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This article reviews the literature concerning the balancing of
rotors including the origins of various balancing techniques
including ones that use influence coefficient, modal, unified,
no phase, and no amplitude methods to balance. This survey
covers the computational algorithms as well as the physical
concepts involved in balancing rotating equipment.
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1. Introduction

Balancing a rotating machine is a vital step to en-
sure that the machine will operate reliably. This bal-
ancing generally consists of the addition or removal of
small amounts of weight at various axial locations and
angular positions along the rotor that contribute rotat-
ing forces to the system. This process requires both
time and money; the longer the process takes the more
costly the operation for critical path machinery, be-
cause the machinery is generally out of service for part
or all of the balancing effort.

Various aspects relating to efficient balance strate-
gies concern the size of the balance correction weights,
modal type weights, the optimal balance planes, an-
gular positions, and the number of balance planes re-
quired. Additionally, the balancer may need to balance
for vibration on just one machine or bearing in a multi-
bearing machinery train, such as a generator, but not
have the use of the balance planes in that machine be-
cause of the difficulty involved in their use. For in-
stance in the case of a hydrogen cooled generator, the
generator hydrogen must be purged before installing a
balance weight, and before running the unit under load

the system has to be tested for leaks and refilled with
hydrogen – a time consuming and expensive exercise;
a balance shot can take from one day to over two days.

2. Literature

A. Föppl (1895) formulated and solved the equa-
tions governing the response of a single mass un-
damped rotor system [35]. His analysis showed that
at speeds significantly higher that the critical speed
the rotor would turn about its mass center; his un-
damped analysis predicted infinite response at the crit-
ical speed and a transient response at the critical speed
frequency. H.H. Jeffcott [63] analyzed the fundamen-
tal nature of the response of a single mass flexible ro-
tor to imbalance in 1919. Proper instrumentation to ex-
perimentally verify these results would not exist for
years. Rieger [123] references electronic and strobo-
scopic measurements first developed in the 1930’s.

Even before Jeffcott explained the fundamental re-
sponse of rotor systems, balancing machines were in
use, Rieger [123]; Martinson developed a balancing
machine as early as 1870. On this balance machine
the ‘heavy’ spot was marked by hand. At low speeds
(sub-critical) the ‘heavy’ spot would coincide with the
‘high’ spot of the whirl according to Jeffcott’s analysis.

Early balancers such as S.H. Weaver [159] in 1928
realized that the balance weights and imbalances act
as forces to the system. Weaver was aware that the
forces at the bearing locations for a rigid rotor changed
with the magnitude and and phase of the imbalance
weights. Later balancers would develop the notion of
influence coefficients, though at first they would not
use this name.

2.1. Influence coefficient methods

T.C. Rathbone [120], an experimental engineer in
the Large Turbine Division of Westinghouse at the
South Philadelphia Works, used astrobo-vibroscope
to study the vibration of a large rotor (50 tons). The
strobo-vibroscopeused a microscope, reflective foil
mounted to the bearing housing, and a strobe light. The
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strobe activated a neon flash which caused a pink spot
to appear on the observed Lissajous figure indicating
the angular orientation. A second strobe, synchronized
to the first, illuminated an exposed portion of the shaft
which had been painted to give an angular reference. In
a series of experiments Rathbone applied various size
balance weights that showed the amplitude responded
linearly; he also placed a trial weight at different an-
gular locations with the vibration amplitude remaining
the same but the vibration phase shifting by the same
amount as the changes in the trial weight angle. These
experiments also found a difference between the hous-
ing and shaft vibration.

Rathbone [120] in 1929 described a balancing meth-
od that usedunit motions, similar to influence coeffi-
cients for orbits, to reduce the vibration amplitudes at
each end of a machine. The technique used linear su-
perposition to simultaneously reduce the elliptical vi-
bration pattern at both ends of the rotor. Theunit mo-
tions were the elliptical motion that resulted from a
known (unit) imbalance; the ellipses were referenced
at a constant shaft rotation throughout the procedure.
The author stated that J.P. Den Hartog, who worked for
Westinghouse at this time, had an analytic solution to
this problem.

Rathbone showed that the ellipse method produced
two solutions, and he reasoned that data from only two
vibration directions were needed, either the vertical or
horizontal vibration would suffice. Using a shaft refer-
ence system, Rathbone expressed the vibration in one
direction as an amplitude and phase, a vector.

He then used known calibration weights to derive
the rotating “vectors representing the influence of the
unit motions alone,” which we now know as the in-
fluence coefficients (vectors); these vectors could be
denoted by an amplitude and phase. When using the
vertical motion, phase would be computed by strobo-
scopic determination of the angular rotation of a mark
on the shaft from the vertical plane at the moment the
vibration (motion) reached its peak. This phase con-
vention would correspond to alag anglein today’s ter-
minology. The amplitude of the vector would be the
magnitude of the vibration (presumed to be mostly at
1× rotation).

Rathbone then used an iterative graphical technique
to reduce the vibration at both ends of the rotor. How-
ever, he knew that his solution involved the solution
of linear equations, and although he did not present
the results, he stated that the mathematical solution
which was “quite involved” had be solved by an under-
graduate at the University of Copenhagen named Nils
O. Myklestad.

Not only does a linear solution for the two plane bal-
ance problem as stated in [120] represent a two plane
exact point balance, but Rathbone also showed how to
apply the method to multi-bearing rotors. In particular
he examined a four bearing system, such as a turbine-
generator set. He stated that an initial run and four trial
runs were required for a balance, and he gave an exam-
ple of this iterative solution for the four planes. One of
the article’s discussers, M. Stone, acknowledged that
Rathbone had the logistics for multi-plane balancing;
however, he (Stone) doubted the practicality of obtain-
ing a correct balance solution.

E.L. Thearle [148] of the General Electric Company
presented a two plane semi-graphical balancing proce-
dure based on a linear rotor system. Thearle’s included
an analytical solution compared to Rathbone’s itera-
tive solution [120]. This technique comprised what we
would now call a two point exact point balance; the
balance computation included one speed and two vi-
bration sensors. For many years, until computing de-
vices progressed, a two plane balance computation
would be the practical limit for most field balancing.
J.G. Baker [8] and a later discussion of this paper
by T.C. Rathbone [121] generalized Thearle’s work.
Baker suggested using groups of trial weights which
affect the vibration at only one bearing (at the one
speed) at a time. Baker explored the use of this on ma-
chinery involving both two and three bearings; with
such a technique one could balance in more than two
planes using essentially a single plane balance compu-
tation.

In 1932 K.R. Hopkirk [51]1 stated the defining prin-
ciple for what we call influence coefficients. In Hop-
kirk’s own words

Thus, if the [mass] eccentricity is represented by
the vectora, referred to a direction fixed in the
moving mass and serving as the positive real axis,
the displacement of each support may be repre-
sented by

u = A1a

whereA1 is a vector or a complex number . . . .
The support displacement is thus represented as a
complex number referred to a direction fixed in
the rotor. If the system in motion includes several
masses, each eccentrically mounted mass will give

1Translated from French by L. Kitis, a faculty member in the Me-
chanical Engineering Department at the University of Virginia.
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rise to a similar support displacement, such that the
total displacement will be represented by

u = A1a+B1b+ · · · =
∑
i

Aia

each term corresponding to a mass in motion.

The above formulates the balancing problem for
multiple weight additions, although no runout or noise
is present in these equations. Hopkirk also states the
problem for two measurement locations,u1 andu2.

Hopkirk goes on to state,

The equation given above for the displacement of
a point, whose terms are functions of unbalanced
forces, is the basis of all methods of balancing,
and its solution depends on whether it is possible
to determine the vectoru. The vectoru is com-
pletely determined by its magnitude (modulus) and
its phase with respect to a point fixed in the mov-
ing part. The magnitude can be measured with suf-
ficient accuracy by means of one of a number of in-
struments used today [1930’s] for this purpose. The
measurement of the phase, if it is to be accurate,
requires a stroboscopic method; the various instru-
ments used have not become standard like those in-
tended only for measuring the magnitude. It is not
necessary to know the vibration phase to obtain a
solution, although the work involved would be con-
siderably easier.

In the above method Hopkirk would have computed
a vibration to cancel the existing vibration. He follows
by solving the problem using just the magnitudes of
the vibration.

K.R. Hopkirk [52] formulated the two plane bal-
ance using influence coefficients in the same manner
as more modern treatments; he called the influence co-
efficients transmission constants and used vector nota-
tion to denote these coefficients. He presented an an-
alytical solution in terms of vectors (complex valued
quantities).

T.P. Goodman [42] substantially improved balanc-
ing technology in 1964 when he introduced the least
squares balancing procedure. This method used data
from multiple speeds and measurement locations, more
measurements than balance planes, to minimized a
weighted sums of the squares of the residual vibration.
The technique sought a weighting scheme that would
minimize the maximum residual vibration through an
iteration of the weighting used for the least squares op-
timization.

In various combinations the authors A.G. Parkinson,
M.S. Darlow, A.J. Smalley, and R.H. Badgley [21,23,
24,113] have explored what they call unified balanc-
ing. This approach uses influence coefficients to com-
pute modal trial weight sets that have little or no effect
on modes of vibration that have already been balanced.
Balancing the next mode is equivalent computationally
to a single plane balance with the balance weights ap-
plied in more than one plane simultaneously.

2.2. Generating influence coefficients

Most authors and balancers who use an influence
coefficient method, starting with Rathbone [120] and
Thearle [148], have used a reference run with no bal-
ance weights and a calibration or trial run with a bal-
ance weight or weight set attached to the rotor to gen-
erate the influence coefficients. For actual experimen-
tal rotor balancing, experimentally generated influence
coefficients are preferred.

J. Lund and J. Tonnesen [93] used two trial weight
runs for each balance plane in order to identify and
reduce measurement errors. This technique would be
most useful in the laboratory, since it requires extra
trial weight runs that would delay any balancing.

Jeffrey V. LeGrow [86] presented a technique to
generate the influence coefficients for an actual rotor
using a computer model. The advantage in time and
cost of such an approach could be substantial; how-
ever, this method could not balance the test rotor ade-
quately. LeGrow reported that further tests were being
conducted which showed some promise.

A.H. Church and R. Plunkett (1961) [18] used a
mobility (modal) method to generate influence coeffi-
cients without trial weights. Church and Plunkett ex-
cited the non-rotating shaft with a shaker, and they
tested this theory on a very flexible shaft, whose first
three resonances occurred at 550 cpm, 2000 cpm, and
4180 cpm, mounted in stiff ball bearings. While quite
efficient in theory this method did not produce good re-
sults, and furthermore, one could have significant dif-
ficulties in applying this method to an actual machine,
as is pointed out in the discussion by Josef K. Sevcik.
J. Tonnesen and J. Lund [151] used impact excitation
to determine the influence coefficients. This method
has some limitations as well as sources of error and
would not be practical for field balancing.

Lars-Ove Larsson [82] generated influence coef-
ficients using a statistical technique. The imbalance
runs corresponded to statistical trials, and the influ-
ence coefficients assumed the role of the regression co-
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efficients. This approach allows one to ‘average’ the
data when constructing the influence coefficient ma-
trix; also it would enable one to update the influence
coefficients upon the additional of balance weights to
a machine.

2.3. Modal balancing

Modal balancing generally assumes that the rotor
system has planar modes of vibration. Balancing one
mode should not effect any other mode; although
higher modes that are not being considered may be ad-
versely effected. Often the procedure can be quite effi-
cient. There are variations on this theme.

K.R. Hopkirk [51] wrote of the first two modes be-
ing effected by

two forces can be expressed as a static unbalanced
forceP and a coupleT . . . . The critical speed is
produced by grouping linear combinations such as

K1P +K2T

Hopkirk [51] illustrated what happens to a two mode
rotor with imbalance at one end. He showed the exci-
tation of the first critical, and its traversing of a 180◦

phase change due to the natural frequency. Next he
showed correctly that the end with the imbalance has
the lowest (he showed zero) vibration between the first
and second modes; an idea used in polar plot bal-
ancing. Also, Hopkirk shows super critical operation
above the second mode. This seems rather advanced
for the early 1930’s considering the limitations of the
available instrumentation.

In 1953 L.P. Grobel [43] used so-called static,
weights in-phase at either end of the shaft, and couple
(or dynamic) balance weights, weights placed at each
end but at 180◦ phase angle with respect to each other.
These balance weight combinations were used to suc-
cessfully balance the rotor one mode at a time by pro-
gressing from the lower modes.

J.R. Lindsey [88] used static and couple balance
weights combined with a sensitivity factor and ahigh
spot number. The modal component of the vibration
is determined by graphical means using vibration data
from each end of a machine in one plane. The first
mode (one loop) vibration is taken to be the vector av-
erage of the two vibrations, and the second mode com-
ponent is taken to be 1/2 the vector difference of the
two vibration components. (Three modes can also be
accommodated.) Sensitivity factors relate to the mag-

nitude of either the first or second mode components
of vibration calculated as previously stated.

The high spot numberrelates to the phase angle.
Sensitivities and high spot numbers have been devel-
oped over time for a variety of machines. The strength
of this technique derives from using this historical data,
and the method is most often used as a one shot bal-
ance method. General Electric Company’s field engi-
neers use this technique, as do many utilities to bal-
ance their turbine generators. From 1960 until the pre-
sentation of the paper [88], Lindsey said that this tech-
nique had been used to balance more than one hundred
rotors.

The desire with this method is to arrive at an ade-
quate balance – usually not the best achievable balance
– in an efficient manner; the technique provided good
results with turbine generator units consisting of mul-
tiple rotors with long spans. A weakness of the method
involves its lack of concern with the cross effect of a
static weight on the couple vibration and the effect of
a couple weight on the static component of the vibra-
tion. Lindsey stated, “When extensive coupling exists
among unbalances in several rotors, the methods errs
significantly.” He also remarked on difficulties the ap-
proach had in distinguishing between one and three-
loop modes, the first and second critical speeds.

R.E.D. Bishop [11] in 1959 formulated equations for
the displacement amplitudes of a circular rotor with
distributed mass and elasticity. His solution for a ro-
tor’s vibration looks like a power series of Jeffcott ro-
tors. Also in 1959, R.E.D. Bishop and G.M.L. Glad-
well [12] introduce what is generally thought of as
modal balancing. In this paper they show the inade-
quateness of low speed balancing (rigid rotor balanc-
ing) for high speed flexible rotors, analyze the effects
of shaft bow, and study the effects of the rotor’s weight.
They applied the analysis in reference [11] to a uniform
shaft through two modes.

Gladwell and Bishop (1959) [40] used the results
of Bishop’s [11] paper to analyze an axisymmetric
shaft of non-uniform diameter along its length. Bishop
and Gladwell discuss forced and free vibration as
well as methods to determine the natural frequencies
and characteristic modal functions. R.E.D. Bishop and
A.G. Parkinson [14] investigated problems associated
with closely spaced critical speeds or when a substan-
tial modal component from one mode affects another.
Bishop and Parkinson show two methods of adapting
C.C. Kennedy and D.D.P. Pancu’s [73] method for res-
onance testing to modal balancing.

A.G. Parkinson, K.L. Jackson, and R.E.D. Bishop
(1963) in two papers [114,115] further discussed the
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theory of modal balancing and tested this theory on
several thin shafts. A good discussion of modal balanc-
ing a bowed rotor and a bowed rotor with mass imbal-
ance is presented in the first paper. The modal method
was effective on the test rotors which had an initial
bend. A.L.G. Lindley and R.E.D. Bishop [87] discuss
the application of modal balancing to large steam tur-
bines in the range of 120–500 MW where the bearing
stiffness is large compared to the shaft stiffness. Their
experience is complimented by the work of several
other balancers. A.G. Parkinson and R.E.D. Bishop
in 1965 [112] consider the residual vibration due to
higher modes after modal balancing.

Parkinson summarized much of the work on modal
balancing and forced response from a modal view in a
1967 reference [109].

M.S. Hundal and R.J. Harker [54] presented a
method similar to those described above. They showed
that one could balance several modes simultaneously
as well as just one mode at a time.

2.4. Balancing using amplitude only

In the early days of vibration measurements, it was
difficult to obtain the phase of the 1× vibration accu-
rately. Although the vibration should be filtered to 1×
rotation often the overall vibration amplitude was used;
sometimes it was measured using a mechanical indica-
tor, vibrometer (see Rathbone [120] for an example).
Techniques were developed to balance using only the
amplitude of the vibration; this practice continues even
today. G.B. Karelitz [68], in the Research Department
of Westinghouse Electric & Manufacturing Company,
used a three trial weight to balance turbine generators.
This graphical technique used anunbalance finderto
locate the mass imbalance; theunbalance findercon-
sisted of four transparent strips held together with a
pivot at one end. The method could be used with trial
weights of unequal magnitudes.

F. Ribary [122] presented a graphical construction
that balanced using only the amplitude taken from an
initial run and three trial weight runs. I.J. Somervaille
[141] considerably simplified the graphical construc-
tion of Ribary [122]. Somervaille’s construction is also
known as the four circle method of balancing without
phase. The four circle method, as it is generally used
now, can be found in C. Jackson [62].

Balancing with only amplitude has had several ex-
tensions. K.R. Hopkirk [52] presented an analytical so-
lution for using only amplitude to perform a two plane
exact-point balance; this technique took seven runs.

L.E. Barrett, D.F. Li, and E.J. Gunter [9] adapted the
technique to balance a rotor through two modes us-
ing modal balance weights; E.J. Gunter, H. Springer,
and R.R. Humphris [46] used modal balancing with-
out phase to balance a rotor through three modes. Two
plane balancing using only the amplitude was also
done independently by L.J. Everett [30] who appeared
to be unaware of the earlier publications.

The number of runs required for a balance using am-
plitude only makes this method inherently less efficient
than an equivalent influence coefficient method. Fur-
thermore, after completing such a balance one has no
information that would help to trim balance or in the
future perform one-shot balancing. A trim balance re-
quires another four runs.

2.5. Balancing using phase only

Phase data may be obtained by directly marking
the shaft as was done on some of the early bal-
ancing machines from the 1800’s as described by
N.F. Rieger [123] or F. Ribary [122]. C. Jackson [61,
62] described methods of obtaining phase using a pen-
cil to mark the shaft and using orbit (Lissajous) analy-
sis; Jackson then incorporated the physics of the rotor,
whether it is above, below, or near a critical speed, to
balance. This technique could require some iterations
to find a solution depending upon the knowledge and
experience of the balance practitioner.

K.R. Hopkirk [52] derived a technique for two plane
balancing using only phase information. Hopkirk’s
method comprises a two plane exact-point balance, and
the procedure required five trial runs including the ini-
tial one. I.J. Somervaille [141] presented a graphical
means to solve for unbalance on a disc (single plane)
using only the phase information.

W.C. Foiles and D.E. Bently [34] found both analyt-
ical and graphical solutions for single-plane and multi-
plane balancing using only phase information; their so-
lution used a type of influence coefficient applicable
to balancing using this partial information. Whereas
single plane balancing without phase requires three
trial weights; this technique uses just two trial weight
runs. Methods were developed for both single plane
and multi-plane balancing. The Foiles and Bently pa-
per [34] allowed for trial weights of different magni-
tudes. This paper presented both analytical and graphi-
cal solutions for a single plane balance (or the influence
coefficients for a multi-plane balance), and the authors
applied the technique to a cooling tower fan. Somer-
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vaille’s [141] graphical technique for single plane bal-
ancing was a better graphical method.

Similar to the techniques that use only amplitude,
these methods require additional balance runs com-
pared to influence coefficient methods that use full in-
formation, both amplitude and phase. Also, after a bal-
ance, one has no useful residual data for trim balanc-
ing or one-shot balancing in future efforts. These de-
ficiencies result in serious inefficiencies for the tech-
niques that use only partial information in balancing,
either only amplitude or only phase.

2.6. Linear programming techniques

R.M. Little’s dissertation [90] and R.M. Little and
W.D. Pilkey [90] described a linear programming
method of balancing that enables one to place con-
straints on the magnitude of the balance weights; how-
ever, this technique requires at least as many balance
weights as measurement observations which is in gen-
eral not possible. Little’s first balance computation
(analytical model) resulted in an unbounded solution
when he used eight balance planes; he bounded the
magnitudes of the balance weights to produce a solu-
tion. M.S. Darlow [23] discussed the problem of re-
dundant balance planes when more than the required
number of balance planes are used. Often large balance
weights will be computed because the influence matrix
is ill-conditioned. This occurs, because the columns of
the influence coefficient matrix are or are nearly lin-
early dependent.

W.D. Pilkey and J.T. Bailey [118] corrected the
deficiencies of the previous linear programming ap-
proach by using a different formulation for the prob-
lem. Pilkey and Bailey separated their techniques into
time independent and time dependent algorithms. The
techniques investigated were the following:

1. Linear Sum. Minimize the sum of all the com-
puted residual measurements (absolute value of
the residuals).

2. Min-max. Minimize the maximum residual mea-
surement.

3. Least Squares. Minimize the sum of the squares
of all residual measurements including constraints
on the magnitudes of the corrective balance
weights. This leads to a quadratic program.

The time independent techniques only view the re-
sponse with the shaft in its 0◦ position for balance
weights placed on thex and they axes, because the lin-
ear programming techniques use real valued influence

coefficients. The time dependent techniques are simi-
lar to the above with the inclusion of constraints relat-
ing to other orientations of the shaft or equivalently the
balance weights with the shaft in its initial position.

E. Woomer and W. Pilkey [163] explored a quadratic
formulation to the balancing problem. They use a shift
for the inequalities on the balance weights. This shift
guarantees the positivity of the new variables so that
quadratic programming techniques can be used di-
rectly.

2.7. Number of planes required to balance

K.R. Hopkirk begins his 1940 article [52] with the
following statement,

. . . in order to balance a cylindrical type rotor, two
planes spaced apart axially are necessary and suf-
ficient for the addition of correcting weights. This
statement is incorrect only when applied to ma-
chines running above the second critical speed.

This agrees more-or-less with the later ideas from
modal balancing as established by Bishop and Glad-
well [12] as well as others.

J.P. Den Hartog [25] stated the following:

Theorem. A rotor consisting of a straight, weightless
shaft with N concentrated masses along its length, sup-
ported in B bearings along its length, and afflicted
with an arbitrary unbalance distribution along the
shaft(not restricted to the location of the concentrated
masses)can be perfectly balanced at all speeds by
placing appropriate small correction weights in N+ B
different planes along the length of the shaft.In case
the location of a mass happens to coincide with that of
a bearing, only one of the two is to be counted.

Additionally, Den Hartog extended his result to
more realistic rotors as: “nearly perfect balance at all
speeds can be obtained by balancing in N+ B planes
where N now means the number of rotor critical speeds
in the speed range from zero to four times the maximum
service speed of the machine.” He also stated that such
a balance would be independent of the bearing support
parameters.

W. Kellenberger [71] believed that a flexible rotor
with two bearings requiresN+2 balance planes where
N is the number of modes. The rotor was balanced ini-
tially as a rigid rotor, and then modal balance weight
sets were computed that were orthogonal to the rigid
body modes. This orthogonality condition constrains
the nature of the balance weights and thus requires two
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additional balance planes. One should note that with
this technique onlyN linearly independent balance
weight sets are used after the initial rigid rotor balance.

R.E.D. Bishop and A.G. Parkinson in a discussion
to Kellenberger’s paper [71] pointed out that the higher
modes cause the residual vibration and neither theirN
plane method nor Kellenberger’sN + 2 plane method
can guarantee the effect on these modes “for better
or worse.” To this aim they present a simple example
where theN plane method works better than theN+2
plane method; however, their point is that one can not
tell how the higher modes will be affected.

Also, Bishop and Parkinson agreed with Kellen-
berger that his technique complicates the procedure.
One can see that this complication restricts the loca-
tions of weight placement which in general results in
weights that have less effect (per amount of weight) on
the mode being balanced. Also, not mentioned is the
fact that for a rotor with flexible bearings, like a real
rotor, the deflection at the bearings is proportional to
the force there. Hence the force at the bearings would
be linearly dependent (given the assumptions used) on
the modal displacements; so, balancing the modes also
would result in balancing the forces at the bearings.
Only when the bearings take the form of a rigid con-
straint (i.e., rigid bearings) could the modes be bal-
anced and non-zero forces occur at the bearing loca-
tions.

H.F. Black and S.M. Nuttal [15] investigated the un-
balance response of rotors with non-conservative cross
coupling such as results from hydrodynamic bearings.
They claim that it takes 2N balance planes to balance a
rotor withN modes. They do point out that this may re-
sult in ill conditioned balancing equations. They show
that the modes in such a rotor would not be real (nor-
mal modes) but would be complex; so planar modes
would not exist. Also, they mention that the eigenval-
ues and mode shapes depend upon the speed of the ro-
tor – this is not accounted for by the modal methods.

2.8. Bowed rotor

A.G. Parkinson, K.L. Jackson, and R.E.D. Bishop
[114,115] experimented with the effects of shaft bow
on modal balancing. J.C. Nicholas, E.J. Gunter, and
P.E. Allaire [104,105] analyzed the response and bal-
ancing of a single mass rotor with shaft bow. In [105]
they examined three methods of balancing a bowed ro-
tor. Method I reduced the shaft deflection to zero at the
balance speed, method II minimized the elastic shaft
deflection (not including shaft bow) at the balance

speed, and method III balanced the shaft to zero total
shaft deflection at the critical speed. W.C. Foiles [33]
balanced an experimental rotor that had a shaft bow
using conventional balance weights and demonstrated
that an analytic model of a rotor with shaft bow could
be balanced through three modes by using either con-
ventional or modal balance weights. Foiles used a mul-
tiple speed procedure instead of the single speed pro-
cedure of Nicholas, Gunter, and Allaire.

2.9. Redundant balancing planes

M.S. Darlow [23] provided information on an im-
portant problem in balancing that results in ill-condi-
tioning of the balance equations. When columns, cor-
responding to the balance planes, of the influence co-
efficient matrix form a linear (or nearly) dependent set
of vectors very large correction weights can be com-
puted. The majority of the effects of these weights can-
cel each other; this results from the ill-conditioning of
the influence coefficient matrix. Darlow showed with
the aid of examples that the problem can be solved by
using fewer balance planes. In reference [23] Darlow
gave an algorithm to compute the balance planes that
should be used.

2.10. Other methods

G.A. Hassan [48] presented a statistical approach to
balancing that used regression analysis to reduce the
vibration amplitude (dependent variable) at one or two
bearings using the balance weight magnitude and an-
gular location as the independent variables. This ap-
proach uses a number of balance runs and has applica-
tions to rotors that have a non-linear response. It seems
that it would be more efficient to use a linear model and
iterate for a rotor system that exhibited response non-
linearities and measurement uncertainties; most rotor
systems are more linear than not.

Y. Kang, C.P. Liu, and G.J. Sheen [65] derived a
method to balance non-symmetric rotors; the asymme-
tries include both mass and stiffness properties. The
method requires two trial weights per balance plane
and uses the forward precession component of the ro-
tor’s response. Y. Kang and G.J. Sheen and S.N. Wang
[67] formulated a unified balancing algorithm for non-
symmetric rotor systems.
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3. Current balancing practices

Today, most field balancing uses either an exact
point procedure or a least squares error method to com-
pute the correction weights. Trial weight sets may con-
sist of more than one weight, such as modal (or uni-
fied) balance weight sets or ‘static’ and ‘couple’ bal-
ance weights. Balancing using partial information (just
the amplitude or phase of the vibration) is also prac-
ticed; although this is usually on machines which one
can easily attach balance weights. Agreeing upon a
goal for the balance helps to establish a stopping point;
one need not necessarily balance a rotor to the lowest
achievable levels in order to have a satisfactory bal-
ance.
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