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Evaluation of the methods for response
analysis under non-stationary excitation

R.S. Jangid* and T.K. Dattd sumption that the response at any instant of time de-

aDepartment of Civil Engineering, Indian Institute of ~ Pends only upon the response and excitation at the pre-

Technology Bombay, Powai, Mumbai — 400076, India  Vious time station. It requires a space state transition
b Department of Civil Engineering, Indian Institute of ~ Matrix that transforms one state to the immediate next

Technology Delhi, Hauzkhas, New Delhi — 110016, state. However, the excitations need to be presented in
India terms of white-noise.

For the stationary random excitation, the spectral
Received 11 December 1996 approach is generally preferred over the Markov ap-
Revised 18 October 1999 proach, especially for multi degree-of-freedom

(MDOF) system subjected to multiple support excita-

Response of structures to non-stationary ground motion can tions. One of the major reasons for this is that the rep-

be obtained either by the evolutionary spectral analysis or résentation of many types of random excitation (like,
by the Markov approach. In certain conditions, a quasi- Wind and wave) in a form, which permits the Markov

stationary analysis can also be performed. The first two meth- formulation, is difficult. However, in the case of seis-
ods of analysis are difficult to apply for complex situations mic excitation, both approaches can be used and have
such as problems involving soil-structure interaction, non- their own advantages and disadvantages. When the
classical damping and primary-secondary structure interac- egrthquake is modelled as a non-stationary excitation
tion. The quasi-stationary analysis, on the other hand, pro- (uniformly modulated), the Markov approach is easier
vides an easier solution procedure for such cases. Here-in, ;. adopt for MDOF system. The spectral approach be-
the effectiveness of the quasi-stationary analysis is examined comes difficult since the determination of the evolu-

with the help of the analysis of a single degree-of-freedom tionarv (time dependent) freauency response function
(SDOF) system under a set of parametric variations. For this y( P ) freq y p

purpose, responses of the SDOF system to uniformly mod- of the. MDOF system is genera}IIy Compllcat.ed and in
ulated non-stationary random ground excitation are obtained Certain cases cannot be analytically determined. How-
by the three methods and they are compared. In addition, the €Ver, @ quasi-stationary spectral analysis, if applicable,
relative computational efforts for different methods are also becomes very easy to apply.

investigated. Lin [5] and Nigam [7] presented the general method
Keywords: Non-stationary, earthquake, quasi-stationary, for computing Fhe eVO|Ut|0n§ry response using the
comparative performance, Markov method spectral analysis for non-stationary excitation. Ham-

mond [4] and Robert [10] obtained the response

of MDOF system to non-stationary excitation using
1. Introduction modal analysis technique and spectral approach. Per-

otti [8] obtained the evolutionary response of a soil-

For the random vibration analyses of structures, two Structure interaction problem with multi-point seis-
approaches are widely used namely, the spectral ap-MIC excitation modelled as a non-stationary random
proach and the Markov approach. In the former, deter- Process. Spectral analysis was used by neglecting the
ministic relation between the moments of the excita- Structural damping terms. Su and Ahmadi [13] ob-
tion and the response is established based on the fun-t@ined the response of a cantilever continuous beams to
damental results of mean square calculus which permit uniformly modulated random ground motion.
expectation and mean square limit operations to com- _ Markov approach was used by Gasparani and

mute. In the latter, the formulation is based on the as- D€PChoudhary [3] to obtain the evolutionary response
of MDOF systems with and without multi-point ex-

" Corresponding author. citation. DebChoudhary and Gazis [2] used the same
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approach for the determination of the root mean B 1+4§§(w/wg)2
square (r.m.s.) response of MDOF system to multi- Sir(w) = So 1 212 | pe2 5
point, multi-component support excitation. Using the [ ~ (w/wg) ] 455w/ wg)
Markov approach, Soliman and Datta [11] obtained (w/wg)*

the evolutionary r.m.s. response of piping systems with X 12 5 5 | 3)
multi-point, multi-component seismic excitation con- [1— (w/wn)?]” + 4g¢(w/wr)

sidering the flexibility of the support. The concept of
guasi-stationary spectral analysis is referred by New-
land [6]. Recently, Soliman and Datta [12] presented

a quasi-stationary spectral analysis for obtaining the Parameters. , _
evolutionary response of piping systems with flexi-  'Note that the Markov method requires that the exci-
ble support to non-stationary multiple support excita- tation must be either white-noise or shot-noise whereas

tion. the PSDF ofi(t) is a non-white random process. How-

The three different methods for obtaining the evo- €Ver this obstacle can be circumvented by introducing
lutionary response of structures subjected to non- the shaping filters in which the random procésg)
stationary excitation have different assumptions, accu- ¢an be considered as the response of two linear filters
racies and computational efficiencies. The comparison Subjected to white-noise excitation as
of the responses obtained by the three methods is not ) _ 5 ) )
widely reported. In particular, the validity of the quasi- Zr(t) + 28wrai(t) + wrae(t) = Zg(t) + Zo(t), (4)
stationary spectral analysis under different conditions Falt) 4 26aweaia(®) + wira(t) = —iolt 5
has not been thoroughly investigated. In this paper, olf) + 20gwts(?) go(!) o) ®)
the responses of a single degree-of-freedom (SDOF)
system to non-stationary earthquake excitation are ob-

where Sy is the constant PSDF of input white-noise
random processyg, &g, wr and¢s are the ground filter

whereio(t) is the input white-noise random process
with constant intensity of the PSDF &3. Note that
tthe Eqgs (4) and (5) provide the stationary PSDF of the
responséi(t) as that given by Eq. (3).

Three types of modulating functions are considered
in the study namely, exponential, box-car and trape-
zoidal as shown in Fig. 1. The box-car type modulating
function is expressed as

of important parametric variations. The specific objec-
tives of the study are to (i) investigate the effective-
ness of the quasi-stationary approach for different con-
ditions and (ii) evaluate the computational efficiency of
the three methods.

2. Model of earthquake excitation A(t) = {OAO ];(;rri)f ;< To, (6)
Ol

The earthquake excitation is considered as a uni- _ ) _
formly modulated stationary Gaussian random process WhereAo is the scaling factor; an} is the strong mo-

with zero-mean. The earthquake acceleratigt) is tion duration of the earthquake excitation.
expressed as Exponential modulating function is expressed as
i(t) = A@)iE(t), (1) A(t) = Ao(e7™ —e7""), by > by, (7)
where A(t) is the deterministic modulating function; ~ where the values of the parametirandb; control the
andiz(t) is the stationary random process. shape of the modulating function add is the scaling
The evolutionary power spectral density function factor. The parametets andb; are defined with the
(PSDF) of the earthquake excitation is given by help of strong motion duratidfy ande (fraction of rise
time defined later). Trifunac and Brady [14] defirEgd
2
Si(w) = |A@)| S (w), @) as
wheresS;, (w) is the stationary PSDF of the earthquake To = tgs — ts, (8)

ground motion. In the present study, the PSDF of the
earthquake excitation is considered as that suggestedwheretgs andts are the times at which the energy con-
by Clough and Penzien [1], i.e., tent of the modulating function is 95% and 5%, respec-
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Fig. 1. Different types of modulating functions: (a) exponential,
(b) box-car and (c) trapezoidal.

tively, of the total energy content. Thus, the tings
andts are obtained by

/mﬁmmza%/mﬂmm (9)
0 0

and

ots lo%e]
/ M@mza%/ A2(t) dt. (10)
0 0

The fraction of rise time for the exponential mod-
ulating function is defined as

g = ]
tos

(11)

wherety, is the time at whichA(t) attains the maxi-
mum value.

Using Egs (9)—(11), arelationship can be established
between the ratioc = b,/b; ande. The values of pa-
rameters; andb, can be obtained from the given val-
ues ofe and7jp as shown by Quek et al. [9].

Trapezoidal type modulating function is expressed
as
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t
Ao(—), 0<t <y,
t1
Ao, t1 <t < ty,
A=<, Y
Ao( 3>, tr <t < s,
to — t3
0, t > 13,

whereAy is the scaling factor; and, t, andts are the
transition times of the modulating function as shown in
Fig. 1(c).

The corresponding strong motion duration for the
trapezoidal modulating function is taken as that given
by Eq. (8). However, the fraction of rise timeis ex-
pressed as

€= T (13)

Different types of modulating functions are so scaled
that the intensity defined as

j— * 2
If/o |A(t)| dt

have the same value. This implies that all modulating
functions have the same energy content.

In Fig. 2 different types of exponential modulating
functions considered in the study are plotted fo
1 s andlp = 5 s. Figure shows that the exponential
function becomes flatter as the parametancreases.
The corresponding parameters of the above functions
are shown in Table 1. The trapezoidal modulating func-
tion is characterised by the parameters namgly2,
k3 andTp (k1, k2, k3 are the fraction of total energy
content of the modulating function between the time 0
tot1, t1 tot, andt, to t3, respectively) for the specified

(14)

0.8 T T T T

Time (sec)

Fig. 2. Shape of different exponential modulating functiohs(1 s
and7p =5s).
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Table 1
Parameters of different exponential modulating functions {fet 1 s and
To=55s)
Parameters e=0 0.1 0.2 0.3
Scaling factorAg 0.767 0.833 1.024 2.330
Constanby (s~1) 0.294 0.298 0.329 0.412
Constanb, (s~1) 0 5.983 1.989 0.792
a=by/by 00 20.06 6.242 1.924
value ofI. Sincer; + k2 + k3 = 1 one has to specify Sy(t,w) = | M(t, w){zsz-f (w). (20)
the energy contents in two regions of the modulating

function. . .
Mean square relative displacement of the SDOF sys-

tem is given by

3. Evolutionary response of SDOF system

5 - oo
For a linear SDOF system subjected to earthquake oy (t) = [m Sy(t, w) do. (21)
acceleratiori:(t), the relative displacemenf(t) of the
system is governed by The M(t, w) can be written as
() + 26wop () + woy(t) = —i(t), (15) _
M(tw) = Mg(tw) + iM,(tw), (22)

wherewy is the natural frequency arfds the damping
coefficient of the SDOF system. where Mg(t,w) and M,(t,w) are the real and imagi-
nary parts ofM (¢, w), respectively.

For the exponential modulating function (Eq. (7)),
the two parts of thé/ (¢, w) are expressed as

3.1. Evolutionary spectral analysis

For a system initially at rest anié(t), a Gaussian
random process admitting an evolutionary spectral rep-

resentation of Eq. (15), it follows thaf(t) is also a Ao 2 2 (—1)i
- i Mr(t,w) = — P W
Gaussian random process [7] given by rR(t, w) g jZ:l ; (s — €wo)? + wjg
y(@t) = / M (t,w)e“" di(w), (16) x {e 80l [(b; — Ewo) sinw;t
- — Wy COSQ}jt] —+ Wjeibit}, (23)
where
’ _ CAp s (-1t
M(tw) = — / M- DA dr, a7y MO =502 D e
0 7j=1 i=
—EwoT —Ewotr(y. _ )
hr) = S singuqr) (18) x {&7 5 (bi — €wo) coswjt
+ wj Sinwjzf]
and — (bs — Ewo)e ™"}, (24)

wg = woy/1 — 2. (19)
wherew; = wq + w andws = wg — w.

The evolutionary PSDF of the relative displacement ~ The two parts ofV/ (¢, w) for the box-car type mod-
of the SDOF systeny, (¢, w) is given by ulating function (Eqg. (6)) are given by
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Ao

2w
x {e =80l [ —Ewo Sinw;t
—Wwj COSqut] + wj},
0<t < Ty,

-1
2
2= Ewi + wjz-

]\/[R(t, w) = Aoeffwot 2 -1 (25)

2w 7=t 202 + wf

X {75&)0 Sinwjt — Wj COSwjt
— e swoTo[ £ sinw; (t — To)
—Wj COS(x)j(t - To)]},

t> To,

Ao 2 (-1y

2wy =1 §2f + wf
x {e ~8wol[—Ewo cosw;t
+w;j Siﬂwj't] + Ewo},
0<t< Ty,

Mi(t,w) = (26)

Age™ et (-1y
g IS+ w?
x { —&wo COSw;t + w; Sinw;t
— e swoTo[—£wg cosw; (t — To)
+wj sinw;(t — To)]},
t > To.

The corresponding expression dffr(t,w) and
M,(t,w) for the trapezoidal modulating function are
given in the Appendix.

3.2. Markov method

An alternative approach for determination of the re-
sponse statistics is to form expectations by direct ma-
nipulation on the equations of motion of the system.
This is most conveniently carried out using the state
variable formulation. Equation (15) along with Egs (1),
(4), (5) can be re-written as a system of first order
stochastic differential equations as

S 1 =g + ) @7)
where

{2} = {y(®), §(0), ze(1), (), ag(t), 26D}, (28)
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0 1 0
—wa  —2fwy  WPA(t)
0 0 0
[H]= 0 0 —w?
0 0 0
0 0 0
0 0 0
2&wi A(t) ng(t) 26qwgA(t)
1 0 0
29
0 0 1
and
{F} ={0,0,0,0,0,—i0(t)} . (30)

The augmented response vectaf} s a Markov
process and the corresponding covariance mavfix [
satisfies the following differential equation [7]:

%[V] = [H|[V] + [VI[H]" +[P], (1)

where [H]7 is the transpose of the matri¥l]] and the
elements of the covariance matrix] are given by
V;'j = E[Zz'Zj], i,j = l, 2,. cey 6. (32)

The elements of the matrix”], P;; = 0 except
Pse == 27TSo.

The non-stationary response of the system (i.e.,
[V] matrix) is obtained by solving the moment equa-
tion (31). The mean square displacement of the SDOF
systemaf/(t) will be the elemeni/;; of the matrix V]
at any instant of time. The augmented system matrix
[H] is time dependent through the introduction of the
modulating functionA(t). Therefore, Eq. (31) is to be
solved numerically based on step-by-step method. The
fourth order Runge—Kutta method is employed for the
present study. The initial covariance matrix for the sys-
tem [p] considered for obtaining the response of the

0 O

system is as follows
[Vb] = |:0 V}S:| J

whereV;® is the matrix of size (4x 4) containing the
stationary response of ground filters; and 0 is the null
matrix of respective size due to initial at rest condition
of the SDOF system. Note th&° ensures that the

(33)
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earthquake excitation reaches to its stationary condi-

tion before it is multiplied by the modulating function
(refer Eq. (1)).

3.3. Quasi-stationary analysis
In the quasi-stationary analysis, the convolution of

impulse response function with the modulating func-
tion is not performed to derive the evolutionary fre-

R.S. Jangid and T.K. Datta / Evaluation of the methods for response analysis

system (i.e., 2/wp) is taken as 1 s and kept con-
stant throughout. The modulating functions are scaled
in such a way that their energy contents expressed by
Eq. (14) are equal to 1 s. The time step for integra-
tion of equations in Markov method has been taken as
0.01 s and the frequency step taken for obtaining the
mean square response by Eq. (21) is considered to be
0.1 rad/s. The time step of integration is kept small
(about %100 of the fundamental time period of the

quency response represented by Eq. (17). Instead, theSDOF system) in order to get sufficient accuracy of

evolutionary PSDF of the response is obtained as

2
Sy(t,w) = A(t)?|H(w)|"Si (@), (34)
whereH (w) = (—w?+i2éwow+wd) ~Lis the frequency
response function of linear SDOF system which is
the Fourier transform of the impulse response func-
tion A(7).

the response analysis. This accuracy has been checked
by performing the analysis by varying the time step
between 0.001 to 0.1 s. Similarly, the frequency step
is decided after checking the results of the numerical
integration of Eq. (21). The fraction of energy con-
tent of the trapezoidal function in the region between
to to t3 (i.e., k3) is taken as 0.1. The filter parame-
ters for the PSDF of earthquake excitation are taken

The mean square displacement of the system by aswyg = 15 rad/sws = 0.lwg, §g = & = 0.6 and

guasi-stationary analysis is obtained from Eqgs (21)
along with (34). Further, by comparing Eqgs (20) and
(34), it can be shown that in the quasi-stationary anal-
ysis the following assumption is made
|M(t,w)|” = AP Hw)[" (35)
This assumption leads to substantial reduction in the
computational efforts especially for the MDOF system.
Further, it also allows in many cases the determination
of an approximate evolutionary response of structural
system to non-stationary excitation where exact solu-
tion is difficult to obtain [12]. However, it remains to
be examined to what extent the simplified solution as
given by Eq. (35) is valid under different conditions.

4. Numerical study

So = 0.01 n?/(s® rad). These parameters correspond to
the earthquake ground motion for a firm soil [1]. In ad-
dition, the performance of the quasi-stationary method
for two triangular type modulating functions on the re-
sponse of the system is also investigated.

Figure 3 compares the evolutionary r.m.s. displace-
ment obtained by the three methods for different types
of modulating functions. The parameters considered
areTpy = 5 s and¢ = 5%. It is seen from the figure
that the spectral analysis and the Markov method give
exactly the same responses for all cases. Note that the
Markov method obtains the evolutionary value of the
r.m.s. response by the numerical integration of Eq. (31)
which relates the covariance of response to the covari-
ance of excitations at each time station. The results
of the integration depend upon the time step and the
initial conditions assumed. The spectral analysis ob-
tains the evolutionary PSDF of the response through
closed form expressions given by Eg. (20). The ex-

Responses of the SDOF system to non-stationary pressions include the initial conditions through the im-

earthquake excitation are obtained by three different

pulse response functidi(r) (appearing in Eqs (16)—

methods and are compared under different important (18)). Same initial conditions have been considered for

parametric variations in order to investigate (i) the ef-
fectiveness of the quasi-stationary analysis, (ii) compu-
tational efficiencies of the methods, and (iii) the effects

both the methods. The quasi-stationary method pro-
vides different r.m.s. response for all modulating func-
tions. However, this method provides conservative es-

of important parameters on the response. The impor- timate of the peak value of the response.

tant parameters which are considered include: strong

motion duration of earthquake excitatidfo, the ra-

tio of rise time of modulating function to the earth-
guake durationg) for the exponential and the trape-
zoidal functions and the damping ratio of the SDOF
system §). In the present study, the period of the SDOF

In Table 2 relative computational efficiency of var-
ious methods normalised with respect to spectral
method is shown. The Markov and quasi-stationary
methods take considerably less time than that of the
spectral method. Also, it was observed that the CPU
time taken by spectral method is significantly de-
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Fig. 3. Time variation of r.m.s displacement of SDOF system by different methodgfer 5 s and¢ = 5%: (a) exponential witlz = 0.1,

(b) exponential withe = 0.3, (c) box-car and (d) trapezoidal with = 0.1.

Table 2

Relative computational time efficiency of various methods
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of the system in comparison to spectral method for
any type of modulating functions (provided the exci-

Method CPU timefs tation is expressed in terms of white-noise). Further,
Exponential ~ Box-car  Trapezoidal the quasi-stationary method can be applied at the cost

Spectral 1 1 1 of the accuracy of the response with considerably less

Markov 0.208 0.666 0.107 Computationa| efforts_

Quasi-stationary 0.016 0.037 0.008 Since spectral and Markov methods provide the

ts = CPU time of the spectral method.

pendent on the shape of the modulating function. It
was significantly higher for the trapezoidal function
in comparison to the exponential and box-car func-

tions. This is due to fact that the expressionfé(t, w)

for trapezoidal function is relatively more complicated

same response of the system, as a result, in the further
study the effectiveness of quasi-stationary method is

investigated by comparing the corresponding response
by the Markov method.
Figure 4 shows the variation of the peak r.m.s. dis-

placement with the strong motion duration of the exci-

tation7p. The error in the peak r.m.s. displacement ob-

(refer Appendix and Egs (23)—(26)). On the other tained by the quasi-stationary method is quite signifi-

hand, the CPU time consumed by the Markov and cantfor short duration earthquake. However, as the du-
guasi-stationary methods is not much influenced by the ration of earthquake increases, the error decreases. For
shape of modulating function. Thus, one can prefer the the duration of earthquake greater than 10 s (i.e., 10
Markov method which is computationally more effi- times the period of SDOF system), the quasi-stationary
cient for obtaining the exact non-stationary response method provides nearly the same response as those
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Fig. 4. Effects of strong motion duration of earthquake ground motion

on the peak r.m.s displacement of the SDOF sgsteb¥do(a) expo-

nential withe = 0.1, (b) exponential witls = 0.3, (c) box-car and (d) trapezoidal with = 0.1.

given by the Markov method for the exponential type

modulating functions. For the box-car and trapezoidal
type modulating functions, this requirement on the du-
ration of earthquake is about 5 s. Thus, the quasi-
stationary method provides better values of peak r.m.s.
response for longer duration of modulating functions.

Further, it is also observed from the Fig. 4 that the

peak r.m.s. displacement of the system by the Markov
method is almost same for all modulating functions.

This implies that for the same duration, the shape of
modulating functions does not significantly influence

the response of the system.

In Figure 5, the variation of the peak r.m.s. displace-
ment is plotted against the damping ratio of the SDOF
system. The strong motion duration of the modulating
function is taken as 5 s. Figure 5 indicates that the dif-

the quasi-stationary method provides better values of
peak response for higher damping ratios of the system.
Figure 6 shows the variation of the peak r.m.s. dis-
placement of the system against the parametdithe
exponential and trapezoidal function f6§ = 5 s and
¢ = 5%. For the exponential modulating, the peak
r.m.s. response by the Markov method is appears to
be the same for all values ef(although the shape of
the modulating function considerably changes with
as shown in Fig. 2). Thus, the peak response of the sys-
tem for exponential modulating functions is not influ-
enced by the fraction of rise time provided their en-
ergy content and duration are the same. Further, for
the quasi-stationary method, the peak r.m.s. response
varies almost linearly witlz and it tends to converge
to the exact value asincreases. The effectiveness of

ference between the peak r.m.s. response obtained byquasi-stationary method for the trapezoidal function is

the quasi-stationary and the Markov method decreases
with the increase in the damping of the system. Thus,

not much influenced by the parameteas shown in
Fig. 6(b).
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It will be interesting to compare the response of asshowninFig. 7 (type | is typically modelled for blast

guasi-stationary and Markov methods for the two tri-
angular modulating functions referred as type | and Il

loading). These functions can be completely defined
by the time duratiory for a specified value of energy
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Fig. 7. Triangular modulating functions of type | and II.
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Fig. 8. Comparative performance of quasi-stationary method for tri-
angular modulating functions.

content/. Note that the quasi-stationary method will
provide the same result for the two modulating func-
tions (since it is only dependent on the peak value of
the modulating function). In Fig. 8 the peak r.m.s. re-
sponse of the SDOF system to two triangular modulat-
ing functions is shown against the time duratipnAs
expected the difference in the response between two
methods decreases with the increaseégofHowever,
the error in the response by quasi-stationary method
is relatively more for the triangular type | than that
of Il for all values ofty. This implies that the quasi-
stationary method provides better results for slowly in-
creasing modulating functions than that of decreasing
functions.

Note that for very short duration impulse, the quasi-
stationary analysis over-estimates the response by
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about 50 to 100%. For other cases also, it was ob-
served that the quasi-stationary response over-predicts
the response by about 50 to 200% (refer Figs 4 and 5)
for very short duration of the strong motion excitation.
In such cases, the quasi-stationary analysis should be
avoided as far as possible although it may provide safe
solution. Practicality of the design with such over safe
guantities is to be weighted against the advantages of
the simplicity of the method. Perhaps a more detailed
study needs to be carried out in order to arrive at suit-
able scaling factors to reduce the response obtained by
the quasi-stationary analysis.

5. Conclusions

The response of a single degree-of-freedom system
to uniformly modulated non-stationary ground motion
is obtained by three different methods namely, (i) evo-
lutionary spectral analysis, (i) Markov method and
(i) quasi-stationary method. The responses obtained
by the three methods are compared for a number of
important parametric variations in order to investigate
their computational efficiencies and the effectiveness
of the quasi-stationary analysis. From the trends of the
results of the present study, the following conclusions
may be drawn:

1. The evolutionary spectral method and the Markov
method provide the same response for differ-
ent types of modulating functions. However, for
the system in the present study the Markov
method is found to be computationally more ef-
ficient.

. The guasi-stationary method is found to be com-
putationally very efficient and provides a con-
servative estimate of the peak values of the re-
sponse.

. For slowly varying modulating function, the
peak responses obtained by the quasi-stationary
method are fairly accurate. The quasi-stationary
method may be preferred for slowly increasing
functions over the slowly decreasing one.

. The quasi-stationary method provides better val-
ues of peak response for longer duration of mod-
ulating function and higher damping ratio of the
system.

. For the exponential type modulating function the
peak response of the system is not significantly
influenced by its shape provided their energy
content and duration are the same.
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The corresponding expression for the trapezoidal function are expressed as
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0<t<ty,
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