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Abstract. This paper proposes a fast Fourier transforms (FFT)-based spectral analysis method for the dynamic analysis of linear
discrete dynamic systems which have non-proportional viscous damping and are subjected to non-zero initial conditions. To
evaluate the proposed FFT-based spectral analysis method, the forced vibration of a three degree-of-freedom (DOF) system
is considered as an illustrative problem. The accuracy of the proposed FFT-based spectral analysis method is evaluated by
comparing the forced vibration responses obtained by the present FFT-based spectral analysis method with those obtained by
using the well-known Runge-Kutta method and modal analysis method.
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1. Introduction

A large number of analytical and numerical solution methods have been well developed for the linear discrete
dynamic systems. By virtue of impressive progress in computer technologies during the last three decades, there have
been developed diverse computer-based numerical methods to obtain satisfactory approximate solutions, especially
for the coupled large DOF systems. They may include the direct integration methods, the modal analysis methods,
the discrete-time system methods, and the spectral analysis methods in which the FFT technique is utilized. The first
three are the time-domain methods [1,2], while the FFT-based spectral element method (SAM) is a frequency-domain
method [3–6].

In the FFT-based SAM, the dependent variables of a set of ordinary differential equations are all transformed into
the frequency-domain by using the discrete Fourier transforms (DFT) to transform the ordinary differential equations
into a set of algebraic equations with frequency as the parameter. The algebraic equations are then solved for the
Fourier (or spectral) components of dependent variables at each discrete frequency. As the final step, the time-domain
responses are reconstructed from the Fourier components by using the inverse discrete Fourier transforms (IDFT).
In practice, the FFT is used to carry out the DFT or IDFT. As the FFT is a remarkably efficient computer algorithm,
it can offer an enormous reduction in computer time and also can increase solution accuracy [4,7].

The FFT-based SAM has been known to be very useful especially in the following situations [4,6,7]: (1) when
the modern data acquisition systems are used, as in most experimental measurements, to store digitized data through
the analogue-to-digital converters, (2) when the excitation forces are so complicated that one has to use numerical
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integration to obtain the dynamic responses by using the excitation values at a discrete set of instants, (3) when it
is significantly easier to derive the constitutive equation of a material in the frequency-domain rather than in the
time-domain, and (4) when the frequency-dependent spectral element (or dynamic stiffness matrix) model is used
as a structure model. So it may be worthy to mention that the development of an FFT-based SAM is not necessary
to compete with the exiting time-domain methods such as Runge-Kutta method, for instance. The FFT-based SAM
will be especially useful in the aforementioned situations in which the frequency-domain analysis is more desirable.

The FFT-based SAM has been well applied to the prediction of the steady-state responses of dynamic systems [3–6,
8]. However the application of the FFT-based SAM to the transient responses has been limited to the dynamic systems
with all zero initial conditions. As an effort to deal with dynamic systems with nonzero initial conditions, Veletsos
and Ventura [9,10] introduced a DFT-based approach to calculate the transient responses of a linear 1-DOF system.
Their procedure involves the superposition of a corrective, free vibration solution which effectively transforms
the steady-state response to the desired transient response. Later Mansur et al. [11,12] used the pseudo-force
concept to take into account non-zero initial conditions in the DFT-based frequency-domain analysis of continuous
media discretized by FEM. Recently Lee et al. [13] developed an FFT-based spectral analysis method for the linear
discrete dynamic systems with nonzero initial conditions. As the proportional viscous damping was considered
in reference [13], the modal decomposition approach could be used to develop a modal-coordinates -based SAM.
However the modal-coordinates-based SAM proposed in reference [13] can not be directly applied to the dynamic
systems with non-proportional viscous damping.

Thus, the purpose of this paper is to develop an FFT-based SAM for the linear discrete dynamic systems with
non-proportional viscous damping. The present FFT-based SAM is unique because it does not use the superposition
of corrective, free vibration solution to match the initial conditions as in references [9,10], or the pseudo-force
concept to take into account the non-zero initial conditions as in references [11,12], or the modal decomposition
method as in reference [13]. To evaluate the FFT-based SAM developed in this paper, the forced vibration of a
viscously damped three-DOF vibration system is considered as an illustrative example.

2. Theory of discrete Fourier transforms

Because the theory of discrete Fourier transforms (DFT) is one of the key mathematical tools used to develop the
present FFT-based SAM, a brief review on the DFT theory will be given in the following. A periodic function of
time x(t), with period T , can be always expressed as a Fourier series of the form

x(t) = a0 + 2
∞∑

n=0

(
an cos

2πn t

T
+ bn sin

2πn t

T

)
=

∞∑
n=−∞

Xneiωnt (1)

where i =
√−1, ωn = n(2π /T) = nω1 are the discrete frequencies, and Xn are constant Fourier components given

by

Xn = an − ibn =
1
T

∫ T

0

x(t)e−iωntdt (n = 0, 1, 2, . . . ,∞) (2)

Equations (1) and (2) are the continuous Fourier transforms pair for a periodic function.
Although x(t) is a continuous function of time, it is often the case that only sampled values of the function are

available, in the form of a discrete time series {x(tr)}. If N is the number of samples, all equally spaced with a time
interval equal to ∆ = T/N , the discrete time series are given by xr = x(tr), where tr = r∆ and r = 0, 1, 2, . . .,
N− 1. The integral in Eq. (2) may be replaced approximately by the summation

Xn =
N−1∑
r=0

x(tr)e−iωntr (n = 0, 1, 2, . . . , N − 1) (3)

which is the discrete Fourier transforms (DFT) of the discrete time series {xr}. Any typical value xr of the series
{xr} can be given by the inverse formula
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x(tr) =
1
N

N−1∑
n=0

Xneiωntr (r = 0, 1, 2, . . . , N − 1) (4)

which is the inverse discrete Fourier transforms (IDFT). Thus, Eqs (3) and (4) represent the DFT-IFFT pair. Even
though Eq. (3) is an approximation of Eq. (2), it is important to note that it allows all discrete time series {x r} to
be regained exactly [6,7]. The Fourier components Xn in Eq. (4) are arranged as XN−n = X∗

n (n = 0, 1, 2, . . .,
N/2), where X∗

n represents the complex conjugate of Xn. Note that XN/2 corresponds to the highest frequency
ωN/2 = (N/2) ω1, which is called the Nyquist frequency.

The fast Fourier transforms (FFT) is an ingenious highly efficient computer algorithm developed to perform the
numerical operations required for a DFT or IDFT, reducing the computing time drastically by the order of N/log 2N.
It should be pointed out that while the FFT-based spectral analysis uses a computer, it is not a numerical method in
the usual sense, because the analytical descriptions of Eqs (3) and (4) are still retained. Further details of DFT and
FFT can be found in reference [7].

3. Development of spectral analysis method

The forced vibration of a viscously damped m-DOFs dynamic system can be represented by the matrix equation
of motion

[M ] {ü (t)} + [C] {u̇ (t)} + [K] {u} = {f (t)} (5)

and the initial conditions

{u (0)} = {u0} and {u̇ (0)} = {u̇0} (6)

where u(t) is the nodal DOFs vector and {f (t)} is the nodal forces vector. The matrices [M ] = [m ij], [C] =
[cij] and [K] = [kij] (i, j = 1, 2,. . ., m) are the mass matrix, the non-proportional viscous damping matrix, and
the stiffness matrix, respectively. The total dynamic response of the system can be obtained by the sum of the
steady-state response, {up(t)}, and the transient response, {uh(t)}, as follows:

{u (t)} = {up (t)} + {uh (t)} (7)

The approach to compute the steady-state response {up(t)} is basically the same as that introduced in the previous
work [13] and it will be briefly summarized in the following, while the approach to compute the transient response
{uh(t)} will be newly developed in this paper.

3.1. Steady-state responses

Assume that the nodal force vector {f (t)} and the steady-state response vector {u p(t)} can be represented in the
spectral forms as

{f (tr)} =
1
N

N−1∑
n=0

{F n} eiωntr

(8)

{up (tr)} =
1
N

N−1∑
n=0

{P n} eiωntr (r = 1, 2, . . . , N − 1)

Applying Eq. (8) into Eq. (5) yields

{P n} = [D (ωn)]−1 {F n} , {P N−n} = {P ∗
n} (n = 1, 2, . . . , N/2) (9)

where [D (ω)] is the dynamic stiffness matrix defined by

[D (ω)] = [K] + iω [C] − ω2 [M ] (10)
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Once the Fourier components {P n} are computed from Eq. (9) for a given nodal force vector {f (t)}, the
steady-state response vector in the time-domain can be reconstructed by using the IFFT algorithm as

{up (t)} ⇐ IFFT {P n} (11)

From Eq. (8b), the time derivative of {up(t)} can be obtained as

{u̇p (tr)} =
1
N

N−1∑
n=0

{
P n

}
eiωntr (12)

where{
P n

}
= (iωn) {P n} ,

{
PN−n

}
=

{
P

∗
n

}
(n = 1, 2, . . . , N/2) (13)

3.2. Transient responses

The transient response vector {uh(t)} must satisfy the homogeneous matrix equation of motion which can be
reduced from Eq. (5) by enforcing {f(t)} = 0 as follows:

[M ] {üh (t)} + [C] {u̇h (t)} + [K] {uh} = {0} (14)

Because [C] is the non-proportional damping matrix, Eq. (14) cannot be decoupled by using the modal decom-
position analysis. Thus assume the general solution of Eq. (14) in the form

{uh (t)} = {A} eλt (15)

or

uhk (t) = akeλt (k = 1, 2, . . . , m) (16)

Substituting Eq. (15) into Eq. (14) gives(
λ2 [M ] + λ [C] + [K]

) {A} = {0} (17)

or ⎡
⎢⎣

m11λ
2 + c11λ + k11 · · · m1mλ2 + c1mλ + k1m

...
. . .

...
mm1λ

2 + cm1λ + km1 · · · mmmλ2 + cmmλ + kmm

⎤
⎥⎦

⎧⎪⎨
⎪⎩

a1

...
am

⎫⎪⎬
⎪⎭ = {0} (18)

For the existence of non-trivial solution {A}, it follows that

det
(
λ2 [M ] + λ [C] + [K]

)
= 0 (19)

or

det

⎡
⎢⎣

m11λ
2 + c11λ + k11 · · · m1mλ2 + c1mλ + k1m

...
. . .

...
mm1λ

2 + cm1λ + km1 · · · mmmλ2 + cmmλ + kmm

⎤
⎥⎦ = 0 (20)

Equation (19) yields a 2m-degree algebraic equation with λ as an unknown. In general the roots (eigenvalues)
of the algebraic equation are of complex form. As discussed in reference [14], the complex roots will appear in the
complex conjugate pairs for the underdamped system, because all the coefficients of the algebraic equation are real.
Thus, without loss of generality, the eigenvalues of Eq. (17) or Eq. (18) can be written in a complex conjugate form
as

λj = ξj + iωj, λ
∗
j = ξj − iωj (j = 1, 2, . . . , m) (21)

where ωj represents the natural frequency and ξj represents the rate of exponential decay of the jth damped vibration
mode.
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By substituting an eigenvalue λ = λj into Eq. (17) or Eq. (18), the corresponding eigenvector {A} can be
computed. The ratio between the components ak of the jth eigenvector are given by [14,15].

a1

Cj1
=

a2

Cj2
= · · · =

am

Cjm
= zj (22)

where Cjk is the co-factor of the jth row of the determinant in Eq. (19) for a particular λ j , and zj is an arbitrary
complex number. From Eq. (16), the kth component of the jth transient vibration mode corresponding to the jth
eigenvalue λj is given by

uj
hk = akeλjt = zjCjkeλjt (k = 1, 2, . . . , m) (23)

Since there are 2m eigenvalues λj (j = 1, 2, . . ., 2m), the kth component of the total transient response vector
{uh(t)} can be compounded from Eq. (23) as

uhk (t) =
2m∑
j=1

bju
j
k (k = 1, 2, . . . , m) (24)

where bj are constants. Substitute Eq. (23) into Eq. (24) and use the fact that the 2m eigenvalues are in the m-pairs
of complex conjugate to obtain

uhk (t) =
2m∑
j=1

bjzjCjkeλjt =
m∑

j=1

BjCjkeλjt +
m∑

j=1

B∗
j C∗

jkeλ∗
j t (k = 1, 2, . . . , m) (25)

where Bj and B∗
j (j = 1, 2, . . . , m) are constants to be determined by initial conditions. The time derivative of

Eq. (25) is given by

u̇hk (t) =
m∑

j=1

BjCjkλje
λjt +

m∑
j=1

B∗
j C∗

jkλ∗
je

λ∗
j t (k = 1, 2, . . . , m) (26)

The functions uhk (t) and u̇hk (t) can be represented into the spectral forms as

uhk (tr) =
1
N

N−1∑
n=0

Hkneiωntr

(27)

u̇hk (tr) =
1
N

N−1∑
n=0

H̄kneiωntr (r = 0, 1, · · · , N − 1)

By the DFT theory, the Fourier components Hkn and Hkn can be expressed as

Hkn =
N−1∑
r=0

uhk (tr) e−iωntr

(28)

H̄kn =
N−1∑
r=0

u̇hk (tr) e−iωntr

Substituting Eqs (25) and (26) into Eq. (28) gives

Hkn =
m∑

j=1

(
BjXjkn + B∗

j Yjkn

)
(29)

H̄kn =
m∑

j=1

(
BjλjXjkn + B∗

j λ∗
jYjkn

)

where
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Fig. 1. Comparison of the dynamic responses of the dynamic system with proportional viscous damping obtained by the present SAM, modal
analysis method (exact) and Runge-Kutta method.

Xjkn = Cjk
1 − e(λj−iωn)∆N

1 − e(λj−iωn)∆
(30)

Yjkn = C∗
jk

1 − e(λ∗
j−iωn)∆N

1 − e(λ∗
j
−iωn)∆

Substitute Eq. (29) into Eq. (27) and collect uhk (t) and u̇hk (t) (k = 1, 2, . . . , m) to form vectors as

{uh (tr)} =
1
N

N−1∑
r=0

{Hn} eiωntr

(31)

{u̇h (tr)} =
1
N

N−1∑
r=0

{
H̄n

}
eiωntr

where

{uh (tr)} =
{

uh1 (tr) uh2 (tr) · · · uhm (tr)
}T

(32)
{u̇h (tr)} =

{
u̇h1 (tr) u̇h2 (tr) · · · u̇hm (tr)

}T

and

{Hn} =
{

H1n H2n · · · Hmn

}T

(33){
Hn

}
=

{
H̄1n H̄2n · · · H̄mn

}T

Now consider the initial conditions. The total dynamic response given by Eq. (7) should satisfy the initial
conditions given by Eq. (6). Thus, substituting Eq. (7) into Eq. (6) gives

{u0} = {up (0)} + {uh (0)}
(34)

{u̇0} = {u̇p (0)} + {u̇h (0)}
Applying Eqs (8b), (12) and (31) into Eq. (34) gives
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Fig. 2. Comparison of the dynamic responses of the dynamic system with non-proportional viscous damping obtained by the present SAM and
Runge-Kutta method.

{u0} =
1
N

N−1∑
r=0

({P n} + {Hn})
(35)

{u̇0} =
1
N

N−1∑
r=0

({
P̄ n

}
+

{
Hn

})

By using Eq. (29), Eq. (33) can be rewritten as

{Hn} = [Xn] {B} + [Y n] {B∗}
(36){

Hn

}
= [Xn] [Λ] {B} + [Y n] [Λ∗] {B∗}

where

[Xn] =

⎡
⎢⎢⎢⎣

X11n X21n · · · Xm1n

X12n X22n · · · Xm2n

...
...

. . .
...

X1mn X2mn · · · Xmmn

⎤
⎥⎥⎥⎦

[Y n] =

⎡
⎢⎢⎢⎣

Y11n Y21n · · · Ym1n

Y12n Y22n · · · Ym2n

...
...

. . .
...

Y1mn Y2mn · · · Ymmn

⎤
⎥⎥⎥⎦ (37)

[Λ] = diag
[
λ1 λ2 · · · λm

]
[Λ∗] = diag

[
λ∗

1 λ∗
2 · · · λ∗

m

]
Substituting Eq. (36) into Eq. (35) gives[

X
] {B} +

[
Y

] {B∗} = {d}
(38)[

X̃
]
{B} +

[
Ỹ

]
{B∗} = {v}
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where

[
X

]
=

N−1∑
n=0

[Xn] ,
[
Y

]
=

N−1∑
n=0

[Y n]

(39)[
X̃

]
=

[
X

]
[Λ] ,

[
Ỹ

]
=

[
Ȳ

]
[Λ∗]

and

{d} = N {u0} −
N−1∑
n=0

{P n}
(40)

{v} = N {u̇0} −
N−1∑
n=0

(iωn) {P n}

The constants vectors {B} or {B∗} can be solved from Eq. (38) as

{B} =
([

X̃
]
−

[
Ỹ

] [
Ȳ

]−1 [
X̄

])−1 (
{v} −

[
Ỹ

] [
Ȳ

]−1 {d}
)

(41)

Once the constants vector {B} is computed from Eq. (41) by using given initial conditions, the Fourier components
{Hn} are computed first from Eq. (36). Then one can readily compute the transient responses {u h (t)} by using
the IFFT algorithm as follows:

{uh (t)} ⇐ IFFT {Hn} (42)

4. Numerical examples and discussion

To evaluate the present (FFT-based) SAM, two viscously damped three-DOFs dynamic systems are considered as
example problems. The first one is the case with the proportional viscous damping, for which the modal analysis
method can be readily applied to get the analytical solutions, and the second one is the case with the non-proportional
viscous damping.

(a) Case 1: proportional viscous damping [13]⎡
⎣m 0 0

0 m 0
0 0 m/2

⎤
⎦

⎧⎨
⎩

ü1

ü2

ü3

⎫⎬
⎭ +

⎡
⎣ 3c −2c 0
−2c 3c −c
0 −c 3c

⎤
⎦

⎧⎨
⎩

u̇1

u̇2

u̇3

⎫⎬
⎭ +

⎡
⎣ 3k −2k 0
−2k 3k −k

0 −k 3k

⎤
⎦

⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
f(t)

⎫⎬
⎭ (43)

(b) Case 2: non-proportional viscous damping⎡
⎣m 0 0

0 m 0
0 0 m/2

⎤
⎦

⎧⎨
⎩

ü1

ü2

ü3

⎫⎬
⎭ +

⎡
⎣ 3c −2c 2c
−2c 3c −c
2c −c 3c

⎤
⎦

⎧⎨
⎩

u̇1

u̇2

u̇3

⎫⎬
⎭ +

⎡
⎣ 3k −2k 0
−2k 3k −k

0 −k 3k

⎤
⎦

⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
f(t)

⎫⎬
⎭ (44)

where m = 10 kg, c = 40 N · s/m, k = 1 kN/m, and f(t) = 4 [1− s(t− 1.2)] N , where s(t) represents the unit step
function. The initial conditions are given by

{u1, u2, u3} = {1, 0, 0} (mm)

{u̇1, u̇2, u̇3} = {0, 1, 0} (mm/s)

Figure 1 compares the dynamic responses (u1, u2 and u3) obtained by three different solution methods for the
dynamic system with proportional viscous damping: the present SAM, the modal analysis method and the (4th
order) Runge-Kutta method. It is quite straightforward to apply the modal analysis method to obtain exact analytical
solutions for the linear dynamic systems with proportional viscous damping. Thus the dynamic responses exactly
obtained by the modal analysis method are used as the exact reference solutions to evaluate the other solutions
obtained by the present SAM. The DFT period T = 4.8 seconds and the number of samples N = 2 11 are used for the
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Fig. 3. Convergence of the dynamic responses of the dynamic system with non-proportional viscous damping obtained by the present SAM as
the sampling number N is increased for fixed time window T = 4.8 seconds.

present SAM to obtain the dynamic responses within 0.1% time averaged error with respect to the exact reference
solutions, whereas the time increment ∆t = 0.00234 seconds is used for Runge-Kutta method. Figure 1 shows that
the present SAM provides accurate solutions which are very close to the exact reference solutions and also to the
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Fig. 4. Convergence of the dynamic responses of the dynamic system with non-proportional viscous damping obtained by the present SAM as
the time window size T is reduced for fixed sampling number N = 211.

numerical solutions obtained by Runge-Kutta method.
Figure 2 compares the dynamic responses obtained by the present SAM and the Runge-Kutta method for the

dynamic system with non-proportional viscous damping. The same values of T , N , and ∆t as used for Fig. 1
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are consistently used for Fig. 2. One may find from Fig. 2 that the present SAM certainly provides the dynamic
responses which are very close to those obtained by Runge-Kutta method.

Figure 3 shows the convergence of the dynamic responses of the dynamic system with non-proportional viscous
damping obtained by the present SAM as the sampling number N is increased. As expected, Fig. 3 shows that more
accurate solutions can be achieved by increasing N for a fixed time window T = 4.8 seconds. When the sampling
number N = 212 is used, the time average of the absolute difference between the dynamic responses obtained by
SAM and Runge-Kutta method is found to be within 0.1% of the time average of the absolute dynamic response
obtained by Runge-Kutta method.

Similarly Fig. 4 shows the convergence of the dynamic responses obtained by the present SAM as the time window
size T is reduced for fixed sampling number N = 211. As also expected from DFT theory, Fig. 4 shows that more
accurate solutions can be achieved by decreasing N for a fixed sampling number.

Finally, it is worthwhile to confirm from Fig. 1 through Fig. 4 that the present SAM certainly captures all non-zero
initial conditions accurately in the dynamic responses, which might be one of motivations of the present paper.

5. Conclusions

In this paper, an (FFT-based) SAM is developed to obtain the dynamic responses of a linear discrete dynamic
system with non-proportional damping, subjected to non-zero initial conditions. In due course, the SAM is evaluated
by comparing the dynamic responses of an example three DOFs vibration system with non-proportional damping
obtained by using the present SAM with the exact analytical solutions obtained by the modal analysis method
and also with the numerical solutions obtained by the Runge-Kutta method. It is shown that sufficiently accurate
solutions can be achieved by the present SAM, when compared with the solutions by the modal analysis method
and Runge-Kutta method, by properly choosing the sampling number for a given time window in the FFT analysis
process. But, it may be worthy to mention that the development of the present SAM is not necessary to compete
with the exiting well-known time-domain solution methods such as Runge-Kutta method, for instance. Instead, it
has been developed to be useful in some special situations in which such frequency-domain method can be more
easily applied: the special situations may include when the excitation forces are measured as the digitized data
and when the structural properties such as the stiffness and damping coefficients are measured or provided as the
frequency-dependent properties.
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