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Frequency and Spatial 
Shaping of Inputs for 
Multiaxis Shaker Testing 

Controlled amplitude and phase relationships between multiaxial shaker inputs (i.e., 
spatial shaping) provides for more realistic simulation of a service environment than 
does conventional frequency shaping alone. Spatial shaping is described in terms of 
a basic mathematical model relating test article response (absolute and relative mo­
tions) to excitation by the shaker. Advantages and objectives are viewed through 
spectral relationships. The objective of simulating dynamic responses as in service is 
shown to be the duplication of the resultant cross-modal response for all important 
modes, even if the sources of excitation in service are unknown. © 1996 John Wiley 
& Sons, Inc. 

INTRODUCTION 

In recent years, multiaxis shakers have been pro­
posed and built for environmental and stress 
screen testing of structures (Bonnet, 1986; Chang 
and Frydman, 1990; Thompson, 1986; Bausch 
and Good, 1992, 1995). It is generally agreed that 
multiaxis shakers provide the potential for better 
control and more realistic test environments than 
single axis shakers. However, the extent of this 
potential to provide real benefit has never been 
clearly defined. Here we provide a theoretical 
basis for multiaxis shaker testing, where control­
ling multiple axis excitations simultaneously is 
defined as spatial shaping. The theoretical basis 
provides a reference for clarifying and realizing 
the potential of multiaxis shakers and a basis for 
design of the control systems for multiaxis 
shakers. 

Significant previous work was done to design 
mUltiple axis shaker control (Fisher and Posehn, 
1977; Smallwood, 1978, 1982a, 1982b; Greenfield, 
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1983; Smith et aI., 1980; Hobbs and Mercado, 
1984; Lehman, 1985; Frydman, 1988; Stroud and 
Hamma, 1988). Among these works, methods for 
defining multiple inputs with prescribed spectral 
relationships were developed and methodologies 
for adjusting those inputs to achieve given spec­
tral outputs were developed. Here we focus not 
on control methodologies, but upon the theoreti­
cal basis of structural dynamic interactions to de­
fine the objectives, possibilities, and limitations 
of structural testing and control using a single 
platform, multiaxis shaker. 

Dynamic environmental or shaker testing has 
long taken advantage of the independence of dy­
namic modes and their natural separation accord­
ing to frequency. Dynamic excitation has thus 
been shaped according to frequency in order to 
excite individual modes and/or separate the ef­
fects of different modes. A test environment is 
thus typically defined in the form of a vibration 
amplitude as a function of frequency, with the 
intent that certain frequencies will excite particu-
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lar modes that may cause failure. The develop­
ment of multiaxis shakers now creates the possi­
bility of spatial shaping as well as the traditional 
frequency shaping of the test environment. Con­
trolled excitation of more modes independently 
and simultaneously makes possible the creation 
of a test environment that more accurately simu­
lates the service environment and is less likely to 
result in overtest and undertest associated with 
less controlled modes and degradation due to the 
greater handling and exposure associated with 
sequential testing on successive axes. Better sim­
ulation enables more accurate prediction of sur­
vival or failure in service and more reliable moni­
toring of a test article being tested periodically 
for degradation with age. 

BASIC DYNAMIC MODEL FOR 
SHAKER EXCIT AllON 

The following model will be useful in describing 
frequency and spatial shaping. Although the pa­
rameters of a model of a system under test will 
typically not be known during a given test, the 
model will be helpful in allowing us to quantify the 
objectives and possibilities of multiaxis shaker 
testing. Consider the positive definite system with 
position relative to a fixed datum defined by the 
vector x and natural motion defined by the equa­
tion set 

Mi + Cx + Kx = O. 

Now suppose the datum to which x is referred is 
not fixed. Let the position of the datum be the 
vector Xd' so that the total motion at each degree 
of freedom of the system is defined by XI = X + 
BXd' where BXd represents the rigid body motion 
of the system corresponding to the motion of the 
datum. If motion of the datum is assumed to affect 
the kinetic energy of the system but not the poten­
tial energy (strain energy not affected by rigid 
body motion) or dissipative forces (no dissipation 
from rigid body motion), the natural motion will 
be described by the equation set 

M(i + Bid) + Cx + Kx = 0 

or 

MX + Cx + Kx = - MBid 

or 

MX + Cx + Kx = -MBad' (1) 

where ad represents the acceleration of the datum. 
This set of equations can be used then to model 
the motions relative to a shaker, x, of the system 
subject to the shaker input accelerations, ad' It 
assumes that the motions of the shaker are small 
enough that gravitational and dissipative forces 
associated with rigid body motion are constant 
with respect to the motion coordinates of the 
system. 

Consider first the undamped system for which 
normal modes exist. Although this restriction will 
be relaxed later in this development, it is easier to 
illustrate the basic concepts using normal modes. 
Assuming the natural frequencies, Wi' and corre­
sponding mode shapes, CPi' we form the modal 
matrix 

and we transform to modal coordinates such that 
x = <l>q by substituting into Eq. (1) with C = 0, 

M<I>q + K<I>q = -MBad' 

Premultiplying by the transpose of the modal ma­
trix, <1>1, we have 

Because the magnitudes of the mode shapes are 
arbitrary, for convenience we will normalize the 
mode shapes such that <I>~<I> = I, and Eq. (2) be­
comes 

(3) 

where W is the diagonal matrix with the square 
of the natural frequencies down the diagonal. 
Equation (3) is an uncoupled set of equations of 
the form 

(4) 

where the modal forces, 1;, are defined as the 
terms in the vector f = -<I>IMBad' We therefore 
view the matrix, -<I>IMB, as the transform that 
indicates how the accelerometer excitation vec­
tor, ad, affects (excites) each of the modes. In 
the frequency domain, letting the transforms be 
represented by capitals, Eq. (4) can be written 



I 
Qi= 2 2 F i=Ll(w)Fi , 

Wi -w 
(5) 

which can be used to form the matrix set 

Q = LlxCw) F, (6) 

where Llx(w) is the diagonal matrix with the terms 
l/(w;- w2) at each diagonal element Llxii . 

Substituting for the original displacement vec­
tor, x = <l>q, results in 

or 

(7) 

Here we identify the matrix 

(8) 

as the matrix of transfer functions relating the 
input accelerations from the shaker to the output 
displacements of the system relative to the shaker 
table displacement. To find the matix relating (rel­
ative) acceleration outputs, we multiply each 
term of the matrix by -w2 , resulting in 

(9) 

where Lla(w) is the diagonal matrix with the terms 
w2/(w; - w2) at each diagonal element, and the 
relative accelerations, Ax, are found from the in­
put accelerations, Ad' by the relationship 

(10) 

If we define the vector A as the vector of abso­
lute acceleration outputs, we note that A = 

Ax + BAd' so that 

A = Ax + BAd = Ha(w) Ad + BAd 

= (Ha(w) + B) Ad = H(w) Ad. 
(11) 

where we defined the frequency response func­
tion matrix 

H(w) = (I + <l>Lla(w)<I>tM) B = KB, (12) 

where 

(13) 
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Now if we postmultiply both sides of Eq. (13) by 
<I> we have 

and note that <I> tM<I> = I, 

K<I> = <I> + <l>Lla(w) = <I> (I + Lla(w» 

= <l>Ll(w), 
(14) 

where Ll(w) is the diagonal matrix with the ele­
ments 

w; 
Ll;i = 2 2 

Wi -w 
1 

(15) 

Postmultiplying both sides of (14) by M<I>t re­
sults in 

(16) 

which substituted into (12) results in 

H(w) = <l>Ll(w)M<I>tB. (17) 

Equation (17) relates the system physical prop­
erties and the response function. The last three 
matrices in Eq. (17) define the way in which the 
shaker inputs excite each mode. The geometric 
relationships between the mass distribution and 
the shaker coordinates is defined by the matrix 
B. M<I>tB describes the distribution of the system 
inertia relative to the mode shpaes and the geo­
metric relationship between the shaker and sys­
tem coordinates. It tells us that to excite any 
mode, we must shake at least some mass' 'parti­
cles" in the direction of the mode shape for that 
mode. Ll(w) defines the dynamic amplification of 
the motion associated with each mode. The mode 
shape <I> distributes the modal motion to each 
physical coordinate. It describes how much of 
each modal displacement we will see at each loca­
tion (or direction). We note from (14) that for 
w ~ Wi for all i (i.e., for frequencies much lower 
than the system natural frequencies), Ll(w) = 1 
and H(w) = <l>M<I>tB = B, and the system moves 
as a rigid body. 

To look at the frequency response at position 
i subject to input j, the term in the frequency 
response function can be written 
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where cP7 is the kth mode shape at position i, and 
cP~j is the component of the kth mode shape at 
the location of mass particle mm in the direction 
of the input j. The term in parentheses could be 
written as an integral over all mass particles, and 
fl.k could be considered the dynamic amplification 
factor for the kth mode and is the only frequency 
dependent term in the frequency response 
function. 

Let us define 

(18) 

as the kth modal mass influence coefficient in the 
jth direction, then 

n 

h .. = " A,. kfl.k(Jk , u L..J '1'1 CJ' 
k=l 

(19) 

The controllability (by the jth input) of the kth 
mode is defined by the term (Jig whereas the ob­
servability (at the ith output) is defined by the 
term (Jf. 

For systems with damping (nonproportional), 
normal modes do not exist; but the mode shapes 
become complex and the concepts above can be 
extended by considering the phase relationships 
between components and the spatial locations in 
the mode shapes. For these cases, the modal dy­
namic amplification factors become functions of 
position i and j and take the form 

fl.i(w) 

1 + j (~k + \I'l-=-TI tan (cpf + cpj) (~) ) 

where Wk is the modal undamped natural fre­
quency and ~k is the modal damping coefficient. 
The mode shapes become in general complex and 
represent both amplitude and phase components 
of modal displacements; and the angles cp7 and 
cpj are the phase angles of the ith and jth compo­
nents, respectively, of the kth mode shape. For 
lightly damped systems, the imaginary term in 
the numerator above is small compared to the 
real term, and the modal dynamic amplification 
factor is only weakly dependent on position. 

For convenience in our discussion it will be 
assumed that the dynamic amplification factor is 

a function of frequency only, and we will use the 
symbol fl.k(w). The modal dynamic amplification 
factors fl.iw) are the key to frequency shaping of 
the inputs to excite particular modes, whereas 
the mode shapes and modal mass influence coef­
ficients are key to spatial shaping of inputs to 
excite particular modes. For cases where damp­
ing is large, so that ~k and tan(cp7 + cpj) are not 
much less than unity, spatial shaping will also 
affect the dynamic amplification factors. Al­
though the mathematical uncoupling is not as 
straightforward, the concepts of spatial and fre­
quency shaping are nevertheless applicable. 

Relative vs. Absolute 
Acceleration Outputs 

Equation (10) defined the relationship between 
the base acceleration inputs and the relative ac­
celeration vector Ax. In many cases, it may be 
more desirable to produce a prescribed relative 
motion within the structure than to produce a 
prescribed absolute motion, because stresses and 
strain are a function of the relative rather than 
the absolute motions within the structure. In this 
case, we expand Eqs. (9) and (10) and look at the 
frequency response at position i subject to input 
j, where each term in the frequency response 
function can be written 

where again cfJ7 is the kth mode shape at position 
i, and bmj is the corresponding term in the B matrix 
defined earlier. Again, the term in parentheses 
could be written as an integral over all mass parti­
cles, and fl.~ could be considered the dynamic 
amplification factor for the kth mode; and it is the 
only frequency dependent term in the frequency 
response function. Here we will define 

(20) 

as the kth modal mass influence coefficient in the 
jth direction and 

(21) 

as the kth modal relative amplification factor. 



Then 

(22) 

Interpretation of Eqs. (20) and (22) parallels 
that of Eqs. (18) and (19) given earlier, except 
that the outputs are relative accelerations rather 
than absolute accelerations. Controlling the rela­
tive motions within a structure rather than the 
absolute motions will control the flexible body 
modes independent of the rigid body modes. Be­
cause the shaker table can usually not duplicate 
the rigid body modes, this may be desirable. Be­
cause a multiaxis shaker makes spatial shaping 
possible as well as frequency shaping, the con­
trolled excitation of multiple modes within a given 
frequency band is possible, thus enabling a dy­
namic shaker test to more closely duplicate the 
dynamic service environment of the object to 
be tested. 

SPECTRAL RELATIONSHIPS 

Because all terms will be in the frequency domain, 
here we adopt the nomenclature that vectors will 
be lower case and matrices will be upper case. 
Consider the system where x is a vector of system 
inputs (accelerations), y a vector of outputs, and 
the transfer function matrix is defined as the ma­
trix H such that 

y=Hx. (23) 

Here we will use y as a vector of generalized 
outputs, which could be either relative or absolute 
accelerations, or other variables of interest; and 
x is a vector of generalized inputs. Defining the 
spectral matrices Sx = xx*, Sy = yy* where x* 
and y* are the transpose of the conjugates of x 
and y, respectively, 

y* = x*H*, 

so that 

Sy = yy* = Hxx*H* = HSxH* , (24) 

gives the relationship between the input spectral 
matrix and the output spectral matrix. For the 
case where we have a single output to be con-
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trolled by mUltiple inputs, the output 

y = h,x, (25) 

where hr is a row vector of transfer functions, and 
the output auto spectrum is defined by the relation 

(26) 

For example, if x is a 3-dimensional vector (as 
for a 3 degree of freedom shaker), let 

and the output autospectrum, Sy [Eq. (26)] can 
be found as 

3 3 

Sy = L L hihtSif= hJhiSII 
i=Jj=J (27) 

because S2J = Si2' S3J = Si3' and S32 = Si3' 
If we write an expression for the transfer func­

tion relating the response at y to the jth input as 
[from Eq. (19)] 

n 

hyj = L <I>;ak8/J' 
k=J 

(28) 

then substituting into (27) we have 

(29) 
3 3 n n 

= L L L L <I>;ak8ki ' <I>;?*a~,8~IjSij 
i=Jj=J k=J m=J 

3 3 n n 

= L L L L <I>~cP;,*aka!8ki8~IjSij' 
i=Jj=J k=J m=J 

where it is noted that if the system is undamped 
such that normal modes exist, the mode shapes. 
modal dynamic amplification factors, and modal 
influence coefficients are all real. The conjugate 
forms are retained in Eqs. (29), however. for gen­
erality. If normal modes do not exist, each of the 
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terms in Eq. (29) may be complex, including the 
mode shapes, dynamic amplification functions, 
and modal mass influence coefficients. For each 
mode, the dynamic amplification factors are func­
tions only of frequency, the mode shapes are 
functions only of positions where the outputs are 
measured, and the modal mass influence coeffi­
cients are functions only of the excitation direc­
tion (or location). 

For mUltiple outputs, say y and z, Sz can be 
found from inerchanging z for y in (29), and the 
output cross spectrum relating y and z can be 
found from the relation 

3 3 

Syz = L L hihtSij 
i=\j=\ 

3 3 n n 

= L L L L cfJ;cfJ,;,*aka!'hlr:'jSij. 
i=\j=1 k=\ m=\ 

Interpretation and Generalization 
of Equations 

(30) 

Because Eq. (29) can be considered a particular 
case of Eq. (30), our discussion here will focus 
upon interpretation ofEq. (30). Each output spec­
trum characterizes the statistical relationship be­
tween two variables y and z [or y and itself (fre­
quency content) in the case of an autospectrum]. 
The objective of a shaker test is typically to repro­
duce (statistically) some kind of system response. 
For example, we may wish to reproduce the 
stresses throughout a structure that are experi­
enced by the structure when "in service." To 
do this would require that autospectra and cross 
spectra for all possible values of y and z are the 
same as occur during service. This will be true if 
(1) all modal properties are the same during the 
test as during service, and (2) if all modes are 
excited at the same level during the test as in 
service. 

Rewriting Eq. (30) by interchanging the order 
of the summation and rearranging, 

(31) 
n n 

= L L cfJ;cfJ';'*Rkm' 
k=\ m=\ 

where R km = aka! 2.~=\ 2.;=\ (hlJ!jSij is defined as 
the cross-modal response for modes k and m (au­
tomodal response when k = m). 

Assuming that condition (1) is true so that the 

mode shapes, dynamic amplification factors, and 
modal mass influence coefficients are unchanged 
from service to test, the control ofthe test [creat­
ing condition (2)] requires control of the input 
spectra, Sij' such that the cross-modal responses, 

3 3 

Rkm = a~! L L OkiO!jSij, (32) 
i=\j=\ 

to the shaker inputs are the same as the cross­
modal responses, 

Is Is 

Rkm = aka! L L 0k,O!sS,s, (33) 
,=\ s=\ 

to the in service inputs, where the number of 
inputs, IS' and input spectra in service, S'S' are 
unknown. If Rkm > R km , one or both ofthe modes 
experience overstress (for modes k and m; for a 
nondominant mode, system stresses may still be 
low; for "significant" modes, system overstress 
would be likely), and the test is too severe (as 
compared to in service). If R km < Rkm , undertest­
ing occurs. We are thus left to ask: Under what 
conditions is it possible, and what procedure will 
allow us to make R km sufficiently close to Rkm to 
conduct a meaningful test? 

It is clear that under all conditions, it would 
be impossible to a~ways choose the Sij in Eq. (32) 
such that R km = Rkm for all m and n. There are 
too many more degrees of freedom in Rkm than 
Rkm . At first glancee, the cause may look hope­
less. However, the nature ofthe modal character­
istics provides a very practical help, allowing us 
to make R km = Rkm for many cases. 

If we examine the terms in Eqs. (32) and (33), 
we note that the dynamic amplification factor for 
each mode (ak for the kth mode) is relatively small 
at frequencies distant from the natural frequency 
of the mode. Therefore the product, aka!, is 
small except near the natural frequencies for 
modes k and m, and each of the terms 

3 3 

L LOki· O!JSij = Tkm , 
i=\j=\ 

(34) 

defined as the cross-modal (automodal when k = 
m) excitation, need only approximate the cross­
modal excitation in service, 

Is Is 

t km = L L Ok, . O!sS,s, (35) 
,=\ s=\ 



in the frequency range where the cross-modal 
amplification product aka!. is not negligible. With 
a 3 degree of freedom shaker, it will in general 
be possible to make Tkm = Tkm over a frequency 
range where three modes or less have significant 
"contribution." With more degrees of freedom, 
more modes could be potentially excited in the 
way they were excited in service; and the poten­
tial to perform the test in such a way as to not 
undertest or overtest the structure increases, par­
ticularly if the structure has a high modal fre­
quency density. In other words, the objective is 
to determine the input spectra, Su, over the fre­
quency band of interest such that all modes are 
excited as they were in service. The magnitude 
of the spectra relate to the level of the inputs at 
each frequency, whereas the phase of the spectra 
can be adjusted to excite or suppress modes de­
pending upon the phase of their modal mass in­
fluence coefficients. That is, the excitation by 2 
degrees of freedom may cancel each other for a 
particular mode because of the relative phase of 
the excitation for those 2 degrees of freedom. 
Similarly, 2 degrees of freedom may reinforce 
each other (by proper phase selection) to excite 
another mode more heavily than either degree of 
freedom by itself. 

Practical Design of Spectra 

In theory, the spectra S u(j) are frequency func­
tions defined as the transforms of functions of 
time defined over an infinite range of time 
(-00 ::; t ::; (0). In other words, they are statistical 
descriptors that are averaged over infinite time. 
As a practical matter, we must create a finite 
portion of a time function for a given test. It is 
therefore typical to create time records for a num­
ber of finite blocks of time. The time records for 
each pair of axes has a fixed relationship at each 
frequency within each block oftime. The relation­
ship between axes, however, is varied from block 
to block; so as the blocks are averaged, the de­
sired spectra are approached as more and more 
blocks are averaged. A coherence function de­
fines the degree of variation of the relationship 
(phase) between a pair of axes among the time 
blocks. If the two axes always have the same 
phase relationship (in each block), the two axes 
have a coherence of 1 (perfect coherence). If the 
phase relationship from block to block varies uni­
formly (one value in the range as likely as any 
other) from 0 to 27T, the coherence will be zero; 
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and the cross spectrum between those two axes 
(averaged over an infinite number of blocks) ap­
proaches zero (no coherence). 

Flexibility in design and control of Rkm in­
creases as the number of degrees of freedom of 
the shaker increases. For an N degree offreedom 
shaker, Eq. (32) can be written in the form 

N N 

Rkm = aka!. 2: 2: {}J)');ySu' (36) 
i~Ij~1 

Thus when modes are closely spaced in fre­
quency, it generally becomes more possible to 
make R km = Rkm , for all k and m, as the number 
of degrees offreedom, N, gets larger. Each added 
degree of freedom increases the number of inde­
pendent spectra, Su' which can be shaped to 
achieve this objective. 

In general, a single input cannot be shaped to 
produce a response at a single point that was 
caused (created) by several (other) inputs. If the 
response at a point is dominated by a single mode, 
however, a single input can be shaped to excite 
that mode at the same level as it was excited 
by the multiple inputs, thus recreating the modal 
response and approximating the point response. 
If 6 degrees of freedom are available as inputs 
(as from a shaker with 6 controlled degrees of 
freedom), then up to six modes could be excited 
to specified levels, thus recreating the desired 
response over a band of frequencies. Further­
more, in principle, if such bands are significantly 
separated in frequency, up to six additional modes 
per such frequency band can be excited simultane­
ously. Input coherence functions as well as auto­
spectra must be shaped properly to take full advan­
tage of this capability. Future investigation and 
experience is expected to provide guidelines for 
evaluating practical limitations given relevant 
properties of a shaker and test object. 

If the outputs to be reproduced are the spectra 
of relative accelerations, Eq. (22) can be used to 
recreate Eq. (28) in the form 

n 

hayj = 2: cf>fa~Xkj (37) 
k=l 

and the rest of the development above follows by 
substituting for ak ~ a~ and {}kj ~ Xkj into Eqs. 
(29)-(36). Because stresses are related to relative 
motions and the shaker will generally be unable 
to duplicate absolute motions of the test article, it 
is recommended that tests normally be conducted 
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with the objective of reproducing relative rather 
than absolute motions within the structure. The 
equations above were developed in the form of 
absolute motions, consistent with common prac­
tice; but by substituting the modal amplification 
factors and modal influence coefficients for rela­
tive motion transfer functions the equations will 
apply to this recommended change. 

It was noted that modal properties, including 
both modal amplification factors and mode 
shapes, of any dynamic system are functions of 
the boundary conditions seen by the system. 
Thus, adequate representation in a test of the 
dynamic environment in service requires suffi­
cient attention to reproduction of service bound­
ary conditions during the test. Although this re­
quirement applies in any shaker test, whether 
single axis or multiaxis, realization of the inherent 
added capability afforded by a multi axis shaker 
depends on increased attention to boundary con­
ditions relative to the modes of interest (Smith 
and Staffanson, 1995). 

SUMMARY AND CONCLUSIONS 

In summary, we developed equations of motion 
appropriate for modeling systems subject to 
multiaxis shaker testing and showed their fre­
quency domain solution form. These frequency 
response functions are sums of terms represent­
ing each dynamic mode of the system. Each of 
these modal terms is the product of a modal shape 
function, a modal dynamic amplification factor, 
and a modal mass influence coefficient. The 
modal dynamic amplification factors (one for each 
mode) are functions of frequency only and pro­
vide the basis for frequency shaping to provide 
shaker input that excites or suppresses modes 
that lie in given regions of frequency. The modal 
mass influence coefficients are functions of posi­
tion and orientation (space) only and provide the 
basis for spatial shaping of inputs to excite modes 
according to their spatial properties. The possibil­
ity of spatial shaping is the advantage afforded 
by a multiple degree of freedom shaker, whereas 
a single degree of freedom shaker is limited to 
frequency shaping and less selectivity of modes 
within the excited frequency bands. Spatial shap­
ing discriminates modes within the frequency 
band. 

Because shaker tests are typically controlled 
by observing and shaping spectra, the relation­
ships between input spectra and output spectra 

for a system under test were developed. These 
relationships were determined in terms of the 
above-mentioned mode shapes, amplification fac­
tors, and mass influence coefficients, and define 
the auto- and cross-modal response functions, 
auto- and cross-modal amplification products, 
and the auto- and cross-modal excitation func­
tions. Because the modal amplification products 
are small except in the regions of the natural fre­
quencies of their modes, spatial shaping can be 
applied independently and need only be applied 
in such regions isolated in frequency. The objec­
tive of a shaker test designed to simulate stresses 
to be experienced in service is shown to be the 
duplication ofthe resultant auto- and cross-modal 
responses for all important modes, even if the 
particular sources in service are unknown. 

The mathematical relations are expressed in 
terms of relative as well as absolute motion, be­
cause shaker tests should be designed in most 
cases to reproduce relative motion within the 
test article. 

Noted also is the importance of preserving 
boundary conditions when the dynamic response 
of the test article is expected to represent the 
dynamic response in a service environment. 
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