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The variability of the maximum response displacement of random frame structures under deterministic earthquake loading are
examined in this paper using stochastic finite element techniques. The elastic modulus and the mass density are assumed to be
described by cross-correlated stochastic fields. Specifically, a variability response function formulation is used for this problem,
which allows for calculation of spectral-distribution-free upper bounds of the maximum displacement variance. Further, under the
assumption of prespecified correlation functions describing the spatial variation of the material properties, variability response
functions are used to calculate the corresponding maximum displacement variance. Two numerical examples are provided to
demonstrate the methodology. Results show that randomness in the material properties can lead to significant uncertainty in the
maximum response displacement.

1. Introduction

For the design of structures, it is often sufficient to evaluate the maximum response of the structure to a given
loading. To analyze the maximum structural response under earthquake loading, a design response spectrum is
generally used. While this measure of the maximum response usually accounts for randomness in the loading (the
earthquake), it does not account for randomness in the material/geometric properties of the structure. In this paper,
variability response functions (see Deodatis and Graham [7] for their definition) are used to analyze the random
maximum deflection of a structure with a stochastically varying elastic modulus and mass density that is subjected
to a deterministic (design) earthquake loading.

This variability response function analysis is performed in the context of the random eigenvalue problem, which
first came under scrutiny over twenty five years ago. At this time, analytical solutions and direct simulation of
stochastic fields were performed for relatively simple structural systems (see, e.g., Boyce [2], Boyce and Xia [3],
Collins and Thomson [5], Fox and Kapoor [8], Grigoriu [10], Hasselman and Hart [11], Hoshiya and Shah [12],
Huang [13], Ibrahim [14], Iyengar and Manohar [15], Manohar and Iyengar [17], Purkert and Vom Scheidt [20],
Shinozuka and Astill [23], Soong and Bogdanoff [24], Vaicaitis [28]). The emergence of stochastic finite element
methods has provided a means of performing stochastic analyses of more complicated structural systems, leading
to a renewed interest in the random eigenvalue problem (Koyluoglu [16], Spanos and Zeldin [25], Nagashima and
Tsutsumi [18], Nakagiri et al. [19], Ramu and Ganesan [21], Ramu et al. [22], and Zhang and Chen [29]). In most of
the work in this area, it was assumed that the stochastic material properties are represented by independent stochastic
fields. In general, however, it is expected that there may be some cross-correlation between material properties such
as the mass density and the elastic modulus. Recently Graham and Deodatis [9] analyzed the eigenvalue variability
for beam-column and plate structures with the mass density and the elastic modulus represented by cross-correlated
stochastic fields using variability response functions. This paper uses the techniques presented in that work to eval-
uate the maximum displacement variability of structures with random eigenvalues.
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Describing the elastic modulus and mass density as stochastic fields, the weighted integral method (Deodatis [6],
Takada [26]) is used to represent the stochastic mass and stiffness matrices as linear combinations of random vari-
ables. Variability response functions for the maximum deflection are then formulated, allowing estimates to be made
of the spectral-distribution-free upper bounds on the maximum deflection variability. These bounds are most inter-
esting for real engineering applications, because very little probabilistic information is generally available about the
material properties. However, assuming that the spectral density functions describing these properties are known
or can be assumed, variability response functions can be applied to calculate the corresponding maximum deflec-
tion variability. In order to demonstrate these capabilities, numerical examples will be provided for two reinforced
concrete frames.

2. Maximum deflection variability

The 2-node, 6 degree-of-freedom beam/column finite element (two displacements and one rotation at each node)
is used in this paper. For the beam/column finite elements considered here, the elastic modulusE and mass density
ρ are assumed to vary randomly along the length of the element as:

E(x) = E0[1 + f (x)], −1< f (x), (1a)

ρ(x) = ρ0[1 + g(x)], −1< g(x), (1b)

whereE0 andρ0 are the mean values of the elastic modulus and mass density, respectively, andf (x) andg(x) are
zero-mean homogeneous stochastic fields, which are assumed to be cross-correlated. Substituting the expressions for
the randomly varying elastic modulus and mass density into the standard finite element formulations, the stochastic
element stiffness and mass matrices were derived by Deodatis and Graham [7] as:

K (e) = K (e)
0 + ∆K (e)

1 ·X
(e)
1 + ∆K (e)

2 ·X
(e)
2 + ∆K (e)

3 ·X
(e)
3 , (2)

M (e) = M (e)
0 + ∆M (e)

1 · Y
(e)

1 + · · ·+ ∆M (e)
7 · Y

(e)
7 , (3)

whereK (e)
0 andM (e)

0 are the deterministic parts of the element stiffness and mass matrix, respectively, which are
obtained using the mean values of the elastic modulus and mass density:
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∆K (e)
k ,k = 1, 2, 3, are deterministic matrices:
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and∆M (e)
k , k = 1, 2,. . . , 7, are deterministic matrices:
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∆M (e)
3 =

ρ0L

8



1 0 0 −1 0 0
0 9

4
L
8 0 − 9

4
L
8

0 L
8 −

L2

16 0 − 5L
8

3L2

16
−1 0 0 1 0 0
0 − 9

4 −
5L
8 0 9

4 −L8
0 5L

8
3L2

16 0 −L8 −
L2

16


, (7c)

∆M (e)
4 =

ρ0L

8



0 0 0 0 0 0
0 1 3L

4 0 0 −L4
0 3L

4
L2

4 0−L4 0
0 0 0 0 0 0
0 0 −L8 0 0 3L

4

0−L4 0 0 3L
4 −

L2

4

 , (7d)

∆M (e)
5 =

ρ0L

16



0 0 0 0 0 0
0 −3 −L 0 3 −L
0−L −L2

8 0 L − 3L2

8
0 0 0 0 0 0
0 3 L 0−3 L

0−L− 3L2

8 0 L −L2

8

 , (7e)

∆M (e)
6 =

ρ0L
2

64


0 0 0 0 0 0
0 0 −1 0 0 1
0−1−L 0 1 0
0 0 0 0 0 0
0 0 1 0 0 −1
0 1 0 0−1 L

 , (7f)

∆M (e)
7 =

ρ0L

32



0 0 0 0 0 0
0 1 L

2 0 −1 L
2

0 L
2

L2

4 0−L2
L2

4
0 0 0 0 0 0
0−1−L2 0 1 −L2
0 L

2
L2

4 0−L2
L2

4


(7g)

andX (e)
k , k = 1, 2, 3, andY (e)

k , k = 1, 2,. . . , 7, are the stiffness matrix and mass matrix weighted integrals:

X (e)
k =

+1∫
−1

ξk−1f (ξ) dξ, k = 1, 2, 3, (8)

Y (e)
k =

+1∫
−1

ξk−1g(ξ) dξ, k = 1, 2,. . . , 7, (9)

whereξ is the local (natural) coordinate system for the beam element (e). The global matrices may be assembled
from all of the element matrices using standard finite element methodology.

Using the finite element method, the eigenvalue problem is expressed for any type of finite element as:

(K − λjM )φj = 0, (10a)

φT
jMφj = 1, (10b)
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whereK andM are the stochastic global stiffness and mass matrices, respectively,λj is the jth eigenvalue and
φj is thejth eigenvector. Because the stiffness and mass matrices are stochastic, then thejth eigenvalue and the
jth eigenvector will be random. In Graham and Deodatis [9], a first-order perturbation approximation to thejth
eigenvalueλj was found:

λj = λj0 + ∆λj

≈ λj0 + φT
j0

[ N∑
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( 3∑
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∆K (e)
k X

(e)
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∆M (e)
n Y

(e)
n

)]
φj0, (11)

whereλj0 andφj0 are the deterministic parts of thejth eigenvalue and thejth eigenvector, which are calculated
using the following expressions:

(K0− λj0M0)φj0 = 0, (12a)

φT
j0M0φj0 = 1. (12b)

Fox and Kapoor [8] and Zhu and Wu [30] derived a first-order approximation to thejth eigenvector as:

φj ≈ φj0 + C−1
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whereλj0 andφj0 are calculated using Eq. (12), andCj is a deterministic matrix:

Cj = K0− λj0M0 + λj0M0φj0φ
T
j0M0. (14)

According to Clough and Penzien [4] the vector of the maximum deflections of a structure due to a deterministic
earthquake loading is:

Umax =
√

U2
1,max+ U2

2,max+ · · ·+ U2
NMD,max, (15)

whereNMD is the number of vibrational modes for the given structure. The vectorUj,max, j = 1, 2,. . . , NMD, is
the maximum deflection for a given mode numberj:

Uj,max = φj ·
[
φT
j ·M · 1

]
Sd(ξj ,λj), (16)

whereλj andφj are thejth eigenvalue and thejth eigenvector, respectively,M is the stochastic global mass matrix,
1 is a vector of 1’s,Sd(ξj ,λj) is the displacement response spectrum for the given earthquake loading, andξj is the
damping ratio for modej. Becauseλj , φj , andM are all random, the maximum deflection is also random. For the
following analysis it is assumed thatξj is deterministic and that it is small enough so that damping does not have a
significant effect on the eigenvalues.

The random maximum deflection vector may be approximated using a first-order Taylor expansion of Eqs (15)
and (16) around the mean values of the weighted integrals:
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where the subscript 0 indicates that the quantity in brackets is taken at the (zero) mean value of the weighted integrals
andUmax,0 is the maximum deflection vectorUmax evaluated at the zero-mean values of the weighted integrals:
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Taking the partial derivatives of Eqs (11), (13), (15), and (16) and substituting into Eq. (17):
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where∆XU(e)
max,jk, k = 1, 2, 3, and∆Y U(e)

max,jn, n = 1, 2,. . . , 7, are deterministic vectors, defined as:

∆XU(e)
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where diag[ ] represents a diagonal matrix whose diagonal components consist of the vector within parentheses, and
theith component of the vector∇Uj,max is defined as:

[
∇Uj,max

]
i

=
[Uj,max,0]i
[Umax,0]i

. (22)

The constantsα(e)
jk ,γ(e)

jk , ξ(e)
jk , k = 1, 2,. . . , 7, β(e)

jk , ε(e)
jk , k = 1, 2, 3, ηj , andρj are closed-form quantities, given

as:

α(e)
jk = φT

j0∆M (e)
k 1Sd(ξj ,λj0), (23a)

β(e)
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k C−1
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γ(e)
jk = φT

j0∆M (e)
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j M01Sd(ξj ,λj0), (23c)

ε(e)
jk = φT
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ξ(e)
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ηj = φT
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ρj = φT
j0M01Sd(ξj ,λj0). (23g)

Using Eq. (19), the mean and variance of the maximum deflection vector are estimated as:

E [Umax] = Umax,0, (24)
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3. Variability response functions

Using the expressions for the weighted integrals given in Eqs (8) and (9), the specific form of the weighted integral
covariances can be calculated for beam-column elements. Following a method similar to that used in Deodatis
and Graham [7], the variance of the maximum deflection vector for a structure discretized using the beam-column
elements described earlier is written as:

Var[Umax] =

∫ ∞
−∞

Sff (κ)VRF1(κ) dκ+

∫ ∞
−∞

Sgg(κ)VRF2(κ) dκ

+

∫ ∞
−∞

Cfg(κ)VRF3(κ) dκ+

∫ ∞
−∞

Dfg(κ)VRF4(κ) dκ, (26)

whereSff (κ) andSgg(κ) are the power spectral density functions describing the elastic modulus and the mass
density, andCfg(κ) (the co-spectrum) is the real part andDfg(κ) (the quad-spectrum) is the imaginary part of the
cross spectral density functions describing the cross-correlation between the elastic modulus and the mass density
(Bendat and Piersol [1]):

Sfg(κ) = Cfg(κ)− i ·Dfg(κ). (27)

TheVRFi(κ), i = 1, 2, 3, 4, are the variability response functions, given in closed form as:
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]
, (28a)
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where the matrices∆K (e)
k , k = 1, 2, 3, e = 1, 2,. . . ,N , are given in Eq. (6),∆M (e)

n , n = 1, 2,. . . , 7, e = 1, 2,
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1, 2,. . . , NMD, n = 1, 2,. . . , 7, is defined in Eq. (21),∆xe2e1 is the distance between the centerpoints of elements
(e1) and (e2), and theQ’s andW ’s are the following closed-form expressions:
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(
κ2L2

e − 24
)

cos

(
κLe

2

))
,

e = 1, 2,. . . ,N , (29c)

Qe7 =
4

κ7L7
e

((
− 46080+ 5760κ2L2

e − 120κ4L4
e + κ6L6

e

)
sin

(
κLe

2

)
+ 12κLe

(
1920− 80κ2L2

e + κ4L4
e

)
cos

(
κLe

2

))
, e = 1, 2,. . . ,N , (29d)

We2 =
4

κ2L2
e

(
−2 sin

(
κLe

2

)
+ κ2L2

e cos

(
κLe

2

))
, e = 1, 2,. . . ,N , (29e)

We4 =
4

κ4L4
e

(
6
(
8− κ2L2

e

)
sin

(
κLe

2

)
− κLe

(
24− κ2L2

e

)
cos

(
κLe

2

))
, e = 1, 2,. . . ,N , (29f)

We6 =
4

κ6L6
e

(
κLe

(
1920− 80κ2L2

e + κ4L4
e

)
cos

(
κLe

2

)
−10

(
384− 48κ2L2

e + κ4L4
e

)
sin

(
κLe

2

))
, e = 1, 2,. . . ,N. (29g)

In these expressions,e is an element number andQe2 = Qe4 = Qe6 = We1 = We3 = We5 = We7 = 0.
It is worth noting that numerous first-order approximations are used in the formulation of the variability response

functions; in the numerical results Monte Carlo simulations of the weighted integrals will be used to estimate the
error inherent in these first-order approximations.
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4. Spectral-distribution-free upper bounds of displacement variability

The establishment of upper bounds on the displacement variability from Eq. (26) is somewhat complicated, be-
cause of the terms involving the cross-spectral density function. Assuming that the quad-spectrumDfg(κ) van-
ishes, which is realistic for the consideration of material properties, an upper bound estimate for the variance of
displacementUi is found as:

Var[Ui] 6 σ2
ffVRF1i(κ

∗) + σ2
ggVRF2i(κ

∗) + γfgσffσggVRF3i(κ
∗), (30)

where:

σ2
ffVRF1i(κ∗) + σ2

ggVRF2i(κ∗) + γfgσffσggVRF3i(κ∗)

> σ2
ffVRF1i(κ) + σ2

ggVRF2i(κ) + γfgσffσggVRF3i(κ), −∞ 6 κ 6∞. (31)

γfg is defined here asσ2
fg/σffσgg (the cross-correlation coefficient, which ranges from 0 to 1).VRFji is theith

component of vectorVRFj , j = 1, 2, 3, 4, andσ2
ff andσ2

gg are the variances of stochastic fieldsf (x) andg(x),
respectively.

5. Numerical examples

5.1. Portal frame

The maximum horizontal deflection (Hmax) of the upper right corner of the reinforced concrete portal frame
shown in Fig. 1, having 16 nodes and 15 elements, is considered in this numerical example. Unless otherwise
indicated, the coefficients of variation of the elastic modulus (σff ) and the mass density (σgg) are assumed to 0.10.
For demonstration purposes, a 0.5g earthquake loading that follows the response spectrum given for Soil Type 2 in
Fig. 2 (Uniform Building Code [27]) is used. For this particular portal frame, all modes other than the first vibrational
mode yield negligible contributions to the maximum deflection vector; therefore, only the first eigenvalue will be
considered (i.e.,NMD = 1). Note that the mean value ofHmax is found to be 1.39 cm.

The variability response functions (Eq. (28)) are plotted as a function ofκ in Fig. 3. It is interesting to note
that for smallerκ, VRF2, which corresponds to the mass density autocorrelation, dominates; however,VRF1, which
corresponds to the elastic modulus autocorrelation, is dominant for higherκ. In other words, small-scale random
fluctuations in mass density have little effect on the maximum displacement variability relative to the effects of
small-scale fluctuations in the elastic modulus. Note that the variability response functionVRF4 for this maximum
deflection problem is very close to zero for allκ.

The spectral-distribution-free estimate on the upper bound of COV(Hmax) given in Eq. (30) is provided in Fig. 4
for the portal frame as a function of the cross-correlation parameterγfg. The maximum upper bound estimate on
the coefficient of variation ofHmax is COV(Hmax) = 0.141, which corresponds to the case when the random fields
f (x) andg(x) are uncorrelated (γfg = 0).

The upper bounds calculated above are very significant for engineering applications, as they depend only on the
mean and variance of the stochastic fields describing elastic modulus and mass density. The variability response
function technique is also applicable if the spectral density functions describing these properties are known or can
be assumed. Solely for demonstration purposes in the following example, it is assumed that the auto-spectral density
functions which characterize the stochastic fieldsf (x) andg(x) (associated with the stochastic elastic modulus and
the stochastic mass density) are:

Sff (κ) =
2√
π
σ2
ffd

3
Eκ

2e−d
2
Eκ

2

, (32a)

Sgg(κ) =
2√
π
σ2
ggd

3
ρκ

2e−d
2
ρκ

2

, (32b)
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Fig. 1. Reinforced concrete portal frame considered in numerical example.L1 = L2 = L = 5 m,A = 0.09 m2, I = 0, 00068 m4,E0 = 20 GPa,
ρ0 = 2400 kg/m3.

Fig. 2. Response spectrum used in numerical example (uniform building code [27]).

whereσff andσgg are the standard deviations of stochastic fieldsf (x) andg(x) (assumed to be 0.10 unless otherwise
indicated), anddE anddρ are parameters associated with the correlation distances of the stochastic fieldsf (x) and
g(x). These auto-spectral density functions correspond to the autocorrelation functions:

Rff (ζ) = σ2
ff

[
1− ζ2

2d2
E

]
e−ζ

2/4d2
E , (33a)

Rgg(ζ) = σ2
gg

[
1− ζ2

2d2
ρ

]
e−ζ

2/4d2
ρ , (33b)

whereζ is a separation distance. Eq. (27) indicated that the cross-spectral density function is the combination of a
real, even co-spectrum (Cfg(κ)) and an imaginary, odd quad-spectrum (i·Dfg(κ)). It is reasonable to assume that
for the crosscorrelation of material properties, the quad-spectrum is zero (Dfg(κ) = 0). For the purposes of this
numerical example, it is assumed that the cross-spectral density function takes the form:

Sfg(κx) = γfg
√
Sff (κx)Sgg(κx) = γfg

2√
π
σffσggd

3/2
E d3/2

ρ κ2
xe−(d2

E+d2
ρ)κ2

x/2, (34)
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Fig. 3. Variability response functions for maximum deflection of the portal frame (Hmax) as a function ofκ.

Fig. 4. Estimates on the upper bounds of the coefficient of variation ofHmax as a function of cross-correlation parameterγfg .

whereγfg is the cross-correlation coefficient between the two random fieldsf (x) andg(x). This cross-spectral
density function corresponds to a cross-correlation function:

Rfg(ζ) = 2
√

2γfgσffσgg

[
dρdE
d2
ρ + d2

E

]3/2[
1− ζ2

d2
ρ + d2

E

]
e−ζ

2/2(d2
ρ+d2

E ). (35)

The coefficient of variation (COV) of the maximum deflection (Hmax) is calculated by numerically performing the
integrals in Eq. (26), for different values of the correlation distance parameterd = dE = dρ. The results are plotted
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Fig. 5. Coefficient of variation ofHmax of the portal frame as a function of correlation distance parameterd = dE = dρ for various
cross-correlation parametersγfg .

Fig. 6. Coefficient of variation ofHmax of the portal frame as a function ofσff = σgg for correlation distance parameterd = dE = dρ = 10
and cross-correlation parameterγfg = 0.25.

in Fig. 5 for various cross-correlation parametersγfg. The cross-correlation parameter has a significant effect on
these results, especially asd becomes large.

As mentioned earlier, there are first-order approximations used in the variability response function formulations
(see Eq. (17)). Figure 6 provides a comparison between the results using the weighted integral method and Monte
Carlo simulation techniques as a function of the standard deviations of the stochasticf (x) andg(x). As the values
of the coefficient of variation of the elastic modulus and the mass density become larger, larger discrepancies are ex-
pected between the weighted integral-based and Monte Carlo simulation-based results. Figure 6 shows this behavior
for the case where the correlation distance parameterdE = dρ = 10 and the cross-correlation parameterγfg = 0.25.
Similar behavior is exhibited for all values of the correlation distance parameters and the cross-correlation parameter.
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Fig. 7. Three-story, three-bay frame.

Fig. 8. Variability response function for maximum horizontal deflection of node 16 as a function ofκx.

5.2. Three-story three-bay reinforced concrete frame

The maximum horizontal deflection (U16,max) of Node 16 of the reinforced concrete frame shown in Fig. 7, having
16 nodes and 21 elements, is considered in this numerical example. It is assumed that the stochastic fields describing
the elastic modulus and the mass density are independent for all column elements, and that there is only correlation
between beam elements on the same level. This assumption is reasonable when considering the construction proce-
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Fig. 9. Estimates on the upper bounds of the coefficient of variation of the deflection of node 16 as a function of cross-correlation parameterγfg .

dure for reinforced concrete frames. Unless otherwise indicated, the coefficients of variation of the elastic modulus
(σff ) and the mass density (σgg) are assumed to 0.10. The response spectrum given in Fig. 2 (Uniform Building
Code [27]) is used for demonstration purposes. For this particular portal frame, all modes other than the first and
second vibrational modes yield negligible contributions to the maximum deflection vector; therefore, only the first
and second eigenvalues and eigenvectors will be considered (i.e.,NMD = 2). Note that the mean value ofU16,maxis
1.51 cm.

The weighted integral based variability response functions (Eq. (28)) are plotted as a function ofκx in Fig. 8.
It is interesting to note that similar to the portal frame results,VRF2, which corresponds to the mass density auto-
correlation, dominates for smallerκx; however,VRF1, which corresponds to the elastic modulus autocorrelation, is
dominant for higherκx. Figure 8 also shows that the variability response functionVRF4 for this maximum deflection
problem is very close to zero for allκx.

The spectral-distribution-free estimate on the upper bound of COV(U16,max) given in Eq. (30) is provided in
Fig. 9 forU16,maxas a function of the cross-correlation parameterγfg. The maximum upper bound estimate on the
coefficient of variation ofU16,max is COV(U16,max) = 0.106, which corresponds to the case when the random fields
f (x) andg(x) are uncorrelated (γfg = 0).

6. Conclusions

Variability response functions have been successfully formulated which consider randomness in the maximum
deflection of a structure under design earthquake loading. The numerical examples show that randomness in the ma-
terial properties can have a significant effect on the variability of this maximum deflection. Therefore, the safety mar-
gin that is generally assumed in formulating the earthquake design response spectrum may be reduced by random-
ness in the structural parameters. The variability response functions also allow estimates of the spectral-distribution-
free upper bounds on the maximum deflection variability which depend only on the mean and variances of the
stochastic fields describing the elastic modulus and the mass density.
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