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Coupling of flexural and longitudinal damped
vibration in a two-layered beam
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In dynamics, the effect of varying the constitutive materi-
als’ thickness of a two-layered beam is investigated. Reso-
nance frequencies and damping variations are determined. It
is shown that for specific thicknesses the coupling of longi-
tudinal and flexural vibrations influences the global modal
damping ratio significantly.
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1. Introduction

Many papers have been devoted to the analysis of
the dynamical behavior of multilayered structures, spe-
cially plates and beams. Different hypotheses on the
displacement fields in each layer have been formu-
lated: linear with or without shear (see for example [3,
4,6,10,14]) or non linear (see for example [1,2,5,9,13,
18]). They lead to more or less sophisticated equivalent
homogeneous beam or plate models (analytical or fi-
nite element ones), or to multilayered models in which
each layer behavior is defined from its own displace-
ment field.

Some papers more particularly concern the influ-
ence of coupling effects on the analysis of multilayered
structures. Sivadas and Ganesan [16] analyzed effects
of coupling on natural frequencies of circular cylindri-
cal shells (coupling between symmetric and antisym-
metrical modes). Mead and Markus [11] studied wave
motion in a three layer beam and discussed a coupling
phenomenon between longitudinal and flexural waves.
Owen and Li [12] computed natural vibrations of lam-
inated anisotropic simply supported plates and empha-
sized the influence of the coupling between bending

Table 1

Mechanical properties of constitutive materials

E (MPa) ν ρ (kg/m3) ηn (%) ηs (%)

Aluminium 70000 0.3 2700 0.1 0.1

Polyester 3450 0.41 1220 1.4 2.2

and stretching on both global and local results. Sun
and Chin [17] showed that bending–extension cou-
pling in unsymmetrical cross-ply laminates can pro-
duce large deflection effect even in the small deflec-
tion range. Hwang and Gibson made a review of appli-
cation of strain energy-based finite element techniques
in the analysis of composite damped structures [7]. At
the same time, they presented a strain energy-based ap-
proach for studying the effects of vibration coupling
on the damping of symmetric composite laminated
cantilever beams [8]. Shearing-stretching and bending-
twisting effects were considered.

Recently a comparison of the results given by some
of the different multi-layered beam flexural vibration
models has been undertaken by Shakhesi [15]. The in-
fluence of an accurate representation of the shear in the
different layers has been outlined. On investigating the
evolution of the resonance frequencies and their corre-
sponding damping loss factors of a two-layered beam
when the thicknesses of the two constitutive materials
vary, a surprising coupling effect between flexural and
longitudinal waves has been observed and is presented
here.

2. The two-layered beam

The two-layered cantilever beam of interest has the
following dimensions: it is 300 mm long and 30 mm
wide. Total thickness is 40 mm and the characteris-
tics of the constitutive materials are listed in Table 1.
Assumption is made that these materials are both ho-
mogeneous and isotropic. Hence, material damping is
characterized by the material loss factor in tension–
compressionηn and the material loss factor in shearηs

with:
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ηn =
E′

E
, ηs =

G′

G
, (1)

whereE,E′ andG,G′ are real and imaginary parts of
complex Young and shear moduli.

Some beam configurations have been considered
with variations in each layer’s thickness ranging from
0 to 40 mm, while keeping the beam total thickness
constant.

Since the study consists in an unsymmetrical com-
posite beam in flexural vibration the coupling phe-
nomenon of interest is the interaction between bending
and extension.

3. Finite element models

Two different models are considered, both using a
higher order shear deformation theory (HSDT):

– Model I, in which coupling effects are neglected,
is based on the following displacement field:

u(x, z, t) = zθ(x, t) + z3ζ(x, t),
(2)

w(x, t) = w0(x, t).

– Model II includes coupling effects and is based on
the following displacement field:

u(x, z, t) = u0(x, t) + zθ(x, t) + z3ζ(x, t),
(3)

w(x, t) = w0(x, t),

where (x, z) is the plane of flexion of the beam, (u,w)
are the displacements of a generic point (x, z) in the
beam at timet and (u0,w0) are the displacements of
a point on the neutral axis of the beam.θ(x, t) is the
rotation of the normal to the neutral axis andζ(x, t)
is the warping function of the section. The associ-
ated longitudinal and transverse shear strains can be
calculated from Eqs (2) or (3) and the corresponding
stresses can be expressed writing the constitutive equa-
tions for each layer. Using these expressions of strains
and stresses, the principle of virtual work at each in-
stant of time is written in terms of displacements, rota-
tions and warping variables. According to the general
finite element procedure, the beam is discretized into
N three-node elements with four degrees of freedom
per node (u0,w0, θ andζ) and the vector of displace-
ments in each elemente is written in the following ma-
trix form:

{u} e = [N ]e{ ū} e, (4)

where [N ]e is the matrix of shape functions and {ū} e
denotes the nodal displacement vector associated with
elemente.

The damping model used in the outcoming elements
is based on the concept of specific damping capacity
(SDC) which states:

ψi =
∆Ui
Ui

, (5)

where∆Ui is defined as the energy absorbed by the
structure andUi is the maximum strain energy per cy-
cle of loading, for modei:

∆Ui = 1
2{φi} T[K ′]{ φi},

ui = 1
2{φi} T[K]{ φi} . (6)

{φi} is the i-th modal shape of the system, [K] is the
stiffness matrix and [K ′] the damping matrix ([K] and
[K ′] are real and imaginary parts of the complex stiff-
ness matrix). Provided that the damping is low, the fol-
lowing relation can be written:

ψ = 2πη. (7)

4. Numerical results and coupling effect

The two-layered beam described previously has
been successively modelized using twenty finite ele-
ments derived from model I and model II. Natural fre-
quencies and corresponding damping loss factors have
been computed for the first two modes which are flex-
ural ones. Figure 1 shows the effect of thickness dis-
tribution on the natural frequencies for modes 3 and
4. The curves concerning model II clearly exhibit two
particular points where natural frequencies associated
with modes 3 and 4 are very close. These two points
correspond approximately to a 11 mm and a 33 mm
polyester thickness (or 29 mm and 7 mm aluminium
thickness).

Between these particular points, the evolution of the
third natural frequency computed from model I very
well fits that computed from model II. In return, when
the polyester thickness is less than 11 mm or more than
33 mm, model I gives results for mode 3 which are very
close to those corresponding to mode 4 of model II.

The same phenomenon is observed on the curves of
Fig. 2 which represent the variation of the modal damp-
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Fig. 1. The effect of thickness distribution on the natural frequencies.

Fig. 2. The effect of thickness distribution on damping loss factor.

ing loss factors versus polyester thickness. The curve
corresponding to model I-mode #3 fits that of model
II-mode #3 or the one for model II-mode #4 depending
on thickness distribution between polyester and alu-
minium. Transition occurs at the same two particular
points.

The third eigenmode derived from model I is clearly
identified as a flexural mode of the beam. The third
and fourth eigenmodes derived from model II can be
identified from the decomposition of the total strain en-
ergyU into a flexural strain energyUf and a longitu-
dinal strain energyUl . In this way, the adimentional
ratio Uf/U tends toward one for a flexural mode and
the same ratio tends toward zero in the case of a longi-
tudinal mode. The variation ofUf/U versus polyester
thickness for the third and fourth eigenmodes derived
from model II is shown on Fig. 3.

The resulting curves clearly show that in the range
between PI and PII the third eigenmode derived from

Fig. 3. The effect of thickness distribution on the modal strain energy
(model II).

model II is a flexural one. On the other hand, when
polyester thickness is below PI or above PII , this third
eigenmode corresponds with longitudinal vibrations.
In that case, this is the fourth eigenmode which is a
flexural one. This phenomenon gives an explanation of
the observations made on the curves of Figs 1 and 2
and described below.

It is to be noticed that in the vicinity of the particular
points PI or PII there is a coupling effect between both
modes. The two points themselves correspond to the
following partition of the strain energy:

U = 2Uf = 2Ul . (8)

It can be seen from Fig. 3 that a slight coupling be-
tween longitudinal and flexural effects is remaining for
all beam configurations in the range between PI and
PII .

The curves presented Fig. 2 showed the third and
fourth mathematical eigenmodes. They can now be
drawn again considering on the one hand the third
mode where flexural energy is dominant and on the
other hand the first mode governed by longitudinal en-
ergy. The new graph is presented Fig. 4. It can be seen
from the curve that in the vicinity of the two points PI

and PII , the longitudinal damping loss factor rise to a
maximum as the flexural damping loss factor fall to a
minimum.

As has already previously seen with the strain en-
ergy, the total dissipated energy∆U can be partitioned
into a flexural dissipated energy∆Uf and a longitudi-
nal dissipated energy∆Ul . The ratio∆Uf/∆U is used
to represent the part of energy dissipated from flexural
vibrations. Figure 5 shows the influence of thickness
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Fig. 4. Computations of damping loss factor for first longitudinal and
third flexural mode.

Fig. 5. The effect of thickness distribution on the dissipated energy
(model II).

distribution on the dissipated energy ratio∆Uf/∆U . It
can be seen that for beam configurations PI and PII the
energy is dissipated mainly by the way of flexural vi-
brations (i.e., flexural dissipated energy is about 75%
of the total loss energy for the beam configuration at
PII ). However, for the same beam configurations PI and
PII , it was shown from Fig. 3 that the total strain energy
was equally distributed between longitudinal and flex-
ural effects. This can be explained by the fact that flex-
ural vibrations involve a damping loss factorηs due to
shear effects which is generally greater than the damp-
ing loss factorηn which governs longitudinal vibra-
tions. This is the case here with the polyester layer.

Another consequence is that between the two beam
configurations at points PI and PII , the third eigenmode,
which is clearly ruled by the flexion, dissipates almost

Fig. 6. The effect of thickness distribution on the strain energy
(model II).

Fig. 7. The effect of thickness distribution on the dissipated energy
(model II).

no longitudinal energy. On the other hand, although the
fourth eigenmode is ruled by longitudinal vibrations, a
significant part of loss energy is dissipated by the flex-
ion. The corresponding curve shown by Fig. 5 gives a
ratio ∆Uf/∆U in the range from 0.1 to 0.2, that is to
say that from 10 to 20% of loss energy is dissipated by
the flexion.

Similar coupling effects can be observed by study-
ing of eigenmodes 6 and 7 for which the same con-
clusions can be drawn (see Figs 6 and 7 for the vari-
ation ofUf/U and∆Uf/∆U ). These eigenmodes alter-
natively correspond to the fifth flexural mode and the
second longitudinal mode, depending on the distribu-
tion of thickness in the beam. One should notice the
increasing influence of coupling effects in these higher
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modes and the shifting of the transition points from PI

and PII to P′I and P′II .

5. Summary and conclusions

The coupling effects of flexural and longitudinal vi-
brations have been pointed out from the damping and
dynamic analysis of a two-layered beam. The effects
of varying the constitutive materials’ thickness of the
beam have been investigated.

The results have shown that coupling effects oc-
cur more specially for some particular beam configu-
rations (particular values of the thickness of the lay-
ers). A mechanical model including coupling capabil-
ities will be very useful in such cases. Another prac-
tical aspect of these results is the possible use of the
coupling phenomenon in the design of damping for vi-
bration control (i.e., it is possible to increase the lon-
gitudinal damping capability of the beam by coupling
longitudinal vibrations with highly damped flexural vi-
brations).
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