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Response of structures to non-stationary ground motion can
be obtained either by the evolutionary spectral analysis or
by the Markov approach. In certain conditions, a quasi-
stationary analysis can also be performed. The first two meth-
ods of analysis are difficult to apply for complex situations
such as problems involving soil-structure interaction, non-
classical damping and primary-secondary structure interac-
tion. The quasi-stationary analysis, on the other hand, pro-
vides an easier solution procedure for such cases. Here-in,
the effectiveness of the quasi-stationary analysis is examined
with the help of the analysis of a single degree-of-freedom
(SDOF) system under a set of parametric variations. For this
purpose, responses of the SDOF system to uniformly mod-
ulated non-stationary random ground excitation are obtained
by the three methods and they are compared. In addition, the
relative computational efforts for different methods are also
investigated.

Keywords: Non-stationary, earthquake, quasi-stationary,
comparative performance, Markov method

1. Introduction

For the random vibration analyses of structures, two
approaches are widely used namely, the spectral ap-
proach and the Markov approach. In the former, deter-
ministic relation between the moments of the excita-
tion and the response is established based on the fun-
damental results of mean square calculus which permit
expectation and mean square limit operations to com-
mute. In the latter, the formulation is based on the as-

* Corresponding author.

sumption that the response at any instant of time de-
pends only upon the response and excitation at the pre-
vious time station. It requires a space state transition
matrix that transforms one state to the immediate next
state. However, the excitations need to be presented in
terms of white-noise.

For the stationary random excitation, the spectral
approach is generally preferred over the Markov ap-
proach, especially for multi degree-of-freedom
(MDOF) system subjected to multiple support excita-
tions. One of the major reasons for this is that the rep-
resentation of many types of random excitation (like,
wind and wave) in a form, which permits the Markov
formulation, is difficult. However, in the case of seis-
mic excitation, both approaches can be used and have
their own advantages and disadvantages. When the
earthquake is modelled as a non-stationary excitation
(uniformly modulated), the Markov approach is easier
to adopt for MDOF system. The spectral approach be-
comes difficult since the determination of the evolu-
tionary (time dependent) frequency response function
of the MDOF system is generally complicated and in
certain cases cannot be analytically determined. How-
ever, a quasi-stationary spectral analysis, if applicable,
becomes very easy to apply.

Lin [5] and Nigam [7] presented the general method
for computing the evolutionary response using the
spectral analysis for non-stationary excitation. Ham-
mond [4] and Robert [10] obtained the response
of MDOF system to non-stationary excitation using
modal analysis technique and spectral approach. Per-
otti [8] obtained the evolutionary response of a soil-
structure interaction problem with multi-point seis-
mic excitation modelled as a non-stationary random
process. Spectral analysis was used by neglecting the
structural damping terms. Su and Ahmadi [13] ob-
tained the response of a cantilever continuous beams to
uniformly modulated random ground motion.

Markov approach was used by Gasparani and
DebChoudhary [3] to obtain the evolutionary response
of MDOF systems with and without multi-point ex-
citation. DebChoudhary and Gazis [2] used the same
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approach for the determination of the root mean
square (r.m.s.) response of MDOF system to multi-
point, multi-component support excitation. Using the
Markov approach, Soliman and Datta [11] obtained
the evolutionary r.m.s. response of piping systems with
multi-point, multi-component seismic excitation con-
sidering the flexibility of the support. The concept of
quasi-stationary spectral analysis is referred by New-
land [6]. Recently, Soliman and Datta [12] presented
a quasi-stationary spectral analysis for obtaining the
evolutionary response of piping systems with flexi-
ble support to non-stationary multiple support excita-
tion.

The three different methods for obtaining the evo-
lutionary response of structures subjected to non-
stationary excitation have different assumptions, accu-
racies and computational efficiencies. The comparison
of the responses obtained by the three methods is not
widely reported. In particular, the validity of the quasi-
stationary spectral analysis under different conditions
has not been thoroughly investigated. In this paper,
the responses of a single degree-of-freedom (SDOF)
system to non-stationary earthquake excitation are ob-
tained by the three methods and compared under a set
of important parametric variations. The specific objec-
tives of the study are to (i) investigate the effective-
ness of the quasi-stationary approach for different con-
ditions and (ii) evaluate the computational efficiency of
the three methods.

2. Model of earthquake excitation

The earthquake excitation is considered as a uni-
formly modulated stationary Gaussian random process
with zero-mean. The earthquake accelerationẍ(t) is
expressed as

ẍ(t) = A(t)ẍf (t), (1)

whereA(t) is the deterministic modulating function;
andẍf (t) is the stationary random process.

The evolutionary power spectral density function
(PSDF) of the earthquake excitation is given by

Sẍ(ω) =
∣∣A(t)

∣∣2Sẍf (ω), (2)

whereSẍf (ω) is the stationary PSDF of the earthquake
ground motion. In the present study, the PSDF of the
earthquake excitation is considered as that suggested
by Clough and Penzien [1], i.e.,

Sẍf (ω) = S0

(
1 + 4ξ2

g(ω/ωg)2[
1− (ω/ωg)2

]2
+ 4ξ2

g(ω/ωg)2

)

×
(

(ω/ωg)4[
1− (ω/ωf)2

]2
+ 4ξ2

f (ω/ωf)2

)
, (3)

whereS0 is the constant PSDF of input white-noise
random process;ωg, ξg, ωf andξf are the ground filter
parameters.

Note that the Markov method requires that the exci-
tation must be either white-noise or shot-noise whereas
the PSDF of̈xf (t) is a non-white random process. How-
ever, this obstacle can be circumvented by introducing
the shaping filters in which the random processẍf (t)
can be considered as the response of two linear filters
subjected to white-noise excitation as

ẍf (t) + 2ξfωfẋf (t) + ω2
f xf (t) = ẍg(t) + ẍ0(t), (4)

ẍg(t) + 2ξgωgẋg(t) + ω2
gxg(t) = −ẍ0(t), (5)

whereẍ0(t) is the input white-noise random process
with constant intensity of the PSDF asS0. Note that
the Eqs (4) and (5) provide the stationary PSDF of the
responsëxf (t) as that given by Eq. (3).

Three types of modulating functions are considered
in the study namely, exponential, box-car and trape-
zoidal as shown in Fig. 1. The box-car type modulating
function is expressed as

A(t) =

{
A0 for 06 t 6 T0,
0 for t > T0,

(6)

whereA0 is the scaling factor; andT0 is the strong mo-
tion duration of the earthquake excitation.

Exponential modulating function is expressed as

A(t) = A0
(
e−b1t − e−b2t

)
, b2 > b1, (7)

where the values of the parametersb2 andb1 control the
shape of the modulating function andA0 is the scaling
factor. The parametersb2 andb1 are defined with the
help of strong motion durationT0 andε (fraction of rise
time defined later). Trifunac and Brady [14] definedT0

as

T0 = t95− t5, (8)

wheret95 andt5 are the times at which the energy con-
tent of the modulating function is 95% and 5%, respec-
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Fig. 1. Different types of modulating functions: (a) exponential,
(b) box-car and (c) trapezoidal.

tively, of the total energy content. Thus, the timest95

andt5 are obtained by

∫ t95

0
A2(t) dt = 0.95

∫ ∞
0

A2(t) dt (9)

and ∫ t5

0
A2(t) dt = 0.05

∫ ∞
0

A2(t) dt. (10)

The fraction of rise timeε for the exponential mod-
ulating function is defined as

ε =
tm
t95

, (11)

wheretm is the time at whichA(t) attains the maxi-
mum value.

Using Eqs (9)–(11), a relationship can be established
between the ratioα = b2/b1 andε. The values of pa-
rametersb1 andb2 can be obtained from the given val-
ues ofε andT0 as shown by Quek et al. [9].

Trapezoidal type modulating function is expressed
as

A(t) =



A0

(
t

t1

)
, 06 t 6 t1,

A0, t1 6 t 6 t2,

A0

(
t− t3
t2 − t3

)
, t2 6 t 6 t3,

0, t > t3,

(12)

whereA0 is the scaling factor; andt1, t2 andt3 are the
transition times of the modulating function as shown in
Fig. 1(c).

The corresponding strong motion duration for the
trapezoidal modulating function is taken as that given
by Eq. (8). However, the fraction of rise timeε is ex-
pressed as

ε =
t1
T0
. (13)

Different types of modulating functions are so scaled
that the intensityI defined as

I =

∫ ∞
0

∣∣A(t)
∣∣2 dt (14)

have the same value. This implies that all modulating
functions have the same energy content.

In Fig. 2 different types of exponential modulating
functions considered in the study are plotted forI =
1 s andT0 = 5 s. Figure shows that the exponential
function becomes flatter as the parameterε increases.
The corresponding parameters of the above functions
are shown in Table 1. The trapezoidal modulating func-
tion is characterised by the parameters namelyκ1, κ2,
κ3 andT0 (κ1, κ2, κ3 are the fraction of total energy
content of the modulating function between the time 0
to t1, t1 to t2 andt2 to t3, respectively) for the specified

Fig. 2. Shape of different exponential modulating functions (I = 1 s
andT0 = 5 s).
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Table 1

Parameters of different exponential modulating functions (forI = 1 s and
T0 = 5 s)

Parameters ε = 0 0.1 0.2 0.3

Scaling factorA0 0.767 0.833 1.024 2.330

Constantb1 (s−1) 0.294 0.298 0.329 0.412

Constantb2 (s−1) ∞ 5.983 1.989 0.792

α = b2/b1 ∞ 20.06 6.242 1.924

value ofI. Sinceκ1 + κ2 + κ3 = 1 one has to specify
the energy contents in two regions of the modulating
function.

3. Evolutionary response of SDOF system

For a linear SDOF system subjected to earthquake
acceleration̈x(t), the relative displacementy(t) of the
system is governed by

ÿ(t) + 2ξω0ẏ(t) + ω2
0y(t) = −ẍ(t), (15)

whereω0 is the natural frequency andξ is the damping
coefficient of the SDOF system.

3.1. Evolutionary spectral analysis

For a system initially at rest and̈x(t), a Gaussian
random process admitting an evolutionary spectral rep-
resentation of Eq. (15), it follows thaty(t) is also a
Gaussian random process [7] given by

y(t) =

∫ ∞
−∞

M (t,ω)eiωt dẍf (ω), (16)

where

M (t,ω) = −
∫ t

0
h(t− τ )A(τ )e−iω(t−τ ) dτ , (17)

h(τ ) =
e−ξω0τ

ωd
sin(ωdτ ) (18)

and

ωd = ω0

√
1− ξ2. (19)

The evolutionary PSDF of the relative displacement
of the SDOF systemSy(t,ω) is given by

Sy(t,ω) =
∣∣M (t,ω)

∣∣2Sẍf (ω). (20)

Mean square relative displacement of the SDOF sys-
tem is given by

σ2
y(t) =

∫ ∞
−∞

Sy(t,ω) dω. (21)

TheM (t,ω) can be written as

M (t,ω) = MR(t,ω) + iMI (t,ω), (22)

whereMR(t,ω) andMI (t,ω) are the real and imagi-
nary parts ofM (t,ω), respectively.

For the exponential modulating function (Eq. (7)),
the two parts of theM (t,ω) are expressed as

MR(t,ω) =
A0

2ωd

2∑
j=1

2∑
i=1

(−1)i

(bi − ξω0)2 + ω2
j

×
{

e−ξω0t[(bi − ξω0) sinωjt

−ωj cosωjt] + ωje−bit
}

, (23)

MI (t,ω) =
A0

2ωd

2∑
j=1

2∑
i=1

(−1)i+j−1

(bi − ξω0)2 + ω2
j

×
{

e−ξω0t[(bi − ξω0) cosωjt

+ωj sinωjt]

− (bi − ξω0)e−bit
}

, (24)

whereω1 = ωd + ω andω2 = ωd− ω.
The two parts ofM (t,ω) for the box-car type mod-

ulating function (Eq. (6)) are given by
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MR(t,ω) =



A0

2ωd

∑2
j=1

−1
ξ2ω2

0 + ω2
j

× {e−ξω0t[−ξω0 sinωjt
−ωj cosωjt] + ωj},

06 t 6 T0,

A0e−ξω0t

2ωd

∑2
j=1

−1
ξ2ω2

0 + ω2
j

× {−ξω0 sinωjt− ωj cosωjt

− e−ξω0T0[−ξω0 sinωj(t− T0)
−ωj cosωj(t− T0)]},
t > T0,

(25)

MI (t,ω) =



A0

2ωd

∑2
j=1

(−1)j

ξ2ω2
0 + ω2

j

× {e−ξω0t[−ξω0 cosωjt

+ωj sinωjt] + ξω0},
06 t 6 T0,

A0e−ξω0t

2ωd

∑2
j=1

(−1)j

ξ2ω2
0 + ω2

j

× {−ξω0 cosωjt+ ωj sinωjt

− e−ξω0T0[−ξω0 cosωj(t− T0)
+ωj sinωj(t− T0)]},
t > T0.

(26)

The corresponding expression ofMR(t,ω) and
MI (t,ω) for the trapezoidal modulating function are
given in the Appendix.

3.2. Markov method

An alternative approach for determination of the re-
sponse statistics is to form expectations by direct ma-
nipulation on the equations of motion of the system.
This is most conveniently carried out using the state
variable formulation. Equation (15) along with Eqs (1),
(4), (5) can be re-written as a system of first order
stochastic differential equations as

d
dt

{ z} = [H]{ z} + {F }, (27)

where

{ z} =
{
y(t), ẏ(t),xf (t), ẋf (t),xg(t), ẋg(t)

}T
, (28)

[H] =


0 1 0
−ω2

0 −2ξω0 ω2
f A(t)

0 0 0
0 0 −ω2

f
0 0 0
0 0 0

0 0 0
2ξfωfA(t) ω2

gA(t) 2ξgωgA(t)

1 0 0
−2ξfωf −ω2

g −2ξgωg

0 0 1
0 −ω2

g −2ξgωg

 (29)

and

{F } = {0, 0, 0, 0, 0,−ẍ0(t)} T. (30)

The augmented response vector {z} is a Markov
process and the corresponding covariance matrix [V ]
satisfies the following differential equation [7]:

d
dt

[V ] = [H][V ] + [V ][H]T + [P ], (31)

where [H]T is the transpose of the matrix [H] and the
elements of the covariance matrix [V ] are given by

Vij = E[zizj ], i, j = 1, 2,. . . , 6. (32)

The elements of the matrix [P ], Pij = 0 except
P66 = 2πS0.

The non-stationary response of the system (i.e.,
[V ] matrix) is obtained by solving the moment equa-
tion (31). The mean square displacement of the SDOF
systemσ2

y(t) will be the elementV11 of the matrix [V ]
at any instant of time. The augmented system matrix
[H] is time dependent through the introduction of the
modulating functionA(t). Therefore, Eq. (31) is to be
solved numerically based on step-by-step method. The
fourth order Runge–Kutta method is employed for the
present study. The initial covariance matrix for the sys-
tem [V0] considered for obtaining the response of the
system is as follows

[V0] =

[
0 0
0 V Sf

]
, (33)

whereV Sf is the matrix of size (4× 4) containing the
stationary response of ground filters; and 0 is the null
matrix of respective size due to initial at rest condition
of the SDOF system. Note thatV Sf ensures that the



290 R.S. Jangid and T.K. Datta / Evaluation of the methods for response analysis

earthquake excitation reaches to its stationary condi-
tion before it is multiplied by the modulating function
(refer Eq. (1)).

3.3. Quasi-stationary analysis

In the quasi-stationary analysis, the convolution of
impulse response function with the modulating func-
tion is not performed to derive the evolutionary fre-
quency response represented by Eq. (17). Instead, the
evolutionary PSDF of the response is obtained as

Sy(t,ω) = A(t)2
∣∣H(ω)

∣∣2Sẍf (ω), (34)

whereH(ω) = (−ω2+i2ξω0ω+ω2
0)−1 is the frequency

response function of linear SDOF system which is
the Fourier transform of the impulse response func-
tion h(τ ).

The mean square displacement of the system by
quasi-stationary analysis is obtained from Eqs (21)
along with (34). Further, by comparing Eqs (20) and
(34), it can be shown that in the quasi-stationary anal-
ysis the following assumption is made∣∣M (t,ω)

∣∣2 = A(t)2
∣∣H(ω)

∣∣2. (35)

This assumption leads to substantial reduction in the
computational efforts especially for the MDOF system.
Further, it also allows in many cases the determination
of an approximate evolutionary response of structural
system to non-stationary excitation where exact solu-
tion is difficult to obtain [12]. However, it remains to
be examined to what extent the simplified solution as
given by Eq. (35) is valid under different conditions.

4. Numerical study

Responses of the SDOF system to non-stationary
earthquake excitation are obtained by three different
methods and are compared under different important
parametric variations in order to investigate (i) the ef-
fectiveness of the quasi-stationary analysis, (ii) compu-
tational efficiencies of the methods, and (iii) the effects
of important parameters on the response. The impor-
tant parameters which are considered include: strong
motion duration of earthquake excitation (T0), the ra-
tio of rise time of modulating function to the earth-
quake duration (ε) for the exponential and the trape-
zoidal functions and the damping ratio of the SDOF
system (ξ). In the present study, the period of the SDOF

system (i.e., 2π/ω0) is taken as 1 s and kept con-
stant throughout. The modulating functions are scaled
in such a way that their energy contents expressed by
Eq. (14) are equal to 1 s. The time step for integra-
tion of equations in Markov method has been taken as
0.01 s and the frequency step taken for obtaining the
mean square response by Eq. (21) is considered to be
0.1 rad/s. The time step of integration is kept small
(about 1/100 of the fundamental time period of the
SDOF system) in order to get sufficient accuracy of
the response analysis. This accuracy has been checked
by performing the analysis by varying the time step
between 0.001 to 0.1 s. Similarly, the frequency step
is decided after checking the results of the numerical
integration of Eq. (21). The fraction of energy con-
tent of the trapezoidal function in the region between
t2 to t3 (i.e., κ3) is taken as 0.1. The filter parame-
ters for the PSDF of earthquake excitation are taken
asωg = 15 rad/s,ωf = 0.1ωg, ξg = ξf = 0.6 and
S0 = 0.01 m2/(s3 rad). These parameters correspond to
the earthquake ground motion for a firm soil [1]. In ad-
dition, the performance of the quasi-stationary method
for two triangular type modulating functions on the re-
sponse of the system is also investigated.

Figure 3 compares the evolutionary r.m.s. displace-
ment obtained by the three methods for different types
of modulating functions. The parameters considered
areT0 = 5 s andξ = 5%. It is seen from the figure
that the spectral analysis and the Markov method give
exactly the same responses for all cases. Note that the
Markov method obtains the evolutionary value of the
r.m.s. response by the numerical integration of Eq. (31)
which relates the covariance of response to the covari-
ance of excitations at each time station. The results
of the integration depend upon the time step and the
initial conditions assumed. The spectral analysis ob-
tains the evolutionary PSDF of the response through
closed form expressions given by Eq. (20). The ex-
pressions include the initial conditions through the im-
pulse response functionh(τ ) (appearing in Eqs (16)–
(18)). Same initial conditions have been considered for
both the methods. The quasi-stationary method pro-
vides different r.m.s. response for all modulating func-
tions. However, this method provides conservative es-
timate of the peak value of the response.

In Table 2 relative computational efficiency of var-
ious methods normalised with respect to spectral
method is shown. The Markov and quasi-stationary
methods take considerably less time than that of the
spectral method. Also, it was observed that the CPU
time taken by spectral method is significantly de-
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Fig. 3. Time variation of r.m.s displacement of SDOF system by different methods forT0 = 5 s andξ = 5%: (a) exponential withε = 0.1,
(b) exponential withε= 0.3, (c) box-car and (d) trapezoidal withκ1 = 0.1.

Table 2

Relative computational time efficiency of various methods

Method CPU time/ts
Exponential Box-car Trapezoidal

Spectral 1 1 1

Markov 0.208 0.666 0.107

Quasi-stationary 0.016 0.037 0.008

ts = CPU time of the spectral method.

pendent on the shape of the modulating function. It
was significantly higher for the trapezoidal function
in comparison to the exponential and box-car func-
tions. This is due to fact that the expression forM (t,ω)
for trapezoidal function is relatively more complicated
(refer Appendix and Eqs (23)–(26)). On the other
hand, the CPU time consumed by the Markov and
quasi-stationary methods is not much influenced by the
shape of modulating function. Thus, one can prefer the
Markov method which is computationally more effi-
cient for obtaining the exact non-stationary response

of the system in comparison to spectral method for
any type of modulating functions (provided the exci-
tation is expressed in terms of white-noise). Further,
the quasi-stationary method can be applied at the cost
of the accuracy of the response with considerably less
computational efforts.

Since spectral and Markov methods provide the
same response of the system, as a result, in the further
study the effectiveness of quasi-stationary method is
investigated by comparing the corresponding response
by the Markov method.

Figure 4 shows the variation of the peak r.m.s. dis-
placement with the strong motion duration of the exci-
tationT0. The error in the peak r.m.s. displacement ob-
tained by the quasi-stationary method is quite signifi-
cant for short duration earthquake. However, as the du-
ration of earthquake increases, the error decreases. For
the duration of earthquake greater than 10 s (i.e., 10
times the period of SDOF system), the quasi-stationary
method provides nearly the same response as those



292 R.S. Jangid and T.K. Datta / Evaluation of the methods for response analysis

Fig. 4. Effects of strong motion duration of earthquake ground motion on the peak r.m.s displacement of the SDOF system forξ = 5%: (a) expo-
nential withε= 0.1, (b) exponential withε= 0.3, (c) box-car and (d) trapezoidal withκ1 = 0.1.

given by the Markov method for the exponential type
modulating functions. For the box-car and trapezoidal
type modulating functions, this requirement on the du-
ration of earthquake is about 5 s. Thus, the quasi-
stationary method provides better values of peak r.m.s.
response for longer duration of modulating functions.
Further, it is also observed from the Fig. 4 that the
peak r.m.s. displacement of the system by the Markov
method is almost same for all modulating functions.
This implies that for the same duration, the shape of
modulating functions does not significantly influence
the response of the system.

In Figure 5, the variation of the peak r.m.s. displace-
ment is plotted against the damping ratio of the SDOF
system. The strong motion duration of the modulating
function is taken as 5 s. Figure 5 indicates that the dif-
ference between the peak r.m.s. response obtained by
the quasi-stationary and the Markov method decreases
with the increase in the damping of the system. Thus,

the quasi-stationary method provides better values of
peak response for higher damping ratios of the system.

Figure 6 shows the variation of the peak r.m.s. dis-
placement of the system against the parameterε of the
exponential and trapezoidal function forT0 = 5 s and
ξ = 5%. For the exponential modulating, the peak
r.m.s. response by the Markov method is appears to
be the same for all values ofε (although the shape of
the modulating function considerably changes withε
as shown in Fig. 2). Thus, the peak response of the sys-
tem for exponential modulating functions is not influ-
enced by the fraction of rise time provided their en-
ergy content and duration are the same. Further, for
the quasi-stationary method, the peak r.m.s. response
varies almost linearly withε and it tends to converge
to the exact value asε increases. The effectiveness of
quasi-stationary method for the trapezoidal function is
not much influenced by the parameterε as shown in
Fig. 6(b).
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Fig. 5. Effect of damping ratio of the SDOF system on the peak r.m.s displacement forT0 = 5 s: (a) exponential withε = 0.1, (b) exponential
with ε= 0.3, (c) box-car and (d) trapezoidal withκ1 = 0.1.

Fig. 6. Effect of rise time of modulating function on the peak r.m.s displacement of the SDOF system forT0 = 5 s andξ = 5%: (a) exponential
and (b) trapezoidal.

It will be interesting to compare the response of
quasi-stationary and Markov methods for the two tri-
angular modulating functions referred as type I and II

as shown in Fig. 7 (type I is typically modelled for blast
loading). These functions can be completely defined
by the time durationt0 for a specified value of energy
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Fig. 7. Triangular modulating functions of type I and II.

Fig. 8. Comparative performance of quasi-stationary method for tri-
angular modulating functions.

contentI. Note that the quasi-stationary method will
provide the same result for the two modulating func-
tions (since it is only dependent on the peak value of
the modulating function). In Fig. 8 the peak r.m.s. re-
sponse of the SDOF system to two triangular modulat-
ing functions is shown against the time durationt0. As
expected the difference in the response between two
methods decreases with the increase oft0. However,
the error in the response by quasi-stationary method
is relatively more for the triangular type I than that
of II for all values of t0. This implies that the quasi-
stationary method provides better results for slowly in-
creasing modulating functions than that of decreasing
functions.

Note that for very short duration impulse, the quasi-
stationary analysis over-estimates the response by

about 50 to 100%. For other cases also, it was ob-
served that the quasi-stationary response over-predicts
the response by about 50 to 200% (refer Figs 4 and 5)
for very short duration of the strong motion excitation.
In such cases, the quasi-stationary analysis should be
avoided as far as possible although it may provide safe
solution. Practicality of the design with such over safe
quantities is to be weighted against the advantages of
the simplicity of the method. Perhaps a more detailed
study needs to be carried out in order to arrive at suit-
able scaling factors to reduce the response obtained by
the quasi-stationary analysis.

5. Conclusions

The response of a single degree-of-freedom system
to uniformly modulated non-stationary ground motion
is obtained by three different methods namely, (i) evo-
lutionary spectral analysis, (ii) Markov method and
(iii) quasi-stationary method. The responses obtained
by the three methods are compared for a number of
important parametric variations in order to investigate
their computational efficiencies and the effectiveness
of the quasi-stationary analysis. From the trends of the
results of the present study, the following conclusions
may be drawn:

1. The evolutionary spectral method and the Markov
method provide the same response for differ-
ent types of modulating functions. However, for
the system in the present study the Markov
method is found to be computationally more ef-
ficient.

2. The quasi-stationary method is found to be com-
putationally very efficient and provides a con-
servative estimate of the peak values of the re-
sponse.

3. For slowly varying modulating function, the
peak responses obtained by the quasi-stationary
method are fairly accurate. The quasi-stationary
method may be preferred for slowly increasing
functions over the slowly decreasing one.

4. The quasi-stationary method provides better val-
ues of peak response for longer duration of mod-
ulating function and higher damping ratio of the
system.

5. For the exponential type modulating function the
peak response of the system is not significantly
influenced by its shape provided their energy
content and duration are the same.
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Appendix

The corresponding expression for the trapezoidal function are expressed as

MR(t,ω) =



A0

2ωd

∑2
j=1

1
(ξ2ω2

0 + ω2
j )t1

{
e−ξω0t

[
Cj sin(ωjt)−Dj cosωjt

]
− ωjt+Dj

}
, 06 t 6 t1,

A0

2ωd

∑2
j=1

1
(ξ2ω2

0 + ω2
j )

(
1
t1

{
e−ξω0t

[
Cj sin(ωjt)−Dj cosωjt

]
− e−ξω0(t−t1)

×
[
(ξω0t1 + Cj) sinωj(t− t1)− (−ωjt1 +Dj) cosωj(t− t1)

]}
−
{

e−ξω0(t−t1)
[
− ξω0 sinωj(t− t1)− ωj cosωj(t− t1)

]
+ ωj

})
, t1 6 t 6 t2,

A0

2ωd

∑2
j=1

1
(ξ2ω2

0 + ω2
j )

(
1
t1

{
e−ξω0t

[
Cj sin(ωjt)−Dj cosωjt

]
− e−ξω0(t−t1)

×
[
(ξω0t1 + Cj) sinωj(t− t1)− (−ωjt1 +Dj) cosωj(t− t1)

]}
−
{

e−ξω0(t−t1)
[
− ξω0 sinωj(t− t1)− ωj cosωj(t− t1)

]
− e−ξω0(t−t2)

×
[
− ξω0 sinωj(t− t2)− ωj cosωj(t− t2)

]}
+

1
(t2− t3)

{
− e−ξω0(t−t2)

[(
− ξω0(t3 − t2) + Cj

)
sinωj(t− t2)

−
(
ωj(t3 − t2) +Dj

)
cosωj(t− t2)

]
+
[
ωj(t3− t) +Dj

]})
, t2 6 t 6 t3,

A0

2ωd

∑2
j=1

1
(ξ2ω2

0 + ω2
j )

(
1
t1

{
e−ξω0t

[
Cj sin(ωjt)−Dj cosωjt

]
− e−ξω0(t−t1)

×
[
(ξω0t1 + Cj) sinωj(t− t1)− (−ωjt1 +Dj) cosωj(t− t1)

]}
−
{

e−ξω0(t−t1)
[
− ξω0 sinωj(t− t1)− ωj cosωj(t− t1)

]
− e−ξω0(t−t2)

×
[
− ξω0 sinωj(t− t2)− ωj cosωj(t− t2)

]}
+

1
(t2− t3)

{
− e−ξω0(t−t2)

[(
− ξω0(t3 − t2) + Cj

)
sinωj(t− t2)

−
(
ωj(t3 − t2) +Dj

)
cosωj(t− t2)

]
− eξω0(t−t3)

[
Cj sinωj(t− t3)−Dj cosωj(t− t3)

]})
, t > t3,

(36)

where

Cj =
ω2
j − ξ2ω2

0

ω2
j + ξ2ω2

0

and

Dj =
2ωjξω0

ω2
j + ξ2ω2

0

and
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MI (t,ω) =



A0

2ωd
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]
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1
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)
cosωj(t− t2) +
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(37)
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