertinent to the payload dynamics.

2.2. Potential energy expressions

The potential energy of the system consists of the elastic strain energy stored in the link, the arm root, shaft flexible
joint and the potential energy stored in the axial shortening. The elastic strain energies stored in element i which has
a flexural rigidity EI is known to have the form

Vsi =
1
2

∫ h

0

EI

[
∂2u

∂x2

]2
dx (12)

The torsional flexibility of the driving shaft stores strain energy that can be idealized by

Vsj =
1
2
Kts (θm − θ)2 (13)

where Kts is the torsional stiffness of the shaft, θm is the motor absolute angle of rotation and θ is the hub angle of
rotation.

Finally, one last elastic energy storage element is the root torsional spring that can store energy of the form

Vr =
1
2
Ktu

′2
1 (14)

where Kt is the torsional stiffness of the root attached spring and u ′ is the slope of the arm at the point of spring
attachment.

The axial shortening due to transverse deformations in conjunction with the radial inertial forces result in a
contribution to the system elastic potential energy known as the axial shortening potential energy [4], that can be
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Fig. 6. Motor angular position and angular velocity for an arm with, Kt = 1 KN.m/rad, Lb = 0.7 m, carrying mT = 0.5 kg.

represented in the form

Vai =
1
2

∫ h

0

[
ρ

(
Si

•
θ

2

(h − x)
)

+
1
2

•
θ

2 (
h2 − x2

)](∂u

∂x

)2

dx

(15)

+

h∫
0

⎡
⎣ n∑

j=i+1

ρh

(
Sj +

h

2

)
θ̇2

⎤
⎦(∂u

∂x

)2

dx

Now the total potential energy of the system can be expressed as

V =
n∑

i=1

(Vai + Vsi) + Vsj + Vr (16)

2.3. Finite element discretization

The finite element method will be utilized to discretize the arm elastic deflection. In the finite element method,
the deformations are usually represented in terms of the nodal degrees of freedom as

u (x, t) = [φ (x)] {q (t)} (17)

Where [φ] is a raw matrix of the shape functions which are spatially dependent and given by;

φ1 (x) = 1 − 3x2

h2
+

2x3

h3

φ2 (x) = x − 2x2

h
+

x3

h2
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Fig. 7. Effect of root flexibility on system position responses Kts = 1000 KN.m/rad, Lb = 0.7 m, mT = 0.5 Kg.

φ3 (x) =
3x2

h2
− 2x3

h3
(18)

φ4 (x) = −x2

h
+

x3

h2

and {q} is the vector of nodal degrees of freedom which are time dependent. After substituting of Eq. (17) into
Eq. (9) the element kinetic energy becomes

Ui =
1
2
ρh

(
S2

i + Sih +
1
3
h2

)
θ̇2 +

1
2
θ̇2 {q}T

∫ h

0

ρ [φ]T [φ] dx {q} + Siθ̇

∫ h

0

ρ [φ] dx {q̇}
(19)

+ θ̇

∫ h

0

ρx [φ] dx {q̇} +
1
2
{q̇}T

∫ h

0

ρ [φ]T [φ] dx {q̇}

Similarly the bending strain energy and the axial shortening of element i, respectively, take the forms

Vsi =
1
2

∫ h

0

EI
[
{q}T [φ′′]T [φ′′] {q}

]
dx (20)

Vai =
1
2
Siθ̇

2 {q}T
∫ h

0

[
ρ (h − x) [φ′]T [φ′]

]
dx {q} +

1
4
θ̇2 {q}T

∫ h

0

[
ρ
(
h2 − x2

)
[φ′]T [φ′]

]
dx {q}

(21)

+
1
2

n∑
j=i+1

ρh

(
Sj +

h

2

)
θ̇2 {q}T

∫ h

0

[
ρ [φ′]T [φ′]

]
dx {q}

Performing the integrals of Eqs (19–21) using the Hermetian interpolation functions with uniform cross section
result in the following constant coefficient matrices
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Fig. 8. Effect of root flexibility on system velocity responses, Kts = 1000 KN.m/rad, Lb = 0.7 m, mT = 0.5 Kg.

[M ] =
∫ h

0

ρ [φ]T [φ] dx =
ρh

420

⎡
⎢⎢⎣

156 22h 54 −13h
22h 4h2 13h −3h2

54 13h 156 −22h
−13h −3h2 −22h 4h2

⎤
⎥⎥⎦ (22)

[K] =
∫ h

0

EI [φ′′]T [φ′′] dx =
EI

h3

⎡
⎢⎢⎣

12 6h −12 6h
6h 4h2 −6h 2h2

−12 −6h 12 −6h
6h 2h2 −6h 4h2

⎤
⎥⎥⎦ (23)

[ka] =
∫ h

0

[
ρ (h − x) [φ′]T [φ′]

]
dx =

ρ

60

⎡
⎢⎢⎣

36 0 −36 6h
0 5h2 0 −h2

−36 0 36 −6h
6h −h2 −6h 2h2

⎤
⎥⎥⎦ (24)

[kb] =
∫ h

0

[
ρ
(
h2 − x2

)
[φ′]T [φ′]

]
dx =

ρ

210

⎡
⎢⎢⎣

180h 6h2 −180h 27h2

6h2 24h3 −6h2 −4h2

−180h −6h2 180h −27h2

27h2 −4h2 −27h2 10h2

⎤
⎥⎥⎦ (25)

[kc] =
∫ h

0

ρ [φ′]T [φ′] dx =
ρ

30h

⎡
⎢⎢⎣

36 3h −36 3h
3h 4h2 −3h −h2

−36 −3h 36 −3h
3h −h2 −3h 4h2

⎤
⎥⎥⎦ (26)
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Fig. 9. Effect arm’s length on system position responses Kt = 10 KN.m/rad, Kts = 10 KNm/rad, mT = 0.5 Kg.

[a] =
∫ h

0

ρ [φ] dx =
ρl

12
[
6 h 6 −h

]
(27)

[e] =
∫ h

0

ρx [φ] dx =
ρh2

60
[
9 2h 21 −3h

]
(28)

Where the matrix [M ] is the consistent mass matrix that usually appears in the structural dynamics finite element
formulations, [K] is the conventional stiffness matrix. The matrices [ka], [kb] and [kc] result from the effect of axial
shortening. The one-dimensional array [a] and [e] represent the coupling agents between the rigid angular motion
and the elastic degrees of freedom. Upon substituting for the coefficient matrices, the system kinetic and potential
energy expressions take the forms

U =
n∑

i=1

[
1
2
ρh

(
S2

i + Sih +
1
3
h2

)
θ̇2 +

1
2
θ̇2 {q}T [M ] {q} + θ̇ [Si [a] + [e]] {q̇}

(29)

+
1
2
{q̇}T [M ] {q̇}

]
+

1
2

(Jd + Jds) θ̇2 +
1
2

(Jm + Jms) θ̇2
m

V =
n∑

i=1

[
1
2
{q}T [K] {q} +

1
2
Siθ̇

2 {q}T [ka] {q} +
1
4
θ̇2 {q}T [kb] {q}

(30)

+
1
2

n∑
j=i+1

h

(
Sj +

h

2

)
θ̇2 {q}T [kc] {q}

⎤
⎦+

1
2
Kts (θm − θ)2 +

1
2
Ktu̇

′2
1
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Fig. 10. Effect of flexural rigidity system position responses Kt = 10 KN.m/rad, Kts = 10 KNm/rad, Lb = 0.5 m, mT = 0.5 Kg.

The method of virtual work is adopted to formulate the external force vector of the model to be {F θm, Fθ, {Fq}}.
Where Fθm is the motor torque, Fθ is the torque applied to the hub and {Fq} is the nodal forces at the arm equivalent
discrete finite element model.

2.4. Equations of motion

Substituting the kinetic and potential energy expressions of Eqs (29) and (30) into the Lagrange’s equation and
after performing the needed differentiations and arrangement the system equations of motion can be represented in
the following compact matrix form⎡

⎣Mθmθm 0 �0
0 Mθθ [Mθq]

�0T [MT
θq] [Mqq]

⎤
⎦
⎧⎨
⎩

θ̈m

θ̈
{q̈}

⎫⎬
⎭+

⎡
⎣Dv 0 �0

0 Q �0
�0T �0T [0qq]

⎤
⎦
⎧⎨
⎩

θm

θ
{q}

⎫⎬
⎭+

⎡
⎣ Kts −Kts �0
−Kts Kts

�0
�0T �0T [KR]

⎤
⎦
⎧⎨
⎩

θm

θ
{q}

⎫⎬
⎭=

⎧⎨
⎩

Fθm

Fθ

{Fq}

⎫⎬
⎭(31)

where

Mθmθm = (Jm) (32)

Mθθ =

(
(Jd) +

n∑
i=1

ρh

(
S2

i + Sih +
1
3
h2

)
+ {q}T [Mqq] {q}

)
(33)

[Mθq] =
n∑

i=1

(Si [a] + [e]) (34)
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Fig. 11. Effect of payload on position responses, Kt = 1000 KN.m/rad, Kts = 1000 KNm/rad, Lb = 0.7 m.

[Mqq] =
n∑

i=1

[M ] (35)

[KR] = [Kqq] − θ̇2 [Mqq] + f1θ̇
2 [kaqq] +

1
2
θ̇2 [kbqq] + f2θ̇

2 [kcqq] (36)

f1 =
n∑

i=1

Si (37)

f2 =
n∑

i=1

⎛
⎝ n∑

j=i+1

h

(
Sj +

h

2

)⎞⎠ (38)

Where �0T is a zero vector of size (1×n) and Dv is the damping coefficient in the electrical motor. Equation (31)
represents the dynamics of rotating flexible arm, hub, and motor system. The degrees of freedom of this system are
the motor and rigid hub angular rotations θm and θ, respectively, and the arm nodal degrees of freedom {q} vector.
The entry Mθmθm is the rotational inertia of the motor, Mθθ is the rotational inertia of the hub and the arm and [M qq]
is the arm generalized global elastic mass matrix. The entry Mθq represents the nonlinear inertia coupling between
the hub reference rotational motion and the arm bending deformations. The matrix [K qq] is the generalized stiffness
matrix, which is shown to be affected by the reference rotation. The right-hand-side of Eq. (31) represents the vector
of external forces and moments.
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Fig. 12. Effect of payload on velocity responses, Kt = 1000 KN.m/rad, Kts = 1000 KNm/rad, Lb = 0.7 m.

For comparison purposes and to get more information about the dynamic behavior of the system, the model that
resulted in equation (31) is linearized about zero deflection for both joint torsional deformation and the link bending
deformations and is written as;⎡

⎢⎣Mθmθm 0
⇀

0
0 Mθθ [Mθq]
⇀

0
T

[Mθq]
T [Mqq]

⎤
⎥⎦
⎧⎨
⎩

θ̈m

θ̈
{q̈}

⎫⎬
⎭+

⎡
⎢⎢⎣

Dv 0
⇀

0
0 0

⇀

0
⇀

0
T ⇀

0
T

[0qq]

⎤
⎥⎥⎦
⎧⎨
⎩

θ̇m

θ̇
{q̇}

⎫⎬
⎭+

⎡
⎢⎢⎣

Kts −Kts

⇀

0
−Kts Kts

⇀

0
⇀

0
T ⇀

0
T

[KR]

⎤
⎥⎥⎦
⎧⎨
⎩

θm

θ
{q}

⎫⎬
⎭=

⎧⎨
⎩

Fθm

Fθ

{Fq}

⎫⎬
⎭(39)

Where

Mθθ =

(
(Jd) +

n∑
i=1

ρh

(
S2

i + Sih +
1
3
h2

))
(40)

[KR] = [Kqq] (41)

3. Payload dynamics

The payload, as shown in Fig. 1, is located at the tip of the arm. After defining the velocity vector of the
payload, finding its corresponding kinetic and potential energy contributions, the payload equations of motion can
be represented in the following form

[
M t

11 M t
12

M t
21 M t

22

]⎧⎨
⎩

θ̈
üL

ü′
L

⎫⎬
⎭+

⎧⎨
⎩

2mT uLu̇Lθ̇

(SL − 1)mT θ̇2uL

0

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (42)
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Fig. 13. Linear and nonlinear system position responses. Kt = 10 KN.m/rad, Kts = 10 KN.m/rad, = 0.7 m, mT = 0.5 Kg

Where uL is the position of the pay load at the last node in the finite element mesh and the entries of Eq. (42) can
be detailed as follows

M t
11 = mT L2 + JT + mT u2

L (43)

M t
12 =

[
mT L JT

]
(44)

M t
21 = M t

21
T (45)

M t
22 =

[
mT 0
0 JT

]
(46)

Now, the entire of the equations of motion of the payload, Eq. (42), are to be added to the corresponding entries
of the equations of the motion of the whole system. By looking at the equations, it is revealed that the payload
is contributing to the nonlinear dynamic interaction between the link rigid body rotation and its elastic deflection
degrees of freedom. Furthermore, the proposed model of the payload can be used for any location along the arm
span, provided that a nodal point is assigned at the payload location. Consequently, the payload axial position along
the arm and its transverse deflection are taken as the corresponding node axial position and transverse defection,
respectively.

The equation of motion of the payload given in Eq. (42) is linearzied and given by the following equation;

[
M t

11 M t
12

M t
21 M t

22

]⎧⎨
⎩

θ̈
üL

ü′
L

⎫⎬
⎭+ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (47)

Where
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Fig. 14. Linear and nonlinear system velocity responses Kt = 10 KN.m/rad, Kts = 10 KN.m/rad, Lb = 0.7 m, mT = 0.5 Kg.

M t
11 = mT L2 + JT (48)

The other entries are the same as given in Eqs (44–46).

4. Numerical simulations

The developed nonlinear dynamic model, Eqs (31) and (42), has been set for computational purposes using
two main processors. The first processor is the finite element module in which the invariant structural dynamic
matrices and vectors are calculated. The second processor receives the invariant matrices for a particular problem
and formulates the system of nonlinear second-order equations that include the rigid body reference motions and the
arm nodal degrees of freedom. The system of second-order equations is then numerically converted into a system of
first-order equations to perform time marching integration using the predictor-corrector algorithm. The ode45 of the
MATLAB package and Simulink are used in the simulations. Figure 4 shows the Simulink model for the system that
consists of subsystem blocks connected to each other to represent the dynamic system. For simulations purposes, a
uniform arm made of aluminum with the dimensions and material properties given in Table 1 is used.

In this model, one should remember that the system consists of a motor rotor, rotating with angle θ m, connected to
the rigid hub that rotates with angle θ, where the hub carries the flexible arm that also carries on its tip the payload.
The driver is the motor that will produce a torque on its own rotor and finally drives the hub-arm-payload assembly.
Using the inverse dynamic procedure and based on the rigid body model, the torque that is required to rotate the
system to a specified target angular position in a specified maneuvering time can be calculated. For this rigid body
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Table 1
Flexible Arm- Hub- motor data

Property Symbol Value range

Arm length Lb 0.4–1.5 m
Mass per unit length ρ 1.35 Kg/m
Cross section 100 mm × 5 mm
Flexural rigidity EI 75–270 Nm2

Hub diameter Dh 100 mm
Hub length Lh 150 mm
Hub moment of inertia Jh 3.94 × 10−3 kg.m2

Hub shaft length Lhs 33 mm
Motor shaft length Lms 400 mm
Motor shaft diameter Dms 33 mm

system the angular position of the motor rotor, the hub and the arm is the same as no flexibility is involved. For
the present numerical example, the torque that is required to rotate the arm an angle θ = π in 1.5 seconds and the
corresponding rigid body angular position, velocity and acceleration are calculated and given in Fig. 5.

The first parameter to be investigated is the effect of the motor-hub shaft flexibility on the motion of the motor.
Figure 6 shows the motor angular position and motor angular velocity for the cases when the shaft connecting the
motor and the hub is rigid and flexible. As shown, the angular position of the motor is slightly affected, however,
the fluctuation of the motor angular velocity due to shaft flexibility is pronounced. This result supports the finding
of Al-Bedoor [4]. To study the effect of the arm root flexibility of the system dynamics, an example is simulated
for two values of the root flexibility. The simulation results are shown in Figs 7 and 8, for angular positions and
velocities, respectively. As shown, and despite that the flexible root is attached to the hub, the effect of its flexibility
is reflected in the motor angular position and angular velocity. Moreover, abrupt changes in the motor velocity can
be observed which indicate that the combined effect of shaft flexibility and root flexibility can play an important role
in the motor dynamics and stability in the form of dynamic coupling that needs further investigation. The effects of
arm parameters such as the arm length and arm flexural rigidity can be investigated using the model as shown Figs 9
and 10. As shown, the arm length and flexural rigidity play similar roles as the arm length is reduced, the increase
in flexural rigidity that result in reducing the vibration amplitude and increasing the vibration frequency.

The effect of payload on the dynamics of a rotating flexible arm with flexible shaft and flexible root is investigated
by considering two values of the payload. The simulation results are compared in Figs 11 and 12, for the position and
velocity variations, simultaneously. For control purposes, some theories require linearization steps. To investigate
the effect of linearization on the dynamic behavior of the simulated system, Eqs (39) and (47) are solved and the
results are compared for the position and velocity variations of the motor-hub-arm system. The linear and nonlinear
systems show different responses in terms of the motor angular position and velocity as well as on the tip deflection
amplitudes and frequencies. This indicates that linearization should be done with care when designing control
schemes for practical implementation.

5. Conclusions

A dynamic model for a rotating flexible arm carrying a payload is developed. The model differs from previously
reported models by considering the flexibilities of the driving shaft and the arm root flexibility. The finite element
method was used in conjunction with the Lagrangian dynamics in deriving the equations of motion that were
presented in compact matrix form. The model depends on the Euler-Bernoulli beam theory and the effect of axial
shortening and payload dynamics are accounted for. The simulation results showed that the arm root flexibility plays
an important role in the predicted dynamic behavior of the rotating arm and its effects reflect back to the motor
motion and consequently caution should be taken when designing a vibration control is designed for such rotating
arms.
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