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The nonlinear planar response of cantilever metallic beams
to combination parametric and external subcombination res-
onances is investigated, taking into account the effects of
cubic geometric and inertia nonlinearities. The beams con-
sidered here are assumed to have large length-to-width as-
pect ratios and thin rectangular cross sections. Hence, the
effects of shear deformations and rotatory inertia are ne-
glected. For the case of combination parametric resonance, a
two-mode Galerkin discretization along with Hamilton’s ex-
tended principle is used to obtain two second-order nonlin-
ear ordinary-differential equations of motion and associated
boundary conditions. Then, the method of multiple scales is
applied to obtain a set of four first-order nonlinear ordinary-
differential equations governing the modulation of the am-
plitudes and phases of the two excited modes. For the case
of subcombination resonance, the method of multiple scales
is applied directly to the Lagrangian and virtual-work term.
Then using Hamilton’s extended principle, we obtain a set of
four first-order nonlinear ordinary-differential equations gov-
erning the amplitudes and phases of the two excited modes.
In both cases, the modulation equations are used to gener-
ate frequency- and force-response curves. We found that the
trivial solution exhibits a jump as it undergoes a subcritical
pitchfork bifurcation. Similarly, the nontrivial solutions also
exhibit jumps as they undergo saddle-node bifurcations.

Keywords: Beams, combination resonance, parametric reso-
nance, subcombination resonance, bifurcations

1. Introduction

When a system is parametrically excited, combina-
tion parametric resonances may occur when the forc-
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ing frequencyΩ ≈ ωi±ωj, whereωk is the natural fre-
quency of thekth mode. When the excitation is direct,
an external combination resonance can occur in sys-
tems with quadratic nonlinearities whenΩ ≈ ωi ± ωj
and in systems with cubic nonlinearities whenΩ ≈
|ωi ± ωj ± ωk| or Ω ≈ |2ωi ± ωj |. An external sub-
combination resonance can occur when a forcing fre-
quency is near one-half the sum or difference of two or
more natural frequencies (Nayfeh and Mook [9]).

Dugundji and Mukhopadhyay [4] investigated the
response of a thin cantilever metallic beam to combi-
nation parametric resonances involving the first bend-
ing and torsional modes (i.e.,Ω ≈ ωB1 + ωT1) in one
case and the second bending and first torsional modes
(i.e.,Ω ≈ ωB2 + ωT1) in another. Their experimen-
tal results show that the beam exhibits significant os-
cillations both in bending and in torsion. In addition,
at large excitation amplitudes they observed the beam
snapping-through and whipping around. Cartmell and
Roberts [3] theoretically and experimentally investi-
gated the stability of a cantilever beam-mass system
possessing the two simultaneous combination para-
metric resonancesΩ ≈ ωB1 + ωT1 ≈ ωB2 − ωT1.
They analyzed their system using the method of mul-
tiple scales and found good agreement between the-
ory and experiment within certain ranges of the exci-
tation frequency. However, in other regions where pe-
riodic modulations can occur, the correlation was not
satisfactory because the theoretical solution could not
predict nonstationary responses.

Kar and Sujata [5] investigated the instability of an
elastically restrained cantilever beam subjected to uni-
axial and follower forces. They found that combination
parametric resonances of the difference type do not oc-
cur when the force is uniaxial or supertangential, but
that they are predominant when the force is tangential
or subtangential. Kar and Sujata [6] also investigated
the instability of a rotating, pretwisted, and preconed
cantilever beam, taking into consideration the Corio-
lis effects. They found that the Coriolis force may in-
crease the instability regions in the case of combination
parametric resonances.
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Anderson et al. [1] experimentally investigated the
response of a thin metallic cantilever beam with an ini-
tial curvature to a combination parametric excitation.
The first four natural frequencies are 0.65 Hz, 5.65 Hz,
16.19 Hz, and 31.91 Hz. They found that, over a range
of forcing frequency above 32 Hz, the first and fourth
modes are activated by a combination parametric reso-
nance with the first mode dominating the response.

Sridhar et al. [12] investigated the response of a
hinged-clamped beam to the subcombination reso-
nanceΩ ≈ 1

2(ωa ± ωb) and the combination reso-
nanceΩ ≈ ωa ± ωb ± ωc. Yamamoto et al. [16,17]
theoretically and experimentally investigated the non-
linear response of simply-supported beams to combi-
nation and subcombination resonances, respectively.
They [16] found that, in order to excite the external
combination resonance, one needs a time-independent
component in the excitation. However, they [17] found
that the external subcombination resonance can be ex-
cited with only a harmonic excitation. In both cases,
they found that only additive-type resonances can be
activated. In these three studies, nonlinearities due to
mid-plane stretching were included in the analysis.

The experimental results of Dugundji and Mukho-
padhyay [4] and Anderson et al. [1] confirm the oc-
currence of such resonances in structures. More im-
portant, their results demonstrate that such resonances
can be a mechanism where a high-frequency excitation
can activate low-frequency large-amplitude modes. For
example, the ratio of the excitation frequency to the
natural frequency of lowest mode excited was ap-
proximately 18 : 1 in the experiments of Dugundji and
Mukhopadhyay [4] and 49 : 1 in the experiments of
Anderson et al. [1]. The analyses of Cartmell and
Roberts [3] and Kar and Sujata [5,6] did not take into
consideration the effect of nonlinearities inherent in the
system.

In this paper, we investigate the response of a uni-
form thin metallic cantilever beam to either a combi-
nation parametric resonance or a subcombination res-
onance of two modes (see Fig. 1). Because such reso-
nance phenomena cannot be adequately explained by
using linear theories of vibrations, it is necessary to in-
corporate the effects of nonlinearities in the analysis.
Furthermore, because the presence of a low-frequency
component in the response may cause the beam to os-
cillate with large amplitudes, we account for both ge-
ometric and inertia nonlinearities. The method of mul-
tiple scales is used to determine two sets of four first-
order nonlinear ordinary-differential equations govern-
ing the modulation of the amplitudes and phases of the

Fig. 1. A schematic of a cantilever beam under (a) combination para-
metric resonance and (b) external subcombination resonance.

two interacting modes. The modulation equations are
then used to generate frequency- and force-response
curves.

2. Combination parametric resonance

The nondimensional equation of motion for inexten-
sional cantilever beams where the effects of shear de-
formation and rotatory inertia are neglected is given by

v̈ + cv̇ + viv = −
(
v′2v′′′ + v′v′′2

)′
−1

2

(
v′
∂2

∂t2

∫ s

1

∫ s

0
v′2 ds ds

)′
+F (s,v) cos(Ωt), (1)

where the dimensional timet∗ = t
√
mL4/EI and the

dimensional deflection and arc-length arev∗ = Lv and
s∗ = Ls. The boundary conditions are

v = 0 and v′ = 0 ats = 0, (2)

v′′ = 0 and v′′′ = 0 ats = 1. (3)

The corresponding nondimensional Lagrangian and
virtual work are given by

L =

∫ 1

0

{
1
2
v̇2 +

1
2

(
1
2
∂

∂t

∫ s

0
v′2 ds

)2

− 1
2

(
v′′2 + v′2v′′2

)}
ds, (4)

δW =

∫ 1

0
Qvδv ds
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=

∫ 1

0

{
F (s,v) cos(Ωt)− cv̇

}
δv ds, (5)

where the prime denotes differentiation with respect to
the arclengths and the dot denotes differentiation with
respect to timet. Eqs (1)–(5) are valid for beams that
are uniform, homogeneous, long, and thin. For stubby
or thick beams, shear deformation and rotatory inertia
effects may not be negligible (Timoshenko [14]).

In the presence of damping, all of the modes that are
not directly excited or indirectly excited by an internal
resonance will decay with time. Hence, for the case of
combination parametric resonance or external subcom-
bination resonance of themth andnth modes, where
theφi are the orthonormal mode shapes, the long-time
response of the beam will consist only of these two
modes if neither of them is involved in an internal res-
onance with any other mode. Therefore, we assume a
solution forv in the form

v(s, t) = φm(s)ηm(t) + φn(s)ηn(t). (6)

For cantilever beams,

φi(s) = ci

{
cosh(zis)− cos(zis)

+
cos(zi) + cosh(zi)
sin(zi) + sinh(zi)

[
sin(zis)− sinh(zis)

]}
,

(7)

wherezi is theith root of 1+ cos(z) cosh(z) = 0 and
ci is chosen so that

∫ 1
0 φ

2
i ds = 1. The nondimensional

natural frequencies are given by

ωi = z2
i . (8)

The first four nondimensional frequencies areω1 =
3.5160,ω2 = 22.0345,ω3 = 61.6972, andω4 =
120.9019.

For the case of combination parametric resonance,
we let

F (s,v) = −
[
v′′(s− 1) + v′

]
f. (9)

Substituting Eqs (6)–(9) into Eqs (4) and (5) and inte-
grating the result over space, we obtain the discretized
Lagrangian and virtual work as

L =
1
2

(
1 + δ1η

2
m + 2δ2ηmηn + δ3η

2
n

)
η̇2
m

+
1
2

(
1 + δ4η

2
m + 2δ5ηmηn + δ6η

2
n

)
η̇2
n

+
(
δ7η

2
m + δ8ηmηn + δ9η

2
n

)
η̇mη̇n

−1
2

(
ω2
mη

2
m + ω2

nη
2
n

)
− α1η

4
m − α2η

3
mηn

−α3η
2
mη

2
n − α4ηmη

3
n − α5η

4
n, (10)

δW = −
[
2µmη̇m +

(
fmmηm + fmnηn

)
cos(Ωt)

]
δηm

−
[
2µnη̇n +

(
fnmηm + fnnηn

)
cos(Ωt)

]
δηn

= Qmδηm +Qnδηn, (11)

where theδi,αi,µi, andfij are defined in Appendix A.
By applying Hamilton’s extended principle,

d
dt

(
∂L
∂η̇m

)
− ∂L
∂ηm

= Qm, (12)

d
dt

(
∂L
∂η̇n

)
− ∂L
∂ηn

= Qn, (13)

we obtain

η̈m + 2µmη̇m + ω2
mηm

= −
(
4α1η

3
m + 3α2η

2
mηn + 2α3ηmη

2
n + α4η

3
n

)
−
(
δ1η

2
m + 2δ2ηmηn + δ3η

2
n

)
η̈m

−
(
δ7η

2
m + δ8ηmηn + δ9η

2
n

)
η̈n

−
(
δ1ηm + δ2ηn

)
η̇2
m − 2

(
δ2ηm + δ3ηn

)
η̇mη̇n

−
[(
δ8− δ4

)
ηm +

(
2δ9− δ5

)
ηn
]
η̇2
n

−
(
fmmηm + fmnηn

)
cos(Ωt), (14)

η̈n + 2µnη̇n + ω2
nηn

= −
(
α2η

3
m + 2α3η

2
mηn + 3α4ηmη

2
n + 4α5η

3
n

)
−
(
δ7η

2
m + δ8ηmηn + δ9η

2
n

)
η̈m

−
(
δ4η

2
m + 2δ5ηmηn + δ6η

2
n

)
η̈n

−
[(

2δ7− δ2
)
ηm +

(
δ8− δ3

)
ηn
]
η̇2
m

− 2
(
δ4ηm + δ5ηn

)
η̇mη̇n

−
(
δ5ηm + δ6ηn

)
η̇2
n

−
(
fnmηm + fnnηn

)
cos(Ωt). (15)

To determine a second-order uniform expansion for
the solutions of Eqs (14) and (15) for the case of com-
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bination parametric resonance of the additive type, we
scaleµi andfij as ε2µi andε2fij and introduce the
detuning parameterσ so that

Ω = ωm + ωn + ε2σ, (16)

whereε is a small nondimensional bookkeeping pa-
rameter. Next, using the method of multiple scales
(Nayfeh [7]), we obtain

ηm = ε
[
Am(T2)eiωmT0 + Ām(T2)e−iωmT0

]
+ · · · ,(17)

ηn = ε
[
An(T2)eiωnT0 + Ān(T2)e−iωnT0

]
+ · · · , (18)

whereT0 = t, T2 = ε2t, andAm andAn are governed
by

−2iωm
(
A′m + µmAm

)
= SmmA

2
mĀm

+SmnAmAnĀn +
1
2
fmnĀneiσT2, (19)

−2iωn
(
A′n + µnAn

)
= SnnA

2
nĀn

+SnmAnAmĀm +
1
2
fnmĀmeiσT2, (20)

the prime indicates the derivative with respect toT2,
and

Smm = 12α1− 2ω2
mδ1,

Snn = 12α5− 2ω2
nδ6,

Smn = Snm = 4α3− 2ω2
mδ3 − 2ω2

nδ4. (21)

The Sij and fij were calculated for combination
parametric resonances of the additive type for differ-
ent pairs of the first four modes. The results are shown
in Table 1. It follows from Table 1 thatS11 > 0 and
S22, S33, andS44 < 0. Hence, the nonlinearity is of the
hardening type for the first mode and of the softening
type for the higher modes.

The complex-valued modulation equations (19) and
(20) can be transformed into a real-valued form by in-
troducing the transformation

Am =
1
2
ameiβm and An =

1
2
aneiβn . (22)

Substituting Eqs (22) into Eqs (19) and (20) and sepa-
rating real and imaginary parts, we obtain

a′m = −µmam −
fmn
4ωm

an sinγ, (23)

amβ
′
m =

Smm
8ωm

a3
m +

Smn
8ωm

ama
2
n

+
fmn
4ωm

an cosγ, (24)

a′n = −µnan −
fnm
4ωn

am sinγ, (25)

anβ
′
n =

Snm
8ωn

a2
man +

Snn
8ωn

a3
n +

fnm
4ωn

am cosγ, (26)

where

γ ≡ σT2− βm − βn. (27)

Substituting Eqs (22) into Eqs (17) and (18) and then
substituting the result into Eq. (6), we find that the
beam response is given by

v(s, t) ≈ ε
[
amφm(s) cos

(
ωmt+ βm

)
+ anφn(s) cos

(
ωnt+ βn

)]
, (28)

where theai andβi are given by Eqs (23)–(27). Us-
ing Eqs (16) and (27) to eliminateωn and βn from
Eq. (28), we have

v(s, t) ≈ ε
{
amφm(s) cos

(
ωmt+ βm

)
+ anφn(s) cos

[(
Ω − ωm

)
t− βm − γ

]}
. (29)

The equilibrium solutions or fixed points of
Eqs (23)–(27) correspond toa′m = 0,a′n = 0, andγ′ =
0, which in turn correspond to two-period quasiperi-
odic responses of the beam according to Eq. (29).
There are two possible equilibrium solutions: (a)am =
0 andan = 0 and the beam is not excited and (b)am 6=
0 andan 6= 0 and the beam response is quasiperiodic.
In the latter case, Eqs (24), (26), and (27) can be used
to eliminateβm andβn to obtain the following equa-
tion for γ:

γ′ = σ −
(
Smm
8ωm

+
Snm
8ωn

)
a2
m −

(
Smn
8ωm

+
Snn
8ωn

)
a2
n

−
(
anfmn
4amωm

+
amfnm
4anωn

)
cosγ. (30)

Thus, for nontrivial solutions, the modulation equa-
tions are reduced from four to three first-order differ-
ential equations. For equilibrium solutions, we set the
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Table 1

Values of the coefficientsαi, δi,Sij , andfij for different combinations of the
first four modes

Modesm & n Smm Smn = Snm Snn

1 & 2 7.6680 −1122.2408 −100279.6731

1 & 3 7.6680 −15928.9047 −6818871.8310

2 & 3 −100279.6731 −75835.2975 −6818871.8310

1 & 4 7.6680 −34594.5220 −1.1042× 108

2 & 4 −100279.6731 −927411.9209 −1.1042× 108

3 & 4 −6818871.8310 −4017517.1670 −1.1042× 108

Modesm & n fmm fmn = fnm fnn

1 & 2 1.5709f −0.4223f 8.6471f

1 & 3 1.5709f −1.0721f 24.9521f

2 & 3 8.6471f 1.8901f 24.9521f

1 & 4 1.5709f −0.8731f 51.4591f

2 & 4 8.6471f −3.6434f 51.4591f

3 & 4 24.9521f 8.3383f 51.4591f

time derivatives in Eqs (23), (25), and (30) equal to
zero and solve foram, an, andγ, yielding the follow-
ing closed-form solution:

αea
2
m = σ ± µm + µn√

µmµn

√
fmnfnm
16ωmωn

− µmµn, (31)

a2
n =

µmωmfnm
µnωnfmn

a2
m, (32)

sinγ =−4µmωm
fmn

am
an

= −4µnωn
fnm

an
am

=±4
√
µmµnωmωn
fmnfnm

, (33)

where

αe =
1
8

[
Smm
ωm

+
Snm
ωn

+

(
Smn
ωm

+
Snn
ωn

)
µmωmfnm
µnωnfmn

]
. (34)

The stability of a nontrivial equilibrium solution can
then be studied by calculating the eigenvalues of the
Jacobian matrix of Eqs (23), (25), and (30) evaluated
at this equilibrium solution.

To determine the stability of the trivial equilib-
rium solutions, we study the stability of the linearized
complex-valued modulation equations (19) and (20).
To this end, we let

Am = cmeλT2+iσT2 and An = cneλ̄T2 (35)

in the linearized equations (19) and (20) and obtain

Fig. 2. Frequency-response curves for a combination parametric res-
onance of the additive type involving modes 1 and 2 forf = 10,
µ1 = 0.0137,µ2 = 0.0635. Solid lines (—) denote stable fixed
points and dashed lines (– – –) denote unstable fixed points.

2iωm
(
λ+ iσ + µm

)
cm +

1
2
fmnc̄n = 0, (36)

2iωn
(
λ̄+ µn

)
cn +

1
2
fnmc̄m = 0. (37)

Hence,

λ =−1
2

(
µm + µn + iσ

)
±
(

1
4

(
µm + µn + iσ

)2

−µn
(
µm + iσ

)
+
fmnfnm
16ωmωn

)1/2

. (38)

It follows from Eqs (35) that the trivial solution is sta-
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Fig. 3. Amplitude-response curves for a combination parametric resonance of the additive type involving modes 1 and 2 whenµ1 = 0.0137 and
µ2 = 0.0635. In part (a),σ = −1 and in part (b),σ = 1. Solid lines (—) denote stable fixed points and dashed lines (– – –) denote unstable
fixed points.

ble if the real parts of bothλ’s are negative.
In Fig. 2, we show typical frequency-responsecurves

for a combination parametric resonance of the additive
type of the first two modes when the excitation am-
plitude isf = 10. Clearly, the first mode dominates
the response. Although the nonlinearity is hardening
for the first mode and softening for the second mode,
the frequency-response curves are bent to the left, in-
dicating a softening behavior for both modes. This is
so because

β′1 =
S11

8ω1
a2

1 +
S12

8ω1
a2

2 +
f12a2

4ω1a1
cosγ (39)

according to Eq. (24). AlthoughS11 is positive,S12

is negative and its magnitude is much larger thanS11.
Hence, the nonlinearity decreases the frequency of the
first mode, and hence bends the frequency-response
curves to the left. It follows from Fig. 2 that, depend-
ing on howσ is varied, the trivial solution loses stabil-
ity via either a subcritical or a supercritical pitchfork
bifurcation.

In Fig. 3, we show amplitude-response curves for a
combination parametric resonance of the additive type
of the first two modes. In part (a), the frequency detun-
ing parameterσ = −1, and in part (b)σ = 1. When
σ = −1, there are two branches of nontrivial fixed-
point solutions, one stable and the other unstable. Asf
is increased away from zero, the trivial solution loses
stability via a subcritical pitchfork bifurcation, causing
the response to jump up to the stable branch of nontriv-
ial solutions. Similarly, a fixed-point on the stable non-
trivial branch loses stability via a saddle-node bifurca-

Fig. 4. Frequency-response curves for a combination parametric res-
onance of the additive type involving modes 1 and 4 forf = 10,
µ1 = 0.0137,µ4 = 0.0573. Solid lines (—) denote stable fixed
points and dashed lines (– – –) denote unstable fixed points.

tion asf is decreased, resulting in a jump down to the
trivial branch. Whenσ > 0, there are only branches
of stable nontrivial fixed points, as shown in Fig. 3(b).
The nontrivial solution is activated gradually as the
trivial solution undergoes a supercritical pitchfork bi-
furcation.

In Figs 4 and 5, the frequency- and amplitude-
response curves are presented when the first and fourth
modes are activated by the combination parametric res-
onance. The forcing amplitude in Fig. 4 isf = 10 and
the detuning parameter isσ = −1 in Fig. 5(a) and
σ = 1 in Fig. 5(b). We note that the behaviors in Figs 4
and 5 are similar to those in Figs 2 and 3. However, the
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Fig. 5. Amplitude-response curves for a combination parametric resonance of the additive type involving modes 1 and 4 whenµ1 = 0.0137 and
µ4 = 0.0573. In part (a),σ = −1 and in part (b),σ = 1. Solid lines (—) denote stable fixed points and dashed lines (– – –) denote unstable
fixed points.

amplitudes when modes 1 and 4 are excited are about
an order of magnitude smaller than those when modes
1 and 2 are excited.

Anderson et al. [1] experimentally investigated the
response of a cantilever beam whereΩ ≈ 2ω3 ≈
ω1 + ω4. They found that over a small region of fre-
quency detuning, only the first and fourth modes were
excited by a combination parametric resonance. The
results shown in Fig. 4 agree qualitatively with their
frequency-response curves.

Results for the case of a combination parametric res-
onance of the difference type can be obtained by re-
placingωm by−ωm andβm by−βm in Eqs (23)–(32).
However, it can be seen from Eq. (32) that this reso-
nance cannot be activated in this system.

3. External subcombination resonance

In this section, we consider the response of the beam
to the subcombination resonanceΩ ≈ 1

2(ωn ± ωm).
In this case, the excitation, which is transverse, is as-
sumed to be hard. Therefore, we letF (s,v) = εf (s)
in Eqs (1) and (5). Furthermore, in order that the cu-
bic nonlinearities and damping balance the resonance,
we scalec asε2c. We use the method of time-averaged
Lagrangian and virtual work to determine a uniform
first-order expansion. To this end, we let

v(s,T0,T2) ≈ ε
[
Am(T2)φm(s)eiωmT0

+An(T2)φn(s)eiωnT0 + Φ(s)eiΩT0 + cc
]
, (40)

whereφm(s) and φn(s) are the mode shapes corre-
sponding to the natural frequenciesωm andωn and
Φ(s) is governed by the boundary-value problem

Φiv −Ω2Φ =
1
2
f (s), (41)

Φ(0) = 0, Φ′(0) = 0,

Φ′′(1) = 0, and Φ′′′(1) = 0. (42)

We note that 2εΦ(s) cos(Ωt) is the particular solution
of the linear undamped beam equation and associated
boundary conditions. Whenf (s) is constant, the solu-
tion of Eqs (41) and (42) can be expressed as

Φ(s) = c1 sin
(√
Ωs
)

+ c2 cos
(√
Ωs
)

+ c3 sinh
(√
Ωs
)

+ c4 cosh
(√
Ωs
)
− f

2Ω2
, (43)

where

c1 =−c3

=
f

4Ω2

sin
√
Ω cosh

√
Ω + cos

√
Ω sinh

√
Ω

1 + cos
√
Ω cosh

√
Ω

, (44)

c2 =
f

4Ω2

1 + cos
√
Ω cosh

√
Ω − sin

√
Ω sinh

√
Ω

1 + cos
√
Ω cosh

√
Ω

,

(45)
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c4 =
f

4Ω2

1 + cos
√
Ω cosh

√
Ω + sin

√
Ω sinh

√
Ω

1 + cos
√
Ω cosh

√
Ω

.

(46)

Clearly, Eqs (44)–(46) break down whenΩ is near any
of the natural frequencies of the beam. In the present
case,Ω ≈ 1

2(ωm±ωn), which is away from any of the
natural frequencies.

Next, we introduce the detuning parameterσ such
that

Ω =
1
2

(
ωm + ωn

)
+ ε2σ. (47)

Substituting Eq. (40) into Eqs (4) and (5), using
Eq. (47), and retaining only slowly varying terms, we
obtain the following time-averaged Lagrangian and
virtual work:

〈L〉
ε4

= iωm
(
AmĀ

′
m − ĀmA′m

)
+ iωn

(
AnĀ

′
n − ĀnA′n

)
− ΓmAmĀm

−ΓnAnĀn −
1
2
SmmA

2
mĀ

2
m

− 1
2
SnnA

2
nĀ

2
n − SmnAmĀmAnĀn

−Λ
(
ĀmĀne2iσT2 +AmAne−2iσT2

)
+ constant+ · · · , (48)

〈δW 〉
ε4

= −2iωmµm
(
AmδĀm − ĀmδAm

)
− 2iωnµn

(
AnδĀn − ĀnδAn

)
+ · · · , (49)

where theSij are defined in Eqs (21), theµi are de-
fined in Appendix A, andΓm,Γn, andΛ are defined in
Appendix B. In Table 2, we present the numerical val-
ues for the coefficientsΓm,Γn, andΛ for external sub-
combination resonances of the additive type for differ-
ent pairs of the first four modes. Applying Hamilton’s
principle to Eqs (48) and (49), we obtain the modula-
tion equations

−2iωm
(
A′m + µmAm

)
= ΓmAm + SmmA

2
mĀm

+SmnAmAnĀn + ΛĀne2iσT2, (50)

−2iωn
(
A′n + µnAn

)
= ΓnAn + SnmAmĀmAn

+SnnA
2
nĀn + ΛĀme2iσT2. (51)

Substituting the polar transformation, Eqs (22), into
Eqs (50) and (51) and separating real and imaginary

Table 2

Values of the coefficientsΓm,Γn, andΛ for different combina-
tions of the first four modes

Modesm & n Γm Γn Λ

1 & 2 −0.0107f2 −0.1268f2 0.0130f2

1 & 3 −0.0005f2 −0.0420f2 0.0051f2

2 & 3 −0.0111f2 −0.0531f2 0.0006f2

1 & 4 −0.0588f2 −15.3290f2 0.9893f2

2 & 4 −0.0045f2 −0.0298f2 0.0161f2

3 & 4 −0.0135f2 −0.0420f2 −0.0041f2

parts, we obtain the real-valued modulation equations

a′m = −µmam −
Λ

2ωm
an sinγ, (52)

amβ
′
m =

Γm
2ωm

am +
Smm
8ωm

a3
m

+
Smn
8ωm

ama
2
n +

Λ

2ωm
an cosγ, (53)

a′n = −µnan −
Λ

2ωn
am sinγ, (54)

anβ
′
n =

Γn
2ωn

an +
Snm
8ωn

a2
man

+
Snn
8ωn

a3
n +

Λ

2ωn
am cosγ, (55)

where

γ ≡ 2σT2− βm − βn. (56)

We note that, except for the linear shiftsΓi/2ωi in the
natural frequencies, Eqs (52)–(56) have the same form
as Eqs (23)–(27) obtained for the case of combination
parametric resonance if we putfmn = 2Λ and replace
σ with 2σ.

There are two possible solutions for Eqs (52)–(56):
(a) am = an = 0 and (b)am 6= 0 andan 6= 0. In
the first case, it follows from Eq. (40) that the beam’s
response is given by

v(s, t) = 2εΦ(s) cos(Ωt) + · · · , (57)

which is periodic having the same period as that of the
excitation. In this case, the external subcombination
resonance is not activated. The stability of this triv-
ial solution can be analyzed by investigating solutions
of the linearized complex-valued modulation equations
(50) and (51). To this end, we let

Am = cmeλT2+2iσT2 and An = cneλ̄T2 (58)
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in the linearized equations (50) and (51) and obtain[
2iωm

(
µm + λ+ 2iσ

)
+ Γm

]
cm + Λc̄n = 0, (59)

Λc̄m +
[
2iωn

(
µn + λ̄

)
+ Γn

]
cn = 0. (60)

For nontrivial solutions,

λ2 +

[(
µm + µn

)
+ i

(
2σ − Γm

2ωm
+

Γn
2ωn

)]
λ

+

[(
µmµn −

σΓn
ωn

+
ΓmΓn − Λ2

4ωmωn

)
+ i

(
2σµn −

Γmµn
2ωm

+
Γnµm
2ωn

)]
= 0. (61)

It follows from Eqs (58) that the trivial solution loses
stability as one of theλ’s crosses the imaginary axis
along the real axis from the left-half to the right-half of
the complex plane.

For nontrivial solutions, we use Eqs (53), (55), and
(56) to eliminateβm andβn and obtain

γ′ = 2σ − 1
2

(
Γm
ωm

+
Γn
ωn

)
− 1

8

(
Smm
ωm

+
Snm
ωn

)
a2
m

− 1
8

(
Smn
ωm

+
Snn
ωn

)
a2
n

− Λ

2

(
an

ωmam
+

am
ωnan

)
cosγ. (62)

The fixed points of Eqs (52), (54), and (62) correspond
to a′m = 0,a′n = 0, andγ′ = 0. They are given by

αea
2
m = 2σ − 1

2

(
Γm
ωm

+
Γn
ωn

)

± µm + µn√
µmµn

√
Λ2

4ωmωn
− µmµn, (63)

a2
n =

µmωm
µnωn

a2
m, (64)

sinγ =−2µmωm
Λ

am
an

= −2µnωn
Λ

an
am

, (65)

cosγ =

[
2σ − 1

2

(
Γm
ωm

+
Γn
ωn

)
− 1

8

(
Smm
ωm

+
Snm
ωn

)
a2
m

Fig. 6. Amplitude-response curves for an additive-type external sub-
combination resonance involving modes 1 and 2 forσ = −1,
µ1 = 0.0137 andµ2 = 0.0635. Solid lines (—) denote stable fixed
points and dashed lines (– – –) denote unstable fixed points.

− 1
8

(
Smn
ωm

+
Snn
ωn

)
a2
n

]

×
[
Λ

2

(
an

ωmam
+

am
ωnan

)]−1

, (66)

where

αe =
1
8

[
Smm
ωm

+
Snm
ωn

+

(
Smn
ωm

+
Snn
ωn

)
µmωm
µnωn

]
.

(67)

In Fig. 6, we show typical amplitude-response curves
for the subcombination external resonance of the first
two modes forσ = −1. The trivial solution loses sta-
bility via a subcritical pitchfork bifurcation as the forc-
ing amplitude is increased, resulting in a jump in the
response amplitudes. On the other hand, as the forc-
ing amplitude is decreased from a large value, the triv-
ial solution loses stability through a supercritical pitch-
fork bifurcation, resulting in a gradual increase in the
response amplitudes. In either case, the nontrivial so-
lution loses stability asf is decreased via a saddle-
node bifurcation. Comparing Figs 3 and 6, we con-
clude that the linear shift in the natural frequencies
Γi/2ωi and the nonlinear dependence of the effec-
tive forcingΛ (Λ ∝ f2) on the excitation amplitude
have dramatic qualitative and quantitative effects on
the force-response curves.
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Fig. 7. Frequency-response curves for an additive-type external sub-
combination resonance involving modes 1 and 2 forf = 20,
µ1 = 0.0137 andµ2 = 0.0635. Solid lines (—) denote stable fixed
points and dashed lines (– – –) denote unstable fixed points.

In Fig. 7, we show typical frequency-responsecurves
for the same resonance whenf = 20. As in the case of
combination parametric resonance, the curves are bent
to the left, indicating a softening-type nonlinearity. Be-
causeΓ1 andΓ2 are negative and proportional tof2,
there is a strong decrease in the linear natural frequen-
cies with an increase inf . Consequently, forf = 20,
unlike the combination parametric resonance, the ex-
ternal subcombination resonance is activated only for
negative values ofσ. We also note that increasing the
forcing amplitude causes both the stable and unstable
branches to shift to the left, with the latter being shifted
more than the former.

In Fig. 8, we show typical amplitude-response curves
for a subcombination external resonance of the first
and third modes forσ = −1. Comparing Figs 6 and
8, we note that the amplitude-response curves for the
external subcombination resonance of modes 1 and 3
are qualitatively different from the amplitude-response
curves for the external subcombination resonance of
modes 1 and 2. As in Fig. 6, the trivial solution in Fig. 8
loses stability via a subcritical pitchfork bifurcation as
f is increased, resulting in a jump in the response am-
plitudes. However, the amplitudes of the nontrivial so-
lutions in Fig. 8 increase asf is increased, in contrast
to the results in Fig. 6, where the amplitudes of the
nontrivial solutions decrease asf is increased.

Comparing Figs 3(a) and 5(a) with Fig. 8, we note
that the amplitude-response curves for the external
subcombination resonance of modes 1 and 3 are sim-
ilar to those obtained for the combination parametric

Fig. 8. Amplitude-response curves for an additive-type external sub-
combination resonance involving modes 1 and 3 forσ = −1,
µ1 = 0.0137 andµ3 = 0.076. Solid lines (—) denote stable fixed
points and dashed lines (– – –) denote unstable fixed points.

Fig. 9. Frequency-response curves for an additive-type external sub-
combination resonance involving modes 1 and 3 forf = 50,
µ1 = 0.0137 andµ3 = 0.076. Solid lines (—) denote stable fixed
points and dashed lines (– – –) denote unstable fixed points.

resonance. Therefore, the effects of the linear shifts in
the natural frequencies and the nonlinear dependence
of the effective forcingΛ on the excitation amplitude
f do not change qualitatively the amplitude-response
curves.

In Fig. 9, we show typical frequency-responsecurves
for the external subcombination resonance of modes 1
and 3 whenf = 50. Again the curves are bent to the
left, indicating that the nonlinearity and the linear shift
Γ1/2ω1 decrease the frequency of the dominant first
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mode. Furthermore, similar to the combination para-
metric resonance, this case of external subcombination
resonance may be activated for positive as well as neg-
ative values ofσ.

Of the cases mentioned in Table 2, we found that
the responses obtained for the external subcombination
resonance of modes 2 and 4 are qualitatively similar
to those obtained for the external subcombination res-
onance of modes 1 and 3, whereas the behaviors of the
remaining cases are qualitatively similar to the external
subcombination resonance of modes 1 and 2.

Finally, we note again that the case of external sub-
combination resonance of the difference type can be
studied by replacingωm by−ωm andβm by−βm in
Eqs (52)–(56). However, it can be seen from Eq. (64)
that this resonance cannot be activated.

4. Conclusion

The nonlinear flexural responses of cantilever beams
to combination parametric and subcombination reso-
nances have been investigated. For the case of combi-
nation parametric resonance, the beam is excited lon-
gitudinally, whereas for the case of external subcombi-
nation resonance, the beam is excited transversely. In
the parametric case, the Lagrangian and virtual-work
term are discretized using a two-mode Galerkin tech-
nique and Hamilton’s extended principle is used to ob-
tain two second-order nonlinear ordinary-differential
equations of motion. Then, the method of multiple
scales is used to obtain a set of four first-order nonlin-
ear ordinary-differential equations governing the mod-
ulation of the amplitudes and phases of the two ex-
cited modes. In the subcombination case, the method
of time-averaged Lagrangian and virtual work along
with Hamilton’s extended principle are used to obtain
the modulation equations.

We found that the excitation amplitude must exceed
a certain threshold for either resonance to be activated.
For the external subcombination resonance, two qual-
itatively different amplitude-response behaviors were
found. In the first, the external subcombination reso-
nance will not be activated if the excitation amplitude
is chosen beyond a certain limit. In the second, simi-
lar to the case of combination parametric resonance, no
upper limit on the excitation amplitude exists for the
resonance to be activated.

In both parametric combination and external sub-
combination resonances, the trivial solution loses sta-
bility via pitchfork bifurcations, both supercritical and

subcritical, thereby producing nontrivial responses.
When the pitchfork bifurcation is supercritical, the
change in amplitudes is gradual and therefore the tran-
sition is smooth. When the pitchfork bifurcation is sub-
critical, the change in amplitudes is abrupt and is asso-
ciated with a jump. In addition, the nontrivial solutions
lose stability via saddle-node bifurcations as the exci-
tation amplitude is decreased below a critical value, re-
sulting in a jump down to the trivial solution.

For cantilever beams, we found that combination
parametric and external subcombination resonances of
the difference type cannot be activated. Rather, only
additive-type resonances can be excited.
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Appendix A

δ1 =

∫ 1

0

(∫ s

0
φ′2m ds

)2

ds,

δ2 = δ7 =

∫ 1

0

(∫ s

0
φ′2m ds

)(∫ s

0
φ′mφ

′
n ds

)
ds,

δ3 = δ4 =

∫ 1

0

(∫ s

0
φ′mφ

′
n ds

)2

ds,

δ5 = δ9 =

∫ 1

0

(∫ s

0
φ′mφ

′
n ds

)(∫ s

0
φ′2n ds

)
ds,

δ6 =

∫ 1

0

(∫ s

0
φ′2n ds

)2

ds,

δ8 = δ3 +

∫ 1

0

(∫ s

0
φ′2m ds

)(∫ s

0
φ′2n ds

)
ds,

α1 =
1
2

∫ 1

0
φ′2mφ

′′2
m ds,

α2 =

∫ 1

0

(
φ′2mφ

′′
mφ
′′
n + φ′mφ

′′2
mφ
′
n

)
ds,

α3 =
1
2

∫ 1

0

(
φ′′2mφ

′2
n + 4φ′mφ

′′
mφ
′
nφ
′′
n + φ′2mφ

′′2
n

)
ds,
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α4 =

∫ 1

0

(
φ′mφ

′
nφ
′′2
n + φ′′mφ

′2
nφ
′′
n

)
ds,

α5 =
1
2

∫ 1

0
φ′2nφ

′′2
n ds,

µi =
1
2

∫ 1

0
cφ2
i ds,

fij =

∫ 1

0

[
φ′′i (s− 1) + φ′i

]
φjf ds, i, j = m,n.

Appendix B

Γi =

∫ 1

0

[
2φ′′2i Φ

′2 + 8φ′iφ
′′
i Φ
′Φ′′

+ 2φ′2i Φ
′′2 − 2

(
ω2
i +Ω2

)(∫ s

0
φ′iΦ
′ ds

)2]
ds,

Λ =

∫ 1

0

[
2φ′mφ

′′
nΦ
′Φ′′ + 2φ′′mφ

′
nΦ
′Φ′′

+φ′mφ
′
nΦ
′′2 + φ′′mφ

′′
nΦ
′2

+
(
Ω2 + ωmωn − ωmΩ − ωnΩ

)
×
(∫ s

0
φ′mΦ

′ ds

)(∫ s

0
φ′nΦ

′ ds

)
−Ω

(
ωm + ωn

)
×
(∫ s

0
φ′mφ

′
n ds

)(∫ s

0
Φ′2 ds

)]
ds.
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