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Experimental and Analytical 
Power Flow in Beams 
Using a Scanning Laser 
Doppler Vibrometer 

An experimental spatial power-flow (ESPF) method is presented. This method provides 
a spatially continuous model of the power-flow vector field derived from experimental 
measurements. The power-flow vector field clearly indicates locations of energy 
sources and sinks as well as paths of energy transmission. In the ESPF approach, a 
scanning laser Doppler vibrometer acquires spatially dense measurements of the 
vibrating test structure. These measurements are used in solvingfor a spatially continu­
ous 3-dimensional complex-valued model of the steady-state dynamic response. From 
this experimentally derived dynamics model, a spatial representation of the power 
flow is computed. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Analytical and experimental methods that seek 
to develop a spatial map of the power or energy 
flow in vibrating structures are generally referred 
to as power-flow methods. The concept behind 
these methods is that energy sources and sinks 
as well as paths of energy transmission in a struc­
ture can be identified. Once the energy path has 
been determined, the structure can be designed 
or controlled to dissipate and channel the energy 
as required. The design or control problem be­
comes a problem of "managing" the energy in 
the system. The interest in power flow is derived 
from the promise for design and control, given 
the ability to identify the magnitude and location 
of energy sources and sinks. As a result, power­
flow techniques have been proposed and applied 
to a broad range of problems associated with 
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structural dynamics, such as noise control, struc­
tural acoustics, dynamic characterization, and 
nondestructive evaluation. 

Recently, many analytical power-flow solu­
tions have been developed that provide a spatial 
representation of the dynamic response (Ham­
brie, 1990a; Bouthier and Bernhard, 1992). How­
ever, in these analytical models many underlying 
assumptions on the material properties, boundary 
conditions, and external loadings must be made to 
obtain results. Several experimental techniques 
that involve the use of accelerometers and other 
structurally mounted measuring devices have 
also been developed (Pavic, 1976; Palmer et aI., 
1993). This type of experimental approach does 
not provide a spatial representation of the system 
dynamics and often neglects the near-field effects 
encountered at the boundaries and the locations 
of the external forces. Therefore, a power-flow 

CCC 1070-9622/96/050325-12 

325 



326 Blotter and West 

technique that provides a spatially continuous 
representation of the power flow and also incor­
porates the true boundary conditions is desired. 

This article presents an experimental spatial 
power flow (ESPF) method that satisfies these 
requirements. The ESPF uses a scanning laser 
Doppler vibrometer (SLDV) to provide spatially 
dense measurements of the structure's dynamic 
response. These experimental measurements of 
the response inherently include the boundary 
conditions and material properties of the struc­
ture. The 2-dimensional (2-D) raw laser measure­
ments are used to solve for the continuous com­
plex-valued 3-dimensional (3-D) velocity field. 
This velocity field can be integrated in time to 
obtain a 3-D representation of the displacement 
field. In this article, Bernoulli-Euler beam theory 
is used to express the generalized forces in terms 
of the displacements. Although Bernoulli-Euler 
beam theory is used, any mechanics model that 
relates the generalized forces to the displace­
ments could be incorporated. The power flow is 
then computed by taking the dot product of the 
generalized forces and velocities. This power­
flow technique is a novel approach in that it pro­
vides a spatially continuous representation of the 
power flow in the structure that is based on actual 
measurements of the system response. 

In this study the derivation of the power-flow 
equations for a beam are briefly reviewed. The 
underlying assumptions of the analytical ap­
proach are discussed and quantified. The ESPF 
method is then presented and discussed in detail. 
The ESPF method is illustrated by showing re­
sults for each step of the procedure. Finally, a 

Experimental Set Up 

Suspension 

comparison of simulated experimental and ana­
lytical results is presented. The importance of 
accurate estimates of the material properties and 
the boundary conditions is manifested in the re­
sults, and the ability to extract these values from 
experimental power flow is made evident. 

ANALYTICAL APPROACH 

An overview of the derivation of the power-flow 
equations for an experimental beam system that 
approximates free-free end conditions is pre­
sented in this section. This overview provides 
significant insight into the parameters that effect 
the power flow. This derivation is followed by 
a discussion of the underlying assumptions that 
effect analytical power-flow results. The effects 
of the assumptions dealing with the material prop­
erties, boundary conditions, and near-field effects 
are discussed. The focus throughout this article 
is on beams, with the understanding that similar 
assumptions apply to rods, plates, and shells. 

Theoretical Development 

In this section, Hamilton's extended principle is 
used to derive the equation of motion and the 
boundary conditions for a beam suspended from 
a bungee cord. The experimental system and the 
analytical model are shown in Fig. 1. As shown, 
the suspension system is modeled by a transverse 
spring and damper in parallel. The experimental 
system shows a foam pad at the opposite end of 
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FIGURE 1 Experimental setup and analytical model. 



the suspension. This foam pad is used to prevent 
any rigid body rotation or swaying of the beam 
during the test. The foam pad is also modeled 
with a transverse spring and damper in parallel. 

The analytical model used throughout this 
study is based on the Bernoulli-Euler beam for­
mulation, which neglects the effects of rotatory 
inertia and shear deformation. The use ofthe Ber­
noulli-Euler model can be justified for beams of 
very high slenderness ratios if forced at frequen­
cies that result in low spatial wave numbers. 
However, as the wave number increases the rota­
tory inertia and shear deformation become more 

Stationarity of the system requires that the in­
tegrand of Eq. (1) must equal zero. Providing this 
result leads to the fourth-order Bernoulli-Euler 
beam equation and the appropriate boundary con­
ditions. Solving this fourth-order homogeneous 
partial differential equation provides the spatial 
component of the beam displacement as a func­
tion of position and frequency as shown by Eq. 
(2). 

y(x, w) = C1exp(-ikx) + C2exp(ikx) 

+ C3exp( -kx) + C4exp(kx). 
(2) 

In Eq. (2), i represents the square root of -1, 
k is the complex wave number, and x is the spatial 
coordinate along the length of the beam. The coef­
ficients C1, C2 , C3 , and C4 are determined from 
the boundary conditions derived from Hamilton's 
extended principle as shown by the last five terms 
in Eq. (1). 

In this analytical approach, a point force can 
be added to the system at any position along the 
structure by imposing continuity of displacement, 
slope, moment, and a force balance at the location 
of the applied point force. Due to the area over 
which the force acts, a point force is not an exact 
representation of an experimentally applied 
force. It will be shown that the effect ofthe point 
force is manifested as a discontinuity in the ana­
lytical power flow results. Given the expression 
for the displacement field, and using prescribed 
boundary conditions, the power-flow equations 
for the analytical model can be developed. 
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pronounced and should be included in the so­
lution. 

Equation (1) represents Hamilton's extended 
principle for the system shown in Fig. 1 (Meiro­
vitch, 1967). In Eq. (1) m represents the mass per 
unit length and E and I represent the modulus of 
elasticity and the moment of inertia, respectively. 
y, y, and y represent the transverse displacement, 
velocity, and acceleration, respectively, K p ' K c ' 

Cp , and Cc are, respectively, the stiffness coeffi­
cients and viscous damping coefficients of the 
foam pad and bungee cord. S is the variation sym­
bol, and primes indicate spatial derivatives. 

(1) 

Power Flow in Beams 

Power is defined as the time-averaged product of 
a generalized force with the in-phase component 
of a generalized velocity in the direction of the 
force. When complex numbers are used in the 
time-harmonic analyses, the power calculation is 
obtained by taking the dot product of two com­
plex vectors (i.e., the generalized force and veloc­
ity). The dot product of two complex vectors is 
defined as taking the real part of the first vector 
multiplied by the complex conjugate of the second 
vector. This process can also be thought of as 
multiplying one complex number by the in-phase 
part of another complex number, as discussed by 
Hambric (1990b), and as shown by Eq. (3), where 
( ) indicate the time average, and * implies the 
complex conjugate. 

power 

= (generalized force, generalized velocity) (3) 

= ~ Re[force velocity*] 

In the literature, power or energy flow in a 
structure is commonly referred to as power flow. 
The term power flow is derived from the fact that 
because the direction of the generalized forces 
are known, the direction of the power is also 
known. Hence the power can be represented as 
a vector because both the magnitude and direc­
tion are known. When plotting power vectors a 
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flow-type pattern is generated, hence the term 
power flow. 

Real or active power flow as discussed by 
Gavric and colleagues (1990), represents the net 
energy flow in the structure. Locations of energy 
sources and sinks can be identified from plots 
of the active power flow. Imaginary or reactive 
power flow does not contribute to the net energy 
flow in the structure as discussed by Pascal et al. 
(1994). Only active power flow results will be 
discussed here, even though the procedure pre­
sented can easily develop a spatial representation 
of the reactive power flow. 

Because beams are 1-D, power flow only trav­
els in the plus or minus direction along the length 
of the beam. Analytical and experimental power 
flow methods that account for 2-D flow in plates 
and shells were developed previously (Noiseux, 
1970; Pavic, 1976). Blotter and West (1995) pre­
sented a SLDV approach that builds on the ap­
proach presented here and computed the power 
flow in plates using fifth-order B-spline surface 
elements to represent the 3-D velocity field mea­
sured by the SLDV. 

Under the assumed Bernoulli-Euler beam 
model there are two generalized forces and asso­
ciated generalized velocities that contribute to the 
power flow in beams when only transverse motion 
is considered. The two generalized forces are the 
shear force and the bending moment. The associ­
ated generalized velocities are, respectively, the 
transverse velocity and the angular velocity. Ex­
pressions for the shear and bending moment ac­
tive power-flow components in terms of the com­
plex-valued transverse displacement, y, are 
shown by Eqs. (4) and (5), respectively. The reac­
tive power-flow component is obtained by taking 
the imaginary part of Eqs. (4) and (5) instead of 
the real part. 

(4) 

1 [( a2y) ( ay )*] q =-Re EI- -- . 
m 2 ax2 atax (5) 

Material Properties 

The material properties of a beam that effect the 
power flow are the structural damping factor, TJ, 
the modulus of elasticity, E, and the density, p. 
Although known ranges for these values exist, 

slight variation in these material properties, espe­
cially the structural damping factor, has a large 
effect on the power-flow results and can com­
pletely change the analytically predicted energy 
path. It is not the intent of this study to determine 
the exact values for the material properties of the 
test structure. The intent is to show the sensitivity 
of the power flow, given assumed material proper­
ties in the analytical model. 

The structural damping factor is the first mate­
rial property to be discussed. If the structure has 
zero damping, there is no spatial energy transfer 
or power flow. As damping is increased, the shear 
forces and bending moments that develop provide 
a mechanism for energy transport. Therefore, in­
creasing the structural damping increases the gen­
eralized forces, which in turn causes an increase 
in the power flow. Damping enters the analytical 
solution through the complex wave number, k, 
and the complex modulus of elasticity, Ec ' shown 
by Eqs. (6) and (7). 

k4 _ 2 ps (1 - iTJ) 
- w EI (1 + TJ2), 

Ec = E(l + iTJ). 

(6) 

(7) 

The effects of changes in the structural damp­
ing factor are best shown by presenting power­
flow results. Figures 2 and 3 show the analytical 
power-flow results of the same test structure 
where the only change is an increase from 0.001 
to 0.005 in the structural damping factor. 

In Figs. 2 and 3 a free hanging beam was used 
as the test structure. The beam was a 139.0 x 7.6 
x 0.7 cm, 304 stainless steel beam. The modulus 
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FIGURE 2 Power flow damping 0.001. 
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FIGURE 3 Power flow damping 0.005. 

of elasticity, density, and Poisson's ratio were 
respectively, 204 GPa, 7860 kg/m3 , and 0.29: 
These parameters were the same parameters of 
the beam used in the simulated experimental pro­
cess. The beam was forced at the quarter span 
with a frequency of 3250.0 Hz. Figures 2 and 
3 show that the normalized power flow with a 
structural damping factor of 0.001 is approxi­
mately 20% of the power flow of the same system 
with a structural damping factor of 0.005. The 
power flow over the structure was normalized 
between -1 and 1 by dividing by the maximum 
absolute value of the power flow in the model 
with structural damping of 0.005. This implies 
that an error in the estimation of the structural 
damping factor of 20% results in an error in the 
power flow of approximately 20% for this system. 
This is significant because estimation of the damp­
ing factor is a difficult task and significant error 
can result. It should not be presumed that power 
flow is linearly proportional to the structural 
damping factor. 

The other material properties that effect the 
power flow are the modulus of elasticity and the 
density. A change in the modulus of elasticity 
results in a one to one change in the power flow 
as shown by Eqs. (4) and (5). The density enters 
the solution through the wave number as shown 
?y E~. (6). It acts similarly to the structural damp­
mg (I.e., as the density increases the power flow 
also increases). The modulus of elasticity and the 
density can have a significant impact on the power 
flow. However, the estimates of these two mate­
rial properties are usually known with consider­
ably more certainty than the structural damping 
factor. 
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Boundary Conditions 

The exact boundary conditions of any structure 
are at best difficult to estimate. For example, a 
beam hanging from a bungee cord or fishing line 
is often modeled as a free-free beam. However, 
during testing, the participation of the suspension 
system can be visually detected even when much 
care is taken in the setup. Many attempts are 
made to analytically model various boundary con­
ditions by adding springs and dampers. For exam­
ple, a free hanging beam would have springs and 
dampers modeling the suspension. Although 
springs and dampers can theoretically improve 
the model, it is still a difficult task to know the 
appropriate stiffness and damping coefficients of 
these components, or if another boundary condi­
tion model would be a better approximation. 

To illustrate the effects of added springs and 
dampers to a system, power-flow calculations 
were made on two models of the same test sys­
tem. The system modeled was a beam hanging 
from a bungee cord as shown in Fig. 1. The mate­
rial properties were the same as those listed in 
the previous section. The first model treated the 
beam as a true free-free beam. The second model 
accounted for the suspension system and the 
sway pad by adding springs and dampers at the 
beam ends. The spring constant for both springs 
was 17.5 N I m and the viscous damping coefficient 
was 0.2 N s/m. In both models, the beam was 
forced with the same magnitude and frequency 
at the midspan in the transverse direction. 

Figure 4 presents the analytically determined 
power-flow results for the two models. The re-
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FIGURE 4 Effects of boundary conditions on 
power flow. 
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suIts show that for the true free-free beam the 
power flow was zero at the free ends and maxi­
mum at the midspan where the force was applied. 
This implies that all the energy put into the system 
by the force was being dissipated along the beam 
(i.e., no energy is leaving through the free ends 
of the beam). The case where the bungee cord 
suspension was modeled with springs and damp­
ers shows that the overall power flow decreases 
slightly along the length of the beam but a signifi­
cant amount of energy is absorbed by the bound­
ary. It is also illustrated that even though the 
magnitude of the force was the same in both 
cases, due to the differences in the system, more 
energy was put into the beam with the applied 
spring-damper boundary conditions. 

Near-Field Effects 

Near-field effects arise due to points of disconti­
nuity in the system such as locations of the force 
and boundaries. If the structural damping factor 
is small, many investigators neglect the near-field 
effects. By neglecting the near-field effects, the 
four-term beam displacement given by Eq. (2) 
reduces to a two-term equation. This greatly sim­
plifies the analytical solution. However, it will be 
shown that the near-field effects are significant 
and should be accounted for in the solution, espe­
cially at low frequencies. 

To illustrate the near-field effects, the kinetic 
energy for a free-free beam was calculated using 
two models. The first model accounted for the 

near-field effects and the second model neglected 
their contribution. Figure 5 shows the normalized 
results of the two models for the first half of the 
beam. The near-field effects of the force at posi­
tion 12 and the free boundary at position 0 are 
shown. Without near-field effects in the solution, 
the peaks of the kinetic energy are shown to be 
constant. However, when near-field effects are 
included it is shown that both the magnitude and 
the spatial phase of the kinetic energy change. In 
beams when the near-field effects are neglected, 
the kinetic and potential energy are equal in mag­
nitude, spatially in phase (reach maximum and 
minimum at the same spatial location), and 1800 

out of phase in time. When near-field effects are 
present none of these statements are necessar­
ily true. 

Figure 5 also indicates that it takes about one 
and a half wavelengths for the near-field effects to 
fade away. This implies that for low frequencies, 
near the first few modes, significant near-field ef­
fects can be present throughout the entire struc­
ture, even if the structural damping coefficient 
is small. 

EXPERIMENTAL APPROACH 

An overview of the three-step ESPF approach is 
presented in this section. The development of this 
three-step approach is the main contribution of 
this research. The novelty of this approach with 
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FIGURE 5 Kinetic energy with and without near-field effects. 



respect to current literature will be discussed 
throughout the remainder of the article. 

The first step of the ESPF approach consists of 
measuring the dynamic response of the structure 
with an SLDV. The SLDV measures the response 
of the vibrating structure that inherently contains 
the true damping mechanisms, boundary condi­
tions, and near-field effects, and provides the data 
to solve for a spatial model of the system re­
sponse. The SLDV contain a I-mW helium-neon 
laser of wavelength 632.8 nm. The SLDV func­
tions as a noncontacting velocity transducer capa­
ble of remote measurement of the velocity of a 
solid surface. Velocities in the range of 0-± 1000 
mmls can be measured at working distances up 
to 200 m. The SLDV incorporates scanning mir­
rors to permit controlled deflection of the laser 
beam and therefore the measurement position 
across the structure. The SLDV is based on a 
Michelson interferometer in which a laser beam 
is divided into reference and signal beams. The 
signal beam is directed onto a vibrating test sur­
face that changes the frequency of the back-re­
flected light. This reflected signal beam is recom­
bined with the internal reference beam where the 
Doppler shift between the two beams is directly 
proportional to the measured velocity. The pri­
mary instrument output is an analog voltage pro­
portional to surface velocity. 

The second step of the ESPF process consists 
of solving for the continuous 3-D complex-valued 
velocity field from the laser data. This is done by 
using the experimental spatial dynamics modeling 
(ESDM) technique as discussed by Montgomery 
(1994). It is emphasized that raw 2-D images of 
the velocity field are not used directly to compute 
the power flow. 

In the third step of the ESPF process, high 
order B splines are used to represent the velocity 
field. This allows a continuous representation of 
the spatial and temporal derivatives of the veloc­
ity field that are required to compute the power 
flow. In most cases, a minimum of fifth-order B­
spline elements that allow quadratic representa­
tion of the third derivative should be used. The 
total experimental power flow can then be com­
puted spatially in the structure as shown by Eqs. 
(4) and (5). 

EXPERIMENTAL AND ANALYTICAL 
RESULTS 

This section presents the results of the experi­
mental power-flow process described in the previ-
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ous sections. In each step of the process, results 
from two models of the same test structure are 
presented. The first model was a simulated exper­
imental model where the dynamic response was 
generated by a computer simulation of the SLDV. 
This computer simulation accounts for noise on 
the velocity signal and for typical experimental 
error in the process. The second model was the 
analytical process in which the response and 
boundary conditions were obtained from Hamil­
ton's extended principle as shown by Eq. (1). 
This model represents the ideal case in which 
zero noise or experimental error are present. The 
differences between the experimental model and 
the analytical model are due to noise on the veloc­
ity signal from the SLDV and experimental error, 
such as errors in the SLDV registration process, 
calibration factors, and signal processing. Be­
cause the focus of this work was to develop an 
experimental approach to power flow and not to 
determine the correct material properties and 
spring/damper coefficients of the system, reason­
able approximations were obtained for these pa­
rameters by a simple manual system identifica­
tion process. 

The system under test in each case was a 139.0 
x 7.6 x 0.7 cm, 304 stainless steel beam hanging 
from a bungee cordlfishing line suspension as 
shown in Fig. 1. The material properties used in 
the analytical models were the same as those 
listed in the Material Properties section. The 
beam was forced in the transverse direction at 
the bungee cord end with a frequency of 15 Hz. 
This frequency was close to the second resonance 
frequency of the beaml suspension system. It 
should be noted that if the beam was forced ex­
actly at resonance, only standing waves would 
be present in the system and the active power 
flow would be zero as discussed by Gavric et 
al. (1990). 

The dynamic response of the experimental 
model was obtained as discussed in the previous 
section. The optimal fit for this response was ob­
tained by using four fifth-order B-spline elements 
to fit the centerline data. Figures 6 and 7 illustrate 
the real and imaginary velocity components of 
the analytical beam model. Figure 8 shows 
a plot of the residuals between the real velocity 
computed in the experimental model and the 
analytical model representations. The residuals 
had a mean value of -5.16 X 10-9 m! s and the 
variance was calculated to be 1.65 x 10-9 m/s. 
The residuals between the experimental and the 
analytical imaginary velocity models are shown 
in Fig. 9. The residuals had a mean value 
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FIGURE 6 Real component of the velocity field over the beam. 

of 1.27 x 10-6 mls and a variance of 8.37 x 
10-7 m/s. 

Once an acceptable B-spline representation of 
the response is obtained, the power flow can be 
computed. It is important to follow the power­
flow calculation through by examining the effects 
of taking the required derivatives. Figure 10 
shows that even though a tight band on the imagi­
nary velocity residuals was obtained, significant 
differences in the third derivative computations 
were generated from the initially small differences 
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between the two representations. It is further il­
lustrated that the error is largest near the ends of 
the beam. Due to the error that is magnified by 
computing the third derivative, other methods 
based on energy instead of displacements were 
investigated by many researchers (Halkyard and 
Mace, 1994). The error in this result also implies 
that future work should concentrate on converg­
ing the power flow instead of the displacements. 
This process would be similar to the methods 
used in finite element analysis when convergence 
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FIGURE 7 Imaginary component of the velocity field over the beam. 
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FIGURE 8 Real velocity residuals (experimental vs. analytical). 

of the stresses is performed instead of conver­
gence of the displacements. The implication of 
this result is to converge the quantity of interest 
that in this case is the power flow and not the ve­
locity. 

After computing the required derivatives, the 
shear and moment components of power flow 
were computed as shown by Figs. 11 and 12, 
respectively. It is shown that the power flow due 
to the bending moment has a much smaller error 
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than the power flow due to the shear force. This 
is due to the error that is manifested in the third 
derivative computation as compared to the sec­
ond derivative computation. 

Adding to the results of Figs. 11 and 12 pro­
vides the total power flow as shown by Fig. 13. 
Figure 13 shows that the energy enters the system 
through the shaker at beam position 1.39 and trav­
els along the beam in a negative direction. Energy 
dissipation along the length of the beam is due 
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FIGURE 9 Imaginary velocity residuals (experimental vs. analytical). 
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mainly to internal damping of the structure. At 
beam position 0 the energy dissipated by the 
spring/damper is shown. The largest differences 
between the two power-flow models was 14% and 
occurs near the boundaries. The differences in 
the power-flow results between the experimental 
and the analytical methods are due mainly to ex­
perimental error. Although a perfect representa­
tion of the power flow is not obtained by the ESPF 
method, the general flow pattern along with the 
locations of the sources and sinks can be identi-
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fied. The ESPF model can be improved by con­
verging the power-flow field instead of the veloc­
ity field and by reducing the experimental error 
in the data acquisition process. 

SUMMARY 

A spatially continuous model of the power flow 
in a system is significant for both dynamic analy­
sis as well as design. The ability of the system to 
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FIGURE 11 Shear power-flow component. 
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FIGURE 12 Moment power-flow component. 

transfer energy as a function of time, space, and 
frequency is a unique signature obtained from a 
power-flow analysis that can be used to character­
ize the system. In a design scenario, power-flow 
results could be used to design the channeling or 
dissipation of the energy in the structure. 

Many experimental and analytical methods 
have been developed that attempt to predict the 
power flow in a structure. This research has 
shown that to extract the true power flow in a 
system, a spatial measurement of the structure's 

dynamic response that includes experimental 
measurement of the boundary conditions is re­
quired. Current experimental power-flow meth­
ods are incapable of providing this required spa­
tial representation of the system's dynamics. It 
was also shown and discussed that even though 
a spatial representation of the power flow can be 
obtained from an analytical solution, the underly­
ing assumptions on the material properties and 
the boundary conditions required to obtain a solu­
tion can significantly corrupt the results. The 
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FIGURE 13 Total power flow. 
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ESPF method presented in this research is a novel 
approach because a spatially continuous repre­
sentation of the power flow that experimentally 
measures the boundary conditions is provided. 

The key concept that sets the ESPF approach 
apart from other methods is developed around 
providing a spatial representation of the power 
flow that satisfies the true physics of the system. 
The ESPF approach consists of using an SLDV 
to extract a spatial representation of the system 
response. From the laser data, a continuous 3-D 
complex-valued velocity field is generated. From 
this representation of the system dynamics, a spa­
tially continuous mapping of the power flow can 
be computed. 

Th~ experimental power-flow method devel­
oped was presented and validated against analyti­
cal results. The validation for the experimental 
method consisted of comparing the results of a 
prescribed analytical model with known material 
properties and boundary conditions to a simu­
lated experimental model that accounted for sig­
nal noise and experimental error. The experimen­
tal results were shown to compare within 14% of 
the analytical method throughout the domain. 
The impact of structural damping, boundary con­
ditions, near-field effects, and the effects oftaking 
the third spatial derivative were quantified and 
discussed. 

Future applications of this method will be to 
perform acoustic prediction, adaptive control, 
health monitoring, damage detection, and design 
for dynamics of vibrating structures. The method 
will also be used to extract system parameters 
within a system identification framework to up­
date analytical/computational models. 
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