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A nine-noded Lagrangian plate bending finite element that
incorporates first-order transverse shear deformation and ro-
tary inertia is used to predict the free and forced vibra-
tion response of laminated composite folded plate structures.
A 6 × 6 transformation matrix is derived to transform the
system element matrices before assembly. The usual five
degrees-of-freedom per node is appended with an additional
drilling degree of freedom in order to fit the transformation.
The present finite element results show good agreement with
the available semi-analytical solutions and finite element re-
sults. Parametric studies are conducted for free and forced vi-
bration analysis for laminated folded plates, with reference
to crank angle, fibre angle and stacking sequence. The nat-
ural frequencies and mode shapes, and forced vibration re-
sponses furnished here may serve as a benchmark for future
investigations.

Keywords: Composite, finite element method, stacking se-
quence, transverse shear, folded plates, crank angle, transfor-
mation

1. Introduction

Folded plate structures have a wide range of engi-
neering applications in aircraft fuselages, ship hulls,
buildings, bridges and vehicle chassis, among other
structures. With the advent of fiber-reinforced lam-
inated composites, the applicability of folded plate
structures has increased many folds due to their low
weight, high stiffness and high strength properties.
Structural properties of the laminated composites can
be tailored to realize better performance by controlling
the lamination angle and stacking sequence. Literature
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in the field of dynamic analysis of laminated composite
folded plates is scanty and the present paper is meant
to address the dynamic behaviour of composite folded
plate structures, in view of its tremendous potentials.

Historically, Goldberg and Leve [8] pioneered the
exact static analysis of folded plate structures. Irie et
al. [10] calculated the natural frequencies of cantilever
folded plates by Ritz method. Ohga and Shinematsu
[17] applied boundary element-transfer matrix method
to solve the bending problem of folded plates. Golley
and Grice [9] and Eterovic and Godoy [7] employed
finite strip methods. Danial [4] and Danial et al. [5] in-
troduced a concept entitled Spectral Element Method.
Liu and Huang [12] had used a finite element-transfer
matrix method to analyze one- and two-fold folded
plates. Bathe [1] and Zienkeiwicz and Taylor [21] had
presented a method of flat shell analysis, which can be
directly applied to folded plate structures. However, all
these works relate to isotropic folded plate structures
only.

For the finite element analysis of laminated compos-
ite plates with first and higher order shear deformation
theories (FST, HST) several works may be referred to.
The works of Reddy [18], Kant et al. [11], Meimaris
and Day [16], Bert and Chen [2], Chatterjee and Kulka-
rni [3], Dong and Chun [6] and Maiti and Sinha [13–
15] may be cited to name only a few. Recently, Suresh
and Malhotra [19] conducted damped free vibration
analysis of composite box beams using 4 noded plate
finite element with five degrees of freedom (u,v,w, θx
andθy) per node.

In the present analysis the FST is adopted to analyze
the laminated composite folded plates. A shear cor-
rection factor of 5/6 has been assumed, which is de-
rived from the Timoshenko beam concept by applying
the energy principle. A comparative study using FST
and HST [13–15] clearly indicates that the present first
order shear deformation theory provides excellent re-
sults for moderately thick composite beams, plates and
shells for all practical situations. Attention is therefore
restricted to application of FST for the development
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of the finite element analysis procedure for composite
folded plates.

The transformations used to generate the global
mass, stiffness and load arrays are presented. The re-
sults of free vibration analysis and also transient anal-
ysis of cantilever laminated folded plates, subjected to
suddenly applied step loading are presented. The tran-
sient analysis is done using the Newmark’s direct in-
tegration scheme [1]. Parametric studies are conducted
by varying the crank angle, fibre orientation and num-
ber of layers for the laminated composite folded plate.
The present methodology can easily be applied to the
analysis of box beams and closed structures.

2. Theoretical formulation

In the classical thin plate theory, it is assumed that
normals to the mid-plane before deformation remain
normal and plane after deformation. This assump-
tion neglects the effect of transverse shear deforma-
tion. Here Mindlin’s assumptions, as given below, are
adopted to incorporate the first order transverse shear
effects:

i) The deflection of the mid-plane of the plate is
small compared to the plate thickness.

ii) The transverse normal stress is neglected.
iii) Normals to the mid-plane of the plates before

deformation remain straight but not necessarily
normal after deformation.

The displacements of the plate are fully described
by five components:u,v,w, θx, θy, whereu,v andw
are displacements along thex,y andz-directions and
θx andθy are rotations abouty- andx-axes. The pos-
itive sign conventions for displacements and stress re-
sultants are illustrated in Fig. 1.

Fig. 1. The laminated composite plate with positive displacements,
rotations and stress resultants.

2.1. Flat plate finite element formulation for
composite plates

The displacements at a nodej of a plate element are
uj, vj ,wj , θxj andθyj . The displacements at any point
within the element can be expressed as

u
v
w
θx
θy

 =
9∑
j=1

Nj [I5]


uj
vj
wj
θxj
θyj

 , (1)

where [I5] is a 5 × 5 identity matrix andNj are
Lagrangian interpolation functions [1]. For Mindlin
plates the following relationship is valid:{

u
v
w

}
=

{
u0 + zθx
v0 + zθy
w0

}
and

{
θx
θy

}
=


∂w

∂x
+ φx

∂w

∂y
+ φy

 , (2)

whereθx andθy are the total rotations,φx andφy are
the average shear deformations about they andx axes,
andu0,v0 andw0 are the mid-plane translations along
x,y andz directions.

2.2. Stiffness matrix of plate element

The stiffness matrix of the plate element assumes the
form

[K]e =

∫
Ae

[B]T[D][B] dA, (3)

where

{ ε} = [B]{ δ} . (4)

Here, {ε} is the strain vector and {δ} is the nodal dis-
placement vector. The strain–displacement matrix [B]
is given in

[B]{ δ}

=
9∑
j=1



Nj,x 0 0 0 0
0 Nj,y 0 0 0

Nj,y Nj,x 0 0 0
0 0 0 Nj,x 0
0 0 0 0 Nj,y

0 0 0 Nj,y Nj,x

0 0 Nj,y 0 Nj
0 0 Nj,x Nj 0




u0j

v0j

w0j

θxj
θyj

 .(5)
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[D] is the stiffness matrix given by

[D] =



A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 A44 A45

0 0 0 0 0 0 A45 A55

(6)

where

Aij ,Bij ,Dij =
N∑
k=1

∫ zk

zk−1

(
Qij
)k

(1,z, z2) dz,

i, j = 1, 2, 6 (7a)

and

Aij =
N∑
k=1

∫ zk

zk−1

κ(Qij)k dz,

i, j = 4, 5, κ = 5/6. (7b)

Here,Qij are the elements of off-axis stress–strain re-
lations.Qkij relates stresses and strains in thekth layer
by the relationσki = Qkijε

k
j , i, j = 1, 2, 6, whereas

σkl = Qklmε
k
m, l,m = 4, 5 andκ is the shear correction

factor.Qkij for thekth layer is expressed as

{
σ1

σ2

σ6

}k
=

[
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

]k{ ε1

ε2

ε6

}k
and

{
σ4

σ5

}k
=

[
Q44 Q45

Q45 Q55

]k {
ε4

ε5

}k
. (8)

Here,σ1,σ2,σ4,σ5, andσ6 denoteσx,σy, τyz, τzx and
τxy, respectively, andε1, ε2, ε4, ε5, andε6 stands for
εx, εy,γyz,γzx andγxy, respectively.

2.3. Mass matrix of plate element

In matrix form the equation of motions for the
Mindlin plate may be written as follows:

Nx,x +Nxy,y

Nxy,x +Ny,y

Qx,x +Qy,y + q
Mx,x +Mxy,y

Mxy,x +My,y

 =


I 0 0 P 0
0 I 0 0 P
0 0 I 0 0
P 0 0 Q 0
0 P 0 0 Q




ü0

v̈0

ẅ0

θ̈x
θ̈y

 ,

(I,P ,Q) =

∫ h/2

−h/2
ρ
(
1,z, z2)dz

or

{F } = [ρ]{A}, (9)

where {F } is the force vector, [ρ] is the inertia matrix,
and {A} is the acceleration vector. The mass matrix of
the plate element is given by

[M ]e =

∫
Ae

[N ]T[ρ][N ] dA, (10)

where [N ] are the Lagrangian interpolation functions.

2.4. Load vector

The element load vector for forced vibration analy-
sis is given by∫

Ae

[N ]Tq dA, (11)

whereq is the transverse load intensity on the element.
The integration in every case is carried out over the
area of the plate element. Generally, a 3-point Gauss
quadrature is adopted to compute the bending stiff-
ness of the elements, whereas a 2-point integration
is adopted to calculate the shear stiffness, mass ma-
trix, and element force vector. A 2-point eliminates the
shear locking in thin plates. It is also known that a 2-
point integration for both the mass matrix and force
vector is adequate.

2.5. Transformations for folded plate

With reference to Fig. 2, the relations between local
and global displacements are given as

Fig. 2. Local (unprimed) and global (primed) axes system for a typi-
cal folded plate element. The least angle contained between positive
x′ andx axes is denoted as (x′,x).
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u
v
w
θx
θy
θz

 =


cos(x′,x) cos(y′,x) cos(z′,x)
cos(x′,y) cos(y′,y) cos(z′,y)
cos(x′, z) cos(y′, z) cos(z′,z)

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

cos(y′,y) − cos(x′,y) cos(z′,y)
− cos(y′,x) cos(x′,x) − cos(z′,x)
cos(y′,z) − cos(x′,z) cos(z′, z)




u′

v′

w′

θ′x
θ′y
θ′z


or

{u} = [T ]{ u′} . (12)

Finally, the global stiffness, mass matrices and force
vector are expressed as

[K ′]e = [T ]T[K]e[T ], (13)

[M ′]e = [T ]T[M ]e[T ], (14)

{f ′} e = [T ]T{f } e. (15)

However, before applying the transformation, the 45×
45 stiffness and mass matrices is blown up to 54× 54
size, to accommodate the nineθz drilling degrees of
freedom per element. The off-diagonal terms corre-
sponding to theθz terms are set to zero, while a very
small positive number is introduced at the correspond-
ing leading diagonal terms. This small number is taken
to be 1000 times smaller than the smallest leading diag-
onal term of the corresponding element matrix before
blowing up [1]. The load vector is similarly enlarged
by incorporating null terms in theθz positions.

The free vibration analysis involves the solution of

[M ′]{ ẍ′} + [K ′]{ x′} = {0} (16)

and, the method of subspace iteration [1] is adopted to
extract the eigenpairs. In the forced vibration analysis,
the damping is neglected, and the force term replaces
the null vector in the right hand side of Eq. (16). New-
mark’s explicit integration technique [1] is adopted for
the transient analysis.

3. Numerical results and discussion

The finite element formulation described in the ear-
lier section has been used to compare the present re-
sults with the published ones and also to generate nu-

merical results to study the effects of crank angle,
fibre angle and number of plies used, on the non-
dimensional frequencies and responses of composite
folded plates. The definitions for non-dimensionalised
frequencies are given along with Tables 1 and 2.

Example 1. The results of free vibration analysis of
isotropic single-fold and double-fold cantilever folded
plates (Fig. 3) are presented in Table 1 and compared
with those of Liu et al. [12] and Irie et al. [10]. The
geometry of the folded plates is defined in Fig. 3. Here
elastic modulusE, Poisson’s ratioν, and densityρ
are taken as 10.92× 109 N/m2, 0.30, and 1000 kg/m3,
respectively. The length of the cantilever is taken as
1.5 m for single fold folded plates and 2.0 m for two-
fold folded plates. The present analysis is carried out
with multiple layers of isotropic material. The results
are found to be in good agreement with previous works
on isotropic folded plates.

Example 2. Free vibration analysis of single-fold can-
tilever folded plates with E-glass–Epoxy composite
has been carried out for the geometries shown in
Fig. 3, and the results of the parametric studies are
presented in Tables 2, 3, and 4. The data used are
E1 = 60.7×109 N/m2,E2 = 24.8×109 N/m2,G12 =
G13 = G23 = 12.0× 109 N/m2, ν12 = ν21 = 0.23,
ρ = 1300 kg/m3, and 4× 3 mesh. In Table 2, results
are provided for the stacking sequences of the type
[θ/−θ/θ], whereθ varies from 0◦ to 60◦. It is observed
that the fundamental frequency decreases steadily with
increasing fibre angle, the overall depth remaining un-
changed. As shown in Fig. 4, for the single folded com-
posite plates with crank angles 150◦ and 90◦, and for
fibre orientations 30◦/−30◦ and 45◦/−45◦, respec-
tively, the first and third modes are found to be tor-
sion modes, while the second mode is a symmetric

Fig. 3. Geometry of the folded plate used in examples 1, 2, 4, 5 and 6.
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Table 1

Results of free vibration analysis of isotropic folded plate

Description of the Mode Mesh λi

folded plate number size Present Liu Irie

case et al. [12] et al. [10]

1-fold folded plate, 1 4× 2 0.049 0.0491 0.0492

α = 90◦ 2 0.0971 0.0971 0.0977

3 0.1881 0.1786 0.1794

4 0.2183 0.2084 0.2101

5 0.3505 0.3558 0.3573

1-fold folded plate, 1 4× 3 0.049 0.0491 0.0492

α = 120◦ 2 0.0941 0.0943 0.0949

3 0.1883 0.1787 0.1795

4 0.216 0.2065 0.2082

5 0.293 0.2971 0.2984

1-fold folded plate, 1 4× 2 0.0491 0.0491 0.0492

α = 150◦ 2 0.0804 0.0812 0.0816

3 0.1883 0.1787 0.1795

4 0.1942 0.1912 0.1927

5 0.2256 0.2210 0.2227

Flat plate, 1 4× 4 0.0200 0.0200 0.0201

α = 180◦ 2 0.0489 0.0492 0.0493

3 0.1230 0.1235 0.1234

4 0.1567 0.1566 0.1577

5 0.1784 0.1787 0.1796

2-fold folded plate, 1 3× 2 0.1249 0.1249 –

β = 90◦ 2 0.1252 0.1260

3 0.2697 0.2579

4 0.2830 0.2892

5 0.3266 0.3286

2-fold folded plate, 1 3× 2 0.0971 0.1000 –

β = 120◦ 2 0.1239 0.1241

3 0.2578 0.2571

4 0.2691 0.2630

5 0.2906 0.2986

2-fold folded plate, 1 6× 3 0.0679 0.0687 –

β = 150◦ 2 0.1142 0.1145

3 0.2065 0.2100

4 0.2410 0.2415

5 0.2573 0.2571

Note:λi = ωiL
√
ρ(1− v2)/E.

bending mode. It may be noted that the ridgeline re-
mains nearly undeformed for these modes and is in-
strumental in imparting additional stiffness compared
to flat plates. This, in turn, has resulted in higher non-
dimensional fundamental frequencies to folded plates
compared to flat plate, as seen in Table 2.

Table 3 provides natural frequencies for 4-layered
symmetric and anti-symmetric angle-ply and cross
ply laminates. Here it is observed that anti-symmetric
angle-ply with lower values of fibre angle produces
higher fundamental frequency. It may also be noted
from Table 4 that the fundamental frequencies have an
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Table 2

Non-dimensional natural frequencies for single fold composite cantilever folded plates

Crank angle λi Stacking sequence [θ/−θ/θ]

α θ = 0◦ θ = 30◦ θ = 45◦ θ = 60◦

90◦ 1 0.0391 0.0390 0.0381 0.0367

2 0.0675 0.0712 0.0753 0.0804

3 0.1556 0.1473 0.1406 0.1399

120◦ 1 0.0391 0.0390 0.0381 0.0366

2 0.0664 0.0697 0.0731 0.0768

3 0.1557 0.1472 0.1404 0.1331

150◦ 1 0.0391 0.0389 0.0380 0.0366

2 0.0609 0.0624 0.0629 0.0624

3 0.1557 0.1455 0.1377 0.1306

180◦ 1 0.0201 0.0177 0.0158 0.0141

2 0.0392 0.0387 0.0378 0.0364

3 0.1015 0.1015 0.0948 0.0862

Note:λi = ωiL
√
ρ(1− v2

12)/E1.

Fig. 4. First, second and third mode shapes of E-glass–Epoxy
cantilever composite single fold folded plate with (a) crank an-
gle α = 150◦, ply arrangement 30◦/−30◦, and (b) crank angle
α = 90◦, ply arrangement 45◦/−45◦.

increasing trend with the increase in the number of lay-
ers, while the fibre angles and thickness are kept in-
variant. Anti-symmetric plies have shown higher fun-
damental frequencies.

Tables 5, 6 and 7 represent the first three natural fre-
quencies for two-fold folded plates (refer Fig. 3). 6×3
mesh are used. Forβ = 120◦, the mode shapes of a
two-fold composite folded plate are shown in Fig. 5(b).
The first mode is a torsion mode. The second mode
is a symmetric bending mode and the third is a sym-
metric mode too, though complex in shape. However
this trend is not repeated forβ = 90◦, as shown in
Fig. 5(a). Thus, Fig. 5 shows that the mode shapes
for two-fold folded plates depend on the crank an-
glesβ heavily, as also on the fibre angles. This is un-
like single fold folded plates, where only fibre angles
and number of plies are of importance, and the val-
ues of first and the third frequencies are nearly invari-
ant for a given fibre angle and number of plies irre-
spective of the crank angleα. From Table 5 it is ob-
served that for the type [θ/−θ/θ], there is a decreas-
ing trend of first frequencies with increase in the value
of θ, but the case of 2-fold plate with a crank of 90◦

now shows a reverse trend. It may also be noted that for
isotropic and composite single-fold plates and two-fold
isotropic folded plates the first frequency is found to
remain practically unchanged for same material prop-
erties and fibre angles (refer Tables 1, 2, 3, and 4, and
[10,12]). This is also not generally true for 2-fold com-
posite folded plates and the crank angle is seen to af-
fect the fundamental frequencies considerably. From
Table 6 it is seen that anti-symmetric plies produce
higher fundamental frequencies. Table 7 reveals that
an increase in number of layers increases the funda-
mental frequencies. It may also be noted here that for
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Fig. 5. First, second and third mode shapes of E-glass–Epoxy com-
posite twofold folded plate with (a) crank angleβ = 90◦, ply ar-
rangement 30◦/−30◦, and (b) crank angleβ = 120◦, ply arrange-
ment 30◦/−30◦.

single-fold folded plates the [30◦/−30◦]3 laminations
produce highest fundamental frequencies whereas the
0◦ or (0◦/90◦)2 lamination produce the highest funda-
mental frequencies for two-fold folded plates. Finally,
Table 8 shows a comparative study of results obtained
by applying 2-point and 3-point integration for mass
matrices. The table reveals that there is no perceptible
difference of results, and a 2-point integration may be
employed for computational efficiency.

Example 3. To check the accuracy of the code de-
veloped for forced vibration, the central deflection of
a square, clamped, cross-ply laminate has been ob-
tained using this code. The data used areL = 25 cm,
h = 5 cm,E1/E2 = 25, E2 = 2.1 × 106 N/cm2,
ν12 = ν21 = 0.25, G12 = G13 = G23 = 0.5 E2,
ρ = 8.0× 106 N s2/cm4. A 4 × 4 mesh is used. The
central deflection due to a suddenly applied step load-
ing q = 10 N/cm2, that is imposed at timet = 0
and is not withdrawn, is presented in Fig. 6. Damping

Fig. 6. Central deflection versus time for a 0◦/90◦/0◦ square
clamped laminated plate with suddenly applied pulse loading (4× 4
mesh).

Fig. 7. Comparative central tip deflection versus time for 2-fold
E-glass–Epoxy 2 layered folded plate with crank angleβ = 120◦

for various fibre angles (ref. Fig. 3) withL = 1.5 m and suddenly
applied step loadq = 1.0× 105 N/m2.

has not been accounted in this analysis. The time step
for the explicit integration scheme is taken as 5 mi-
croseconds. The results conform satisfactorily to those
of Kant [11].

Example 4. The comparative study of mid-point tip
deflection of two-fold cantilever folded plate (Fig. 3)
with crank angle,β = 120◦ is applied for two ply
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Table 3

Non-dimensional natural frequencies for two-fold composite cantilever folded plates

Crank angle λi Stacking sequence

α [30◦/−30◦]S [30◦/−30◦]2 [0◦/90◦]S [0◦/90◦]2

90◦ 1 0.0394 0.0397 0.0387 0.0369

2 0.0719 0.0724 0.0704 0.0774

3 0.1488 0.1496 0.1525 0.1397

120◦ 1 0.0394 0.0398 0.0387 0.0369

2 0.0703 0.0707 0.0688 0.0750

3 0.1488 0.1497 0.1526 0.1399

150◦ 1 0.0394 0.0398 0.0386 0.0370

2 0.0627 0.0629 0.0611 0.0642

3 0.1475 0.1497 0.1509 0.1400

Table 4

Non-dimensional natural frequencies for two-fold composite cantilever folded plates

Crank angle λi Stacking sequence

α [30◦/−30◦] [30◦/−30◦]S [30◦/−30◦]2 [30◦/−30◦/30◦]S [30◦/−30◦]3

90◦ 1 0.0381 0.0394 0.0397 0.0399 0.0400

2 0.0701 0.0719 0.0724 0.0726 0.0728

3 0.1443 0.1488 0.1496 0.1503 0.1506

120◦ 1 0.0381 0.0394 0.0398 0.0399 0.0401

2 0.0686 0.0703 0.0707 0.0710 0.0711

3 0.1444 0.1488 0.1497 0.1504 0.1507

150◦ 1 0.0381 0.0394 0.0398 0.0399 0.0401

2 0.0614 0.0627 0.0629 0.0631 0.0632

3 0.1443 0.1475 0.1497 0.1497 0.1507

Table 5

Non-dimensional natural frequencies for two-fold composite cantilever folded plates

Crank angle λi Stacking sequence [θ/−θ/θ]

β θ = 0◦ θ = 30◦ θ = 45◦ θ = 60◦

90◦ 1 0.0844 0.0887 0.0914 0.0924

2 0.0937 0.0992 0.1035 0.1081

3 0.2049 0.2008 0.1988 0.1970

120◦ 1 0.0796 0.0771 0.0745 0.0712

2 0.0851 0.0930 0.0993 0.1057

3 0.2047 0.1994 0.1970 0.1950

150◦ 1 0.0567 0.0546 0.0519 0.0491

2 0.0817 0.0864 0.0898 0.0914

3 0.1765 0.1698 0.1620 0.1561

composites with different fibre angles. Data used are

E1 = 60.7×109 N/m2,E2 = 24.8×109 N/m2,G12 =

G13 = G23 = 12.0× 109 N/m2, ν12 = ν21 = 0.23,

ρ = 1300 kg/m3, q = 1.0×105 N/m2. The load is again

a step type load, initiating att = 0 and not withdrawn.

The results are plotted in Fig. 7. A time step of 5 and

10µs has produced same responses. Here the guide-

line of Tsui and Tong [20] has been followed to fix the
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Table 6

Non-dimensional natural frequencies for single fold composite cantilever folded plates

Crank angle λi Stacking sequence

β [30◦/−30◦]S [30◦/−30◦]2 [0◦/90◦]S [0◦/90o]2

90◦ 1 0.0901 0.0924 0.0896 0.0987

2 0.0989 0.0969 0.0934 0.0993

3 0.2035 0.2072 0.2044 0.1992

120◦ 1 0.0781 0.0792 0.0761 0.0772

2 0.0931 0.0920 0.0893 0.0987

3 0.2029 0.2068 0.2041 0.1993

150◦ 1 0.0551 0.0555 0.0533 0.0522

2 0.0869 0.0867 0.0840 0.0906

3 0.1703 0.1700 0.1628 0.1670

Table 7

Non-dimensional natural frequencies for single fold composite cantilever folded plates

Crank angle λi Stacking sequence

β [30◦/−30◦/30◦] [30◦/−30◦]S [30◦/−30◦]2 [30◦/−30◦/30◦]S [30◦/−30◦]3

90◦ 1 0.0887 0.0901 0.0924 0.0918 0.0930

2 0.0992 0.0989 0.0969 0.0983 0.0973

3 0.2008 0.2035 0.2072 0.2074 0.2086

120◦ 1 0.0771 0.0781 0.0792 0.0790 0.0795

2 0.0930 0.0931 0.0920 0.0930 0.0926

3 0.1994 0.2029 0.2068 0.2065 0.2082

150◦ 1 0.0546 0.0551 0.0555 0.0555 0.0558

2 0.0864 0.0869 0.0867 0.0871 0.0871

3 0.1698 0.1703 0.1700 0.1700 0.1704

Table 8

Non-dimensional frequencies for single-fold laminated composite folded plates with 2-point and 3-point integration of mass matrices

Modes E-glass–Epoxy folded plate withα = 90◦ E-glass–Epoxy folded plate withα = 120◦

[30◦/−30◦]S [30◦/−30◦]2 [30◦/−30◦]S [30◦/−30◦]2

Gauss points Gauss points Gauss points Gauss points

2× 2 3× 3 2× 2 3× 3 2× 2 3× 3 2× 2 3× 3

1 0.0394 0.0394 0.0397 0.0397 0.0394 0.0394 0.0398 0.0398

2 0.0719 0.0718 0.0724 0.0723 0.0703 0.0703 0.0707 0.0707

3 0.1488 0.1483 0.1496 0.1491 0.1488 0.1483 0.1497 0.1492

time step∆t. The responses are observed to be more
pronounced, as expected, with increasing fibre angle.

Example 5. In Fig. 8 the effect of number of plies
is illustrated for single-fold E-glass–Epoxy composite,
cantilever folded plates with crank angleα = 120◦.
The data used are the same as those in Example 4. The
two-ply and four-ply laminates show slight change in
response in the second cycle, but the four-ply symmet-
ric and anti-symmetric laminates have produced practi-

cally identical results. The six-ply anti-symmetric lam-
inate has been observed to behave identically with the
four-ply laminates.

Example 6. In Fig. 9 the effect of the crank angle is
illustrated for two fold E-glass–Epoxy composite, can-
tilever folded plates with crank angles 90◦, 120◦, and
150◦. The data used are the same as those in Exam-
ple 4. The 90◦ cranked plate shows stiffest behaviour
and quickly approaches to attain the state of static de-



282 A. Guha Niyogi et al. / Finite element vibration analysis of laminated composite folded plate structures

Fig. 8. Central tip deflection versus time for a cantilever single-fold
folded plate with crank angleα = 120◦, subjected to suddenly ap-
plied pulse loading (4× 3 mesh).

Fig. 9. Comparative study of central tip deflection for E-glass–Epoxy
2 fold laminated cantilever folded plates, with 30◦/−30◦ lamina-
tion, 6× 3 mesh.

flection, while the 150◦ cranked plate has the largest
response and manifests most pronounced oscillation.

4. Conclusion

This paper is concerned with the dynamic anal-
ysis of laminated composite cantilever folded plate

structures. For the numerical simulation of the prob-
lem finite element technique has been used. Various
folded plate configurations have been considered in the
present study. The results obtained from the present
formulation for isotropic folded plate structure are
compared with the semi-analytical solutions and fi-
nite element results available in the open literature and
a good agreement is observed. A set of new results
for laminated composite cantilever folded plate struc-
tures with various lamination schemes, crank angles,
and stacking sequence are presented. Certain differ-
ences in free vibration modes of isotropic and compos-
ite folded plates have been highlighted. The first or-
der shear deformation theory is found to work well for
folded plates where the five regular degrees of freedom
is appended with a sixth drilling degree of freedom as
suggested in Zienkiewicz [21] and Bathe [1].
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