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The variability of the maximum response displacement of random frame structures under deterministic earthquake loading are
examined in this paper using stochastic finite element techniques. The elastic modulus and the mass density are assumed to be
described by cross-correlated stochastic fields. Specifically, a variability response function formulation is used for this problem,
which allows for calculation of spectral-distribution-free upper bounds of the maximum displacement variance. Further, under the
assumption of prespecified correlation functions describing the spatial variation of the material properties, variability response
functions are used to calculate the corresponding maximum displacement variance. Two numerical examples are provided to
demonstrate the methodology. Results show that randomness in the material properties can lead to significant uncertainty in the
maximum response displacement.

1. Introduction

For the design of structures, it is often sufficient to evaluate the maximum response of the structure to a given
loading. To analyze the maximum structural response under earthquake loading, a design response spectrum is
generally used. While this measure of the maximum response usually accounts for randomness in the loading (the
earthquake), it does not account for randomness in the material/geometric properties of the structure. In this paper,
variability response functions (see Deodatis and Graham [7] for their definition) are used to analyze the random
maximum deflection of a structure with a stochastically varying elastic modulus and mass density that is subjected
to a deterministic (design) earthquake loading.

This variability response function analysis is performed in the context of the random eigenvalue problem, which
first came under scrutiny over twenty five years ago. At this time, analytical solutions and direct simulation of
stochastic fields were performed for relatively simple structural systems (see, e.g., Boyce [2], Boyce and Xia [3],
Collins and Thomson [5], Fox and Kapoor [8], Grigoriu [10], Hasselman and Hart [11], Hoshiya and Shah [12],
Huang [13], Ibrahim [14], lyengar and Manohar [15], Manohar and lyengar [17], Purkert and Vom Scheidt [20],
Shinozuka and Astill [23], Soong and Bogdanoff [24], Vaicaitis [28]). The emergence of stochastic finite element
methods has provided a means of performing stochastic analyses of more complicated structural systems, leading
to a renewed interest in the random eigenvalue problem (Koyluoglu [16], Spanos and Zeldin [25], Nagashima and
Tsutsumi [18], Nakagiri et al. [19], Ramu and Ganesan [21], Ramu et al. [22], and Zhang and Chen [29]). In most of
the work in this area, it was assumed that the stochastic material properties are represented by independent stochastic
fields. In general, however, it is expected that there may be some cross-correlation between material properties such
as the mass density and the elastic modulus. Recently Graham and Deodatis [9] analyzed the eigenvalue variability
for beam-column and plate structures with the mass density and the elastic modulus represented by cross-correlated
stochastic fields using variability response functions. This paper uses the techniques presented in that work to eval-
uate the maximum displacement variability of structures with random eigenvalues.
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Describing the elastic modulus and mass density as stochastic fields, the weighted integral method (Deodatis [6],
Takada [26]) is used to represent the stochastic mass and stiffness matrices as linear combinations of random vari-
ables. Variability response functions for the maximum deflection are then formulated, allowing estimates to be made
of the spectral-distribution-free upper bounds on the maximum deflection variability. These bounds are most inter-
esting for real engineering applications, because very little probabilistic information is generally available about the
material properties. However, assuming that the spectral density functions describing these properties are known
or can be assumed, variability response functions can be applied to calculate the corresponding maximum deflec-
tion variability. In order to demonstrate these capabilities, numerical examples will be provided for two reinforced
concrete frames.

2. Maximum deflection variability

The 2-node, 6 degree-of-freedom beam/column finite element (two displacements and one rotation at each node)
is used in this paper. For the beam/column finite elements considered here, the elastic tiahdurass density
p are assumed to vary randomly along the length of the element as:

E(z) = Eo[1+ f(z)], —1< f(2), (1a)

px) = po[l + g(x)], —1 < g(x), (1b)
where Ey andpg are the mean values of the elastic modulus and mass density, respectivefyzaaddg(z) are
zero-mean homogeneous stochastic fields, which are assumed to be cross-correlated. Substituting the expressions for

the randomly varying elastic modulus and mass density into the standard finite element formulations, the stochastic
element stiffness and mass matrices were derived by Deodatis and Graham [7] as:

KO =K + AKX + AKEY - x$9 + AKE - X1, )
M© =M + AMP v .. AME) . v, 3)

Whernge) andMge) are the deterministic parts of the element stiffness and mass matrix, respectively, which are
obtained using the mean values of the elastic modulus and mass density:
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andX®, k=1,2,3,and/, k = 1,2,...,7, are the stiffness matrix and mass matrix weighted integrals:

+1

e e (CL S (®)
7i.l

m@:/g“w@mg k=1,2,...,7, 9)

-1

where¢ is the local (natural) coordinate system for the beam elen#@nTe global matrices may be assembled
from all of the element matrices using standard finite element methodology.

Using the finite element method, the eigenvalue problem is expressed for any type of finite element as:

(K —AjM)¢; =0, (10a)
dMep; =1, (10b)
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whereK andM are the stochastic global stiffness and mass matrices, respechyatythe jth eigenvalue and
¢; is the jth eigenvector. Because the stiffness and mass matrices are stochastic, tjtereigenvalue and the
jth eigenvector will be random. In Graham and Deodatis [9], a first-order perturbation approximationjto the
eigenvalue\; was found:

A = Ajo + D),

N 3 7
~ Ao+ (]b}-o{z (Z AKPX — 20> AMS)YT?)H b0, (11)
n=1

e=1 k=1

where ;o and¢;o are the deterministic parts of thi¢h eigenvalue and thgth eigenvector, which are calculated
using the following expressions:

(Ko = AjoMo)dj0 = 0, (12a)
PioModjo = 1. (12b)

Fox and Kapoor [8] and Zhu and Wu [30] derived a first-order approximation tgtktheigenvector as:
b; = djo+ Cj_l(*AK Bj0 + AjoAM o + BA;Mogjo — $Xj0ModjodjeAM o)

N 3
~ pjo+C;t Z Z(—AK Dpjo+ PJobKVpjoModpjo) - X
e=1 k=1

N 7
+C;t Z Z (MjoAM©O b0 + 3X;0010AM Db joMogh0) - Y, (13)

e=1ln=1

where o andg¢;o are calculated using Eq. (12), a@d is a deterministic matrix:
C; = Ko — XjoMo + AjoMogjodbJoMo. (14)

According to Clough and Penzien [4] the vector of the maximum deflections of a structure due to a deterministic
earthquake loading is:

Umax = \/Uimaer U%,maxJr et UﬁMD,max' (15)

whereNMD is the number of vibrational modes for the given structure. The végiapy, j = 1,2,...,NMD, is
the maximum deflection for a given mode numpper

Ujmax= ;- [@] - M - 1] Sa(&j, ), (16)

where); andg; are thejth eigenvalue and thigh eigenvector, respectively is the stochastic global mass matrix,
lis a vector of 1'sS4(&;, A;) is the displacement response spectrum for the given earthquake loadigg isutite
damping ratio for modg. Because\;, ¢;, andM are all random, the maximum deflection is also random. For the
following analysis it is assumed thgt is deterministic and that it is small enough so that damping does not have a
significant effect on the eigenvalues.

The random maximum deflection vector may be approximated using a first-order Taylor expansion of Eqs (15)
and (16) around the mean values of the weighted integrals:



360 L.L. Graham / Maximum displacement variability of stochastic structures subject to deterministic earthquake loading

NMD N 3
0Umax 8U‘max ©
Umax ~ Umaxo0+ ZZ [ i, " -Xke
j=1e=1k=1 aUJ max aX]i) o
NMD N 7
aU ax aU] max:|
+ s . Y,rge)’ 17
ng;lg [aU] max aYTge) 0 an

where the subscript 0 indicates that the quantity in brackets is taken at the (zero) mean value of the weighted integrals
andUnmax ois the maximum deflection vectbhynax evaluated at the zero-mean values of the weighted integrals:

N 1/2 N 1/2
Umax,O: lz {Uj,max,o}zl = [Z {¢j0 : ( }—0 : |VlO . 1) : Sd(fji AjO)}Z] . (18)
j=1 j=1

Taking the partial derivatives of Eqgs (11), (13), (15), and (16) and substituting into Eq. (17):

NMD N

Umax ~ Umax o+ Z Z

j=1le=1

7
zAXuﬁs;W x,ieuszua:;m-Yy], (19

= n=1

whereAxUY) . k=1,2,3,andAyUS), - n=1,2,...,7, are deterministic vectors, defined as:

AXU%mk—quVUMMA'[6@¢ﬂ+5gm¢ﬂ—1%QfAK?¢m

1 08,
(e) d
+e570;CF MO¢JO+5]ka¢jOm o, (&5, A50) |,

j=1,2...,NMD, k=1,2,3,e=1,2,...,N, (20)

e : e 3
AYU'(.n;XJn = dlag[vuj,max] ’ ( )¢JO + )\Jovjn(ﬁjo - E)Uonjgg’rz(ﬁ]o

+ Xjop;C; 1AM ¢ — —Ajo£§npgc Mogjo

1 05y
B P P S '
gofjnpj(bjos (gJ, _]0) a/\ (gj jO)
j=212,...,NMD,n=1,2,...,7,e=1,2,...,N, (21)

where diag[ ] represents a diagonal matrix whose diagonal components consist of the vector within parentheses, and
theith component of the vectdrU; max is defined as:

[Uj max dz
VU; may] | = o3 22
A T (22)
The constants!?,79, ¢, k = 1,2,...,7, 89,1, k = 1,2,3,7;, andp; are closed-form quantities, given
as:
o) = ¢IAMIV1S4(8;5, \jo), (23a)

B3 = $JobK T Mo1Su(€5, Aso), (23b)

J
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Y2 = JAM T IMo1S4 (4, Ajo), (23c)
el) = pToAK Vo, (23d)
€§72 = ¢1AM I g0, (23e)
= ¢joMoC; Mo1Sa(&;, Ajo), (23f)

pi = ¢1oMolSa(&;, Ajo)- (239)

Using Eq. (19), the mean and variance of the maximum deflection vector are estimated as:

S[Umax] = Umax,o. (24)

NMD NMD 3

VarUmad = > > Z Z ZZdlag AxUEY . ) - AxUSD (XX

j1=ljo=ler=lex=1k=1n=1

NMD NMD

303 3D S A Ui AUl Y

ji=ljo=lei=lex=1k=1n=1

NMD NMD

220303 DS g Ui, ) AU, EXEVE] (25)

j1=1ljo=lei=lex=1k=1n=1

3. Variability response functions

Using the expressions for the weighted integrals givenin Egs (8) and (9), the specific form of the weighted integral
covariances can be calculated for beam-column elements. Following a method similar to that used in Deodatis
and Graham [7], the variance of the maximum deflection vector for a structure discretized using the beam-column
elements described earlier is written as:

VarUmas = 1 - Sy p(K)VRF (k) dis + 1 h S, (K)VRF () s
+ / h Cf4(1)VRF3(k) dr + / - D 4(r)VRF4(k) d, (26)

where Sy (k) and Sy4(x) are the power spectral density functions describing the elastic modulus and the mass
density, and’'s,(x) (the co-spectrum) is the real part ahg,(«) (the quad-spectrum) is the imaginary part of the

cross spectral density functions describing the cross-correlation between the elastic modulus and the mass density
(Bendat and Piersol [1]):

Stq(K) = Cpg(k) — - Dyg(k). (27)
TheVRF;(k), i = 1,2, 3, 4, are the variability response functions, given in closed form as:

NMD NMD

VRFy(k)=> "> Z Z Z Zdlag AxUED . ) - AxUSD

j1=1lj,=le1=1lex=1k=1n=1

X [(Qeleezn + WekWepn) COSOTe,pe, k) — (Weik Qepn — QerkWepn) Sin(A‘T62€1H)} ) (28a)
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NMD NMD

VRFo(k) = > "> Z Z Z Zdlag (AyUS) . ) - AvUS)

ji=lje=lei=lex=1k=1n=1

X [(Qeleezn + WekWepn) COSOTe,pe, k) — (Weik Qepn — Qerk Wepn) Sin(A‘T62€1H)} ) (28b)

NMDNMD N N

VRF3(k) =2) "> > ) ZZdlag AxULD. ) - AYUSL

j1=ljo=ler=ler=1k=1n=1

X [(Qeﬂchzn + WeikWeyn) COSOT cpe, 5) — (Wek Qean — QerkcWean) Sin(AxCZGIIi)} , (28c)
NMDNMD N N

VRF4(r) =23 "> 3" % ZZdlag AxULD . ) - AYUL

j1=ljo=lei=ler=1k=1n=1

X [(Qeﬂchzn + We1kWezn) Sin(Axezeﬂi) + (We1erzn - Qe1kWezn) COS@ZEeZGIIi)} ) (28d)

where the matriceAK'?, k = 1,2,3,¢ = 1,2,..., N, are given in Eq. (6)AM(®), n = 1,2,...,7, ¢ = 1,2,
., N, are given in Eq. (7)AxU2.... j = 1,2,...,NMD, k = 1,2,3, is defined in Eq. 208y U, j =
1,2,...,NMD, n =1,2,...,7,is defined in Eq. (21\x.,., is the distance between the centerpoints of elements

(e1) and g2), and the’s andWW’s are the following closed-form expressions:

4 . (kL.

Qd:,gL sm(ﬁ2 ) e=1,2,...,N, (29a)
Qez = 34La<(n2L58) sm( 5 >+4nL cos(“é )) e=1,2...,N, (29b)

K e

- 384 48:2L2 + k4L FLe) | gur, (w212 — 24 rle
Qes—ﬁg)—Lg ( + k*L?) sin ) +8n (K2L? — 24) cos > ) )
e=1,2,...,N, (29c¢)
4 46080+ 5760:°L? — 120:*L? + k®L®) si rle
Qer = g7 |\ [~ 46080+ S7EOSLL ~ 1205 L L) sin{ =5
L
+12xL.(1920— 80x2L2 + k*L) cos(%) ) e=1,2,...,N, (29d)
4 (KL L.

Wez = —75 <—25m<'€2 ) + K2L5008<%>>, e=1,2,...,N, (29e)
Wea = %4 (6(8 — K?LZ) sin (%) — kL.(24— K*L2) cos(“ée)) e=1,2...,N, (29f)

K e
4% 4 L.(1920— 80x°L? + x*L? rLe

= oE " ( ?L2 + k*L7) cos 5
(KL
—10(384— 48+2L% + k*L%) sin <KT>) , e=1,2,...,N. (29g)
In these expressionsjs an element number amgh; = Qea = Qs = Wey = Wezg = Wes = W7 = 0.

It is worth noting that numerous first-order approximations are used in the formulation of the variability response
functions; in the numerical results Monte Carlo simulations of the weighted integrals will be used to estimate the
error inherent in these first-order approximations.
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4. Spectral-distribution-free upper bounds of displacement variability

The establishment of upper bounds on the displacement variability from Eq. (26) is somewhat complicated, be-
cause of the terms involving the cross-spectral density function. Assuming that the quad-speg¢g(unvan-
ishes, which is realistic for the consideration of material properties, an upper bound estimate for the variance of
displacement; is found as:

Var[U;] < 0% VRFy(k*) 4 05, VR (k) + 7407 1049 VRFsi(K*), (30)
where:

O'JZchRFli(Ii*) + asgVRFZi(m*) + Y100 qgVRFi(K")
> aﬁfVRFli(m) + asgVRin(m) + 74401 £044VRF3(K), —o00 < Kk < o0. (31)

vrg is defined here as]%g/affagg (the cross-correlation coefficient, which ranges from 0 tovVRBF;; is theith
component of vecto¥RF;, j = 1,2,3,4, andrfo and afw are the variances of stochastic fielfie:) and g(x),
respectively.

5. Numerical examples
5.1. Portal frame

The maximum horizontal deflectiorffhay) of the upper right corner of the reinforced concrete portal frame
shown in Fig. 1, having 16 nodes and 15 elements, is considered in this numerical example. Unless otherwise
indicated, the coefficients of variation of the elastic modutus ) and the mass density {;) are assumed to 0.10.

For demonstration purposes, a §darthquake loading that follows the response spectrum given for Soil Type 2 in
Fig. 2 (Uniform Building Code [27]) is used. For this particular portal frame, all modes other than the first vibrational
mode yield negligible contributions to the maximum deflection vector; therefore, only the first eigenvalue will be
considered (i.eNMD = 1). Note that the mean value &4 is found to be 1.39 cm.

The variability response functions (Eq. (28)) are plotted as a functioniafFig. 3. It is interesting to note
that for smallers, VRF,, which corresponds to the mass density autocorrelation, dominates; howie¥erwhich
corresponds to the elastic modulus autocorrelation, is dominant for higherother words, small-scale random
fluctuations in mass density have little effect on the maximum displacement variability relative to the effects of
small-scale fluctuations in the elastic modulus. Note that the variability response fudBgrfor this maximum
deflection problem is very close to zero for all

The spectral-distribution-free estimate on the upper bound of EQRM{ given in Eqg. (30) is provided in Fig. 4
for the portal frame as a function of the cross-correlation parameterThe maximum upper bound estimate on
the coefficient of variation ofnax is COV(Hmax) = 0.141, which corresponds to the case when the random fields
f(x) andg(x) are uncorrelatedy, = 0).

The upper bounds calculated above are very significant for engineering applications, as they depend only on the
mean and variance of the stochastic fields describing elastic modulus and mass density. The variability response
function technique is also applicable if the spectral density functions describing these properties are known or can
be assumed. Solely for demonstration purposes in the following example, it is assumed that the auto-spectral density
functions which characterize the stochastic fief@is) andg(z) (associated with the stochastic elastic modulus and
the stochastic mass density) are:

2 g2 k2

Sii(k) = ﬁcr]chd%lize dpr”, (32a)
2

Sye(k) = —=02, d3r2e™ %, (32b)

ﬁggp
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H

max

Fig. 1. Reinforced concrete portal frame considered in numerical exafple. L, = L = 5m,A = 0.09 n?, I = 0, 00068 M, Ey = 20 GPa,
po = 2400 kg/n?.

Spectral Acceleration

0 0.5 1 1.5 2 2.5 3
Period, T

Fig. 2. Response spectrum used in numerical example (uniform building code [27]).
whereo sy ando,, are the standard deviations of stochastic figfidg andg(x) (assumed to be 0.10 unless otherwise

indicated), andlr andd, are parameters associated with the correlation distances of the stochasti¢(figldad
g(x). These auto-spectral density functions correspond to the autocorrelation functions:

2 2 2
Ryf(Q) = 0%y [1 - ;7] e ¢ /4, (33a)
E
_ 2 [1- € Je-ctraa 33b
Rog(Q) =05y |1 = 57 |& ", (33b)
P

where( is a separation distance. Eq. (27) indicated that the cross-spectral density function is the combination of a
real, even co-spectruni’¢,(x)) and an imaginary, odd quad-spectrumi;,(«)). It is reasonable to assume that

for the crosscorrelation of material properties, the quad-spectrum is Pgggs) = 0). For the purposes of this
numerical example, it is assumed that the cross-spectral density function takes the form:

2 3/2 (td? )2
Stg(kz) = vrg/Srf(kz)Sge(ka) = ’yfgﬁaffogng/ di/znie (dE+d3) 1/2’ (34)
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Fig. 3. Variability response functions for maximum deflection of the portal fralfig.f) as a function ok.
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0.06 . : :
0.0 0.2 0.4 0.6 0.8 1.0

Cross-correlation Parameter

Fig. 4. Estimates on the upper bounds of the coefficient of variatidifinf as a function of cross-correlation parametey,.

where~y, is the cross-correlation coefficient between the two random fig{@¥ and g(x). This cross-spectral
density function corresponds to a cross-correlation function:

V3 dydp %7 ¢? C2/2(d? +d2;)
R = 2 2 5 1 - e 4 B, 35
79(C) V90 F10gg {df, T d%] [ 2+ diﬂ} (35)

The coefficient of variation (COV) of the maximum deflectidif(,y) is calculated by numerically performing the
integrals in Eq. (26), for different values of the correlation distance paramietetr = d,. The results are plotted
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Fig. 5. Coefficient of variation offmax Of the portal frame as a function of correlation distance parameéter dp = d, for various
cross-correlation parameteys, .

0.40 T T T T

035 -

@—@ Simulation
030  [©——O Weighted Integrals
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Coefficient of Variation
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0.00 > ! .
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C.0.V. of Elastic Modulus and Mass Density

Fig. 6. Coefficient of variation offmax of the portal frame as a function ef; ; = 044 for correlation distance parame¢r= dg = d, = 10
and cross-correlation parametgr, = 0.25.

in Fig. 5 for various cross-correlation parametefg. The cross-correlation parameter has a significant effect on
these results, especially dbecomes large.

As mentioned earlier, there are first-order approximations used in the variability response function formulations
(see Eq. (17)). Figure 6 provides a comparison between the results using the weighted integral method and Monte
Carlo simulation techniques as a function of the standard deviations of the stogifa¥tmdg(z). As the values
of the coefficient of variation of the elastic modulus and the mass density become larger, larger discrepancies are ex-
pected between the weighted integral-based and Monte Carlo simulation-based results. Figure 6 shows this behavior
for the case where the correlation distance parardgtet d, = 10 and the cross-correlation parametgy = 0.25.

Similar behavior is exhibited for all values of the correlation distance parameters and the cross-correlation parameter.
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Fig. 7. Three-story, three-bay frame.
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Fig. 8. Variability response function for maximum horizontal deflection of node 16 as a function of
5.2. Three-story three-bay reinforced concrete frame

The maximum horizontal deflectiolV{s may 0f Node 16 of the reinforced concrete frame shown in Fig. 7, having
16 nodes and 21 elements, is considered in this numerical example. It is assumed that the stochastic fields describing
the elastic modulus and the mass density are independent for all column elements, and that there is only correlation
between beam elements on the same level. This assumption is reasonable when considering the construction proce-
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Fig. 9. Estimates on the upper bounds of the coefficient of variation of the deflection of node 16 as a function of cross-correlation payameter

dure for reinforced concrete frames. Unless otherwise indicated, the coefficients of variation of the elastic modulus
(04f) and the mass density {;) are assumed to 0.10. The response spectrum given in Fig. 2 (Uniform Building
Code [27]) is used for demonstration purposes. For this particular portal frame, all modes other than the first and
second vibrational modes yield negligible contributions to the maximum deflection vector; therefore, only the first
and second eigenvalues and eigenvectors will be considered{l® = 2). Note that the mean value biis maxis
1.51cm.

The weighted integral based variability response functions (Eq. (28)) are plotted as a functipindfig. 8.
It is interesting to note that similar to the portal frame restRF,, which corresponds to the mass density auto-
correlation, dominates for smaller,; howeverVRF;, which corresponds to the elastic modulus autocorrelation, is
dominant for higher.. Figure 8 also shows that the variability response fundiBi, for this maximum deflection
problem is very close to zero for ail,.

The spectral-distribution-free estimate on the upper bound of T\ given in Eq. (30) is provided in
Fig. 9 for Ui max@s a function of the cross-correlation parameter The maximum upper bound estimate on the
coefficient of variation of/15 maxis COV(U16 may = 0.106, which corresponds to the case when the random fields
f(x) andg(x) are uncorrelatedy, = 0).

6. Conclusions

Variability response functions have been successfully formulated which consider randomness in the maximum
deflection of a structure under design earthquake loading. The numerical examples show that randomness in the ma-
terial properties can have a significant effect on the variability of this maximum deflection. Therefore, the safety mar-
gin that is generally assumed in formulating the earthquake design response spectrum may be reduced by random-
ness in the structural parameters. The variability response functions also allow estimates of the spectral-distribution-
free upper bounds on the maximum deflection variability which depend only on the mean and variances of the
stochastic fields describing the elastic modulus and the mass density.
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