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The simplified governing equations and corresponding boundary conditions of vi bra­
tion of viscoelastic ally damped unsymmetrical sandwich shells are given. The asymp­
totic solution to the equations is then discussed. If only the first terms of the asymptotic 
solution of all variables are taken as an approximate solution, the result is identical 
with that obtainedfrom the modal strain energy method. By taking more terms of the 
asymptotic solution with successive calculations and use of the Pade approximants 
method, accuracy of natural frequencies and modal loss factors of sandwich shells 
can be improved. The lowest three or four naturalfrequencies and modal loss factors 
of simply supported cylindrical sandwich shells are calculated. © 1996 John Wiley & 
Sons, Inc. 

INTRODUCTION 

It is well known that structural vibration can be 
reduced by utilizing layers of viscoelastic damp­
ing material. The constrained layer damping treat­
ment is an effective approach and is described in 
Torvik (1980) and Nashif et al. (1985). Flexural 
vibrations of damped sandwich plates and struc­
tures have been investigated by a number of au­
thors. The governing equations of flexural vibra­
tion of symmetrical and unsymmetrical sandwich 
plates were given in Mead (1972) and Rao and 
Nakra (1973). Flexural vibration of damped sand­
wich plates was also analyzed in Lu et al. (1979). 
In Johnson and Kienholz (1982) the modal strain 
energy (MSE) method was suggested for analysis 
of viscoelastically damped sandwich plates and 
structures. In He and Ma (1988) the simplified 
governing equations and corresponding boundary 

Received July 14, 1995; Accepted May 20, 1996 

Shock and Vibration, Vol. 3, No.6, pp. 403-417 (1996) 
© 1996 by John Wiley & Sons, Inc. 

conditions of flexural vibration of damped unsym­
metrical sandwich plates were given. The analyti­
cal exact solution and an asymptotic solution 
were obtained for simply supported rectangular 
plates. Ma and He (1992) gave a finite element 
analysis associated with an asymptotic solution 
method for the harmonic flexural vibration of 
damped unsymmetrical sandwich plates. Calcula­
tions were carried out for rectangular plates with 
either simply supported or clamped edges. The 
numerical results verify the reliability of the finite 
element analysis associated with the asymptotic 
solution method given there. 

The constrained layer damping treatment can 
also be used to abate vibration of shells. In Vas­
wani et al. (1984) the governing differential equa­
tions of motion for flexural vibrations of a doubly 
curved sandwich panel, consisting of stiff face 
layers sandwiching soft viscoelastic core, were 
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derived using variational principles. Alam and 
Asnani (1984a) presented the governing equations 
of motion of a general multilayered cylindrical 
shell. The solution for a radially simply supported 
shell was obtained. Numerical results were re­
ported in Alam and Asnani (1984b). In EI-Raheb 
and Wagner (1986) and Lu et al. (1991) analyses of 
the response of damped cylindrical shells carrying 
discontinuously constrained viscoelastic layers 
were presented. EI-Raheb and Wagner (1993) ex­
tended their earlier techniques (1986) to analyze 
the damping of a toroidal segment of shell in­
cluded in configurations enclosing an acoustic 
fluid. In Ramesh and Ganesan (1993) a finite ele­
ment analysis of vibration and damping of conical 
shells with a constrained viscoelastic damping 
treatment was given. 

In the present work a set of simplified governing 
equations and corresponding boundary condi­
tions of vibration of viscoelastically damped un­
symmetrical sandwich shells are given, and its 
asymptotic solution is then discussed. Harmonic 
vibrations of cylindrical sandwich shells with sim­
ply supported ends are calculated. The lowest 
three or four natural frequencies and modal loss 
factors of the shells are given. 

GOVERNING EQUATIONS 
OF VIBRATION 

To derive the governing equations of vibration 
of unsymmetrical sandwich shells, the following 
assumptions are made: 

1. The thickness of the shell is small compared 
with the radii of curvature of the middle 
surface; 

2. the face layers are elastic and isotropic and 
suffer no transverse shear deformation; 

3. the core carries transverse shear, but no 
tangential stresses; it is linearly viscoelastic 
and has a complex shear modulus; 

4. no slip occurs at the interfaces of the core 
and face layers and all points on a normal 
to the shell move with the same normal dis­
placement; 

5. although the metallic material of the struc­
tural layer and the constraining layer may 
be different, e.g., steel or aluminum, the 
values of their Poisson ratios may be ap­
proximately equal; 

6. when the sandwich shell is in flexural vibra­
tion. the rotatory inertia effects of the shell 
arc ignored and only the inertia effects due 

to the normal and tangential displacements 
are considered. 

These assumptions are used to establish a set of 
simplified governing equations of unsymmetrical 
sandwich shells. 

The unsymmetrical sandwich shell configura­
tion is shown in Fig. 1. The thicknesses of the 
constraining layer (face 1), the viscoelastic layer 
(face 2), and the structural layer (face 3) are t) , 

t2 , and t3 , respectively. The thickness of the shell 
is h, h = t) + t2 + t3' A system of orthogonal 
curvilinear coordinates is defined by the coordi­
nates a i and a i corresponding to the lines of 
curvature on the geometrically middle surface of 
the sandwich shell and the coordinate z along the 
normal to the middle surface. The Lame parame­
ters and the normal radii of curvature in the direc­
tions of a i and a i of the middle surface are de­
noted by A r , A i and R i , R i , respectively. The 
tangential displacements of the points in face 1 
and face 3 are given as follows: 

( aw UOl) u(l)(a * a * Z t) = UOl - (z - z) --- - ~ 
), 2, , m ) A *a * R * ' 

) a) I 

( aw VOl) vOl(a* a* Z t) = VOl - (z - z) --- - .-!!:.. 
I' 2' , m ) A *a * R * ' 2 a2 2 

( aw U(3)) u(3l(a* a* Z t)=U(3l -(Z-Z) ----~ 
), 2, , m 3 A *a * R * ' 

I al ) 

( aw V (3») 
v(3l(a * a * Z t) = V(3) - (z - z) --- - .-!!:.. 

I' 2, , m 3 A *a * R * . 
2 a2 2 

(1) 

Here Ugl, Vgl, z) and U£l, V£l, Z3 are the tangen­
tial displacements and the value of the coordinate 
z of the points at the middle surface of face 1 and 
face 3, respectively. W(al' a2' t) is the normal 
displacement ofthe shell. As in He and Ma (1988) 
one can introduce 

(2) 

= (l/c)[U(\)(a* a* t) - U(3)(~* ~* t)] 
In I' 2' III "-"-I ., U.2, , 

= (l/c)[V(\)(a* a* t) - V(3)(~* ~* t)] 
m I' 2' mL.-t.l, lA2'" 
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FIGURE 1 The configuration and the displacements of a damped sandwich shell. 

where 

1'1 = EIII /(1 - v 2), 

1'3 = E313/(1 - v 2), 

1 
C = 12 + 2 (II + (3), 

(3) 

in which EI and E3 are the elastic moduli of the 
faces 1 and 3, v is their common Poisson ratio, 

U m and V m may be regarded as the weighted mean 
tangential displacements of the unsymmetrical 
sandwich shell, and 1/11 and 1/12 are the rotatory 
angles of a line connecting the two corresponding 
points at the middle surfaces of faces 1 and 3 after 
deformation. According to the assumptions, there 
are uniform transverse shear strain components 
1'13 and 1'23 in the viscoelastic layer. They can be 
expressed approximately as 
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aw Urn ---+­
Ataat Rt' 

(5) 

The expression of the strain energy density per 
unit middle surface area of the shell can be ob­
tained as 

(6) 

where 

'* _ a 1/11 1 aAt 
Kl A *aa* + A*A * aa* 1/12' 1 1 1 2 2 

(7) 

,*_I[Ai a (1/12) At a (l/Il)J 
K12-"2 Ataat Ai +Aiaai At ' 

Here Nt , Ni· . . Q i * are all generalized internal 
forces. They can be expressed in terms of defor­
mation as 

Q;* = Yg(D1 + D3)(1/I1 - 'PI)/a2, 

Qi* = Yg(D I + D3)(1/I2 - 'P2)/a2, 

(8) 

where a is a tangential dimension of the shell, 

Eld E3 t j 
DI = 12(1- v 2)' D3 = 12(1- v2)' 

A = (YI + Y3)a 2/(DI + D3)' (9) 

Y = YIY3C2/(YI + Y3)(D I + D3)' 

g = yiYI + Y3)a 2/YIY3 tL Y2 = G2t2, 

in which G2 is the shear modulus of the core 2, 
which is taken as a real quantity temporarily. Y, 
A, and g are called two "geometric parameters" 
and the "shear parameter," respectively. 

For the sake of convenience later on, the fol­
lowing dimensionless variables are introduced: 

Aldal = Atdat/a, A 2da2 = Aidaifa, 

Urn = Urn/a, Vrn = Vm/a, w = W/a, 

RI = Rt/a, R2 = Ri/a, (10) 

K; = aK;*, Ki = aKi*, Kb = aK;i, 

K'{ = aK'{*, K2 = aK2*' K'{2 = aK'{i· 

Here al and a2 dimensionless coordinates. AI' 
A2 and R I , R2 denote the dimensionless Lame 
parameters and the dimensionless normal radii of 
curvature, respectively. Then the strain energy 
U of the shell can be written as 



+ Q;(IfJ) - <p) + Qi(1fJ2 - <pz}]A)A2 da) da2' 
(11) 

The dimensionless generalized internal forces 
N) ... Qi are expressed as 

N) = A(e) + vez}, N2 = A(e2 + Vel)' 

S = A(1 - vfy12/2, 

H' = Y(1- V)K;2, 

(12) 

M'{ = K'{ + VK2' M2 = K2 + VK';, H" = (1 - v)K'12, 

The kinetic energy of the shell Tis approximately 

where p is the mass per unit area of the shell. 
According to Hamilton's principle, one can ob­

tain a set of simplified governing equations of 
motion of unsymmetrical sandwich shells (in di­
mensionless form) 
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+H,dA2_ M ,dA)1_ Q' =0 
da) ) daJ 2 , 

(14) 

where 

Q'{ = _1_ [~(M'{Az) + ~(H"A) 
A)A2 da) da2 

+ H" dA) _ M" dA2] 
da2 2 da) , 

(15) 

Q2 = _1_ [~(H" A 2) + ~ (M2A) 
A)A2 da) da2 

+ H" aA2 _ M J aA)] . 
da) aa2 

Equation (14) can be expressed in terms of um(a) , 
a2' t), um. (a), a2' t), w(a) , a2' t), 1fJ)(a) , a2' t), 
and lfJz<a) , a2' t). It is a set of 12th-order partial 
differential equations with respect to a) and a2' 

When a shell is in simple harmonic vibration, 
the forms 

um(a) , a2' t) = um(a) , a2)eiw" 

um(a) , a2' t) = um(al , a2)eiw" 

w(a) , a2, t) = w(a) , a2)eiw" (16) 

1fJ)(a) , a2' t) = 1fJ)(a) , a2)eiw" 

1fJ2(a) , a2' t) = lfJz<a) , a2)eiw" 

are introduced. The circular frequency w can be 
expressed in dimensionless form as 

Equation (16) can now be substituted into Eq. 
(14). However, as the shell is assumed to vibrate 
harmonically, the shear modulus G2 of the core 
must be changed into the complex modulus 
G2(1 + if3); here 13 is the loss factor of the visco­
elastic material. The inertia terms in Eq. (14) [pa41 
(D) + D 3)]a2 (um, Um, w)/at2 = -o.2(Um, Um, w) 
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must also change correspondingly to -!),2(1 + 
iTJ*) (urn' urn' w); here the quantity TJ* is the modal 
loss factor of the shell. The physical significance 
of the complex frequency 0.2(1 + iTJ*) was dis­
cussed in Mead and Markus (1969). The ampli­
tudes um(a" a2), urn(a" a2)' w(a" az}, .p,(a" a2), 
and .pia" a2) are all complex quantities. They 
must satisfy the following equations: 

(18) 

- Yg(l + i(3)(.p, - r,o,) = 0, 

_l_[~(H'Az)+~(M;A')+H' ilA2_ M; ilA'J 
A,A2 ila, ila2 ila, ila2 

- Yg(l + i(3)(.p2 - r,oz) = o. 

Here the amplitudes N" N 2 , ••. , Q;, Q~ are 
expressed in terms of deformation calculated by 
the amplitudes Urn' Urn' w,.p" and.p2 as Eq. (12). 
They are all complex quantities too. Typical ho­
mogeneous boundary conditions for edge a, 
a, (constant) are as follows: 
simply supported edge (type I), 

N, = 0, Urn = 0, M; = 0, 
(19) 

.p2 = 0, W = 0, M'l = 0; 

simply supported edge (type Il), 

N, =0, S=O, M; =0, 
(20) 

H' =0, w=O, M'{=O; 

clamped edge, 

Um =0, um=O, t/l, = 0, 
(21) 

.p2 = 0, w=O, r,o, = 0; 

free edge, 

N, = 0, S = 0, M; = 0, H' = 0, 

Q' + Q"+ ilH" =0 M'{=O. 
, 'A2 i1a 2 ' 

(22) 

At a corner there is 

w = 0 or M~s(s + 0) - M~s (s - 0) = O. (23) 

Thus, to investigate transverse vibration of a vis­
coelastically damped unsymmetrical sandwich 
shell, one must first solve Eq. (18) for a given set 
of boundary conditions to find the natural fre­
quencies 0., the modal loss factors TJ*, and the 
corresponding complex modes Urn' Vrn , W, .p" 
and .p2. 

ASYMPTOTIC SOLUTION OF 
GOVERNING EQUATIONS 

Solving Eq. (18) is not easy. The exact solution 
can be obtained only in some particular cases. 
To obtain an approximate and practical solution 
and to avoid calculation with complex values, an 
asymptotic solution with JL = if3 as a complex 
parameter can be introduced. The same proce­
dure was used in He and Ma (1988) to find the 
loss factors of sandwich plates. One first expands 
the solution in the power series 

Um = UmO + JLUm, + JL 2Um2 + JL 3urn3 

+ JL4Urn4 + JL5Um5 + ... , 

Um = UrnO + JLUm, + JL 2Um2 + JL 3um3 

+ JL4Urn4 + JL5 Um5 + ... , 

w = Wo + JLW, + JL2W2 + JL3W3 

+ JL4W4 + JL5W5 + .. 



t/1) = t/1),0 + ILt/1),) + IL2t/1),2 + IL 3t/1),3 

+ IL4t/1),4 + IL5t/1),5 + .. " 

t/12 = t/12,0 + ILt/12,) + IL2t/12,2 + IL 3t/12,3 

+ IL 4t/12,4 + IL 5t/12,5 +. . " 

.0,2 = nij + IL2n~ + IL4n~ + .. " 

(24) 

The amplitudes N), N 2 , ••• , Qz, Qi are also 
expanded in the power series. Substituting Eq. 
(24) into Eq. (18) gives the successive equations 
that the asymptotic solution must satisfty 

L3,0 "'" LiumO' VmO' Wo, t/1),0' t/12,~ 

"'" - A)~2 {a~) [YgA2(t/1),0 - 'P),~ + A2Q'{,01 

+ a~2 [YgA)(t/12,0 - 'P2,0) + A)Q~,o1} 

+ N),O + N 2,0 _ n2w = 0 
R) R2 0 0 , 

L4,0 "'" L4(umO, vmO' Wo, t/1),0' t/12.~ 

""'AlA [-aa (Mj,oA:z) + -aa (HOA) 
) 2 a) a2 
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Yg { a = A)A2 aa) [A2(t/1),; - 'P),;)] (26) 

+ a~2 [A)(t/12,; - 'P2)]} + R;(w), 

= Yg(t/1),; - 'P),;), 

= Yg(t/12,; - 'P2)' 

(i = 0,1,2,3,4, ... ), 

where 

(the expressions of R;(w) (i > 4) are omitted). 
Here L), L 2, L 3 , L4, and L5 are linear partial 
differential operators defined in Eq. (25) where 
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all generalized internal forces can be expressed 
in terms of the displacements and the rotatory 
angles in accordance with Eqs. (12) and (7). The 
expressions of Ri(um ) and Ri(vm ) are similar to 
these of Ri(w) in Eq. (27) with only Wj replaced 
by Umj and vrnjU = 0, 1,2,3,4). Substituting Eq. 
(24) into the boundary conditions (19)-(23), one 
finds that, except for the fifth of Eq. (22) for free 
edges that must be expanded in the power series 
of jL, the expressions for all other types of bound­
ary conditions that the successive terms Urni , Vrni , 

Wi' t/1"i' and t/12,i (i = 0, 1, 2, 3, 4, 5, ... ) must 
satisfy are the same form as before. Therefore, 
from Eq. (25) and the boundary conditions with 
respect to UmO ' VrnO' W o, t/1 ',0' and t/12,0' one can 
solve first a real eigenvalue problem and obtain 
all the eigenvalues fi~ and corresponding modes. 
The modes can be normalized as follows. 

If all the boundary conditions of the shell are 
homogeneous, one can prove that orthogonality 
exists between two complex modes. This means 
that if there are two different complex eigenval­
ues fif(1 + iYJj) and fii(1 + iYJ() and their corre­
sponding complex modes UrnI , VrnI WI, t/1 'I, t/12I and 
UmI' VmI' WI' t/1 11' t/12I' then 

Therefore, the normalization of the complex 
modes can be stated as 

Substituting the first three equations of Eq. (24) 
into Eq. (29), one can obtain 

II [2(UmOUm2 + VmOVm2 + WOwz) 

+ (U;n' + V~, + wi)] (32) 

A,A2 dcx, dCX2 = 0, 

II [2(UmOUm3 + VrnOVm3 + W OW 3) 

+ 2(um,um2 + Vm,Vm2 + W, wz)] (33) 

A,A2 dcx, dCX2 = 0, 

II [2(UmOUm4 + VmOVm4 + W OW 4) 

+ 2(um,um3 + Vm,Vm3 + w, W3) 

+ (U~2 + V;n2 + wm 

II [2(UmOUm5 + VmOVrn5 + W OW 5) 

+ 2(Um ,Um4 + VmlVm4 + W I W4) 

+ 2(Um2Um3 + Vm2Vm3 + W 2W3)] 

(34) 

(35) 

successively. In accordance with Eq. (30) one can 
normalize the real mode UmO' VmO' W o, t/11,0' and 
t/12,0' From Eq. (25) 

(36) 

Through integrations by parts and other calcula­
tions one obtains 

+ [(K';'O + K~,O>2 - 2(1 - v) (K';'OK~,O - K~2.i)] 

+ Yg[(t/1I,o - c,ol,o>2 + (t/12,O - c,02,O)2]} 

AIA2dcxldcx2' (37) 

Next one solves Eq. (26) for i = 0. First the 
value of YJ i in the expressions of RO(um) , RO(vrn), 

and Ro(w) must be determined. By using a similar 
procedure as before when Eq. (37) was obtained, 
one can obtain 

YJi = ~2II Yg[(t/1I,o - c,ol,of 
o (38) 

YJ i is the fraction of strain energy attributable to 
the viscoelastic core when the damped shell de­
forms in the mode UmO' VmO' W o, t/11,O' and t/12.0· 
All the first terms of each expression in Eq. (24) 
can be regarded as an approximate solution, 
which are the same as the results obtained by 
means of the MSE method suggested in Johnson 
and Kienholz (1982). 

To improve accuracy, one must calculate suc­
cessive terms of the asymptotic solution. Having 
determined the value of YJ i , one can obtain the 



unique solution for Urn I , Urnl , WI' 0/1,1' and 0/2,1 of 
all modes in accordance with Eq. (26) for i = 

o and corresponding boundary conditions. The 
general solution for Urn I , Urn I , WI' 0/1,1' and 0/2,1 
may be written in the following form: 

WI = w lp + klWo, 0/1,1 = o/I.Ip + klo/I,O' (39) 

0/2,1 = 0/2,lp + kI0/2,0' 

Here urnlp ' urnlp ' wlp ' o/l,lp, 0/2,lp are a set of par tic­
ular solutions where kl is an undetermined con­
stant. The value of kl can be given by means of 
the normalization condition, Eq. (31). Then the 
expressions for Urn I , urnl , WI' 0/1,1' and 0/2,1 can 
be determined completely. 

Through calculations similar to previous ones, 
the solutions of the successive Eq. (26) for i = 1, 
2,3,4 can be obtained. The expressions for nL 
1] j , n Land 1]! are as follows: 

n~ = JJ Yg[(o/I,o - <P1,~(0/1,1 - <PI,I) 

+ (0/2,0 - <P2,~(0/2,1 - <P2,1)]AIA 2 dal da2' 

1]j = ~2f f {Yg[(o/I,o - <P1,~(o/l,2 - <pd 
o 

- 1] t nij(umOurn2 + UmO um2 

+ WOWz}}AIA2 da l da2 - 1] t ~~, 

n~ = JJ {Yg[(o/I,o - <P1,0)(0/1,3 - <P1,3) 

+ (0/2,0 - '1'2,0)(0/2,3 - <Pz)] 

- 1] tnij(urnOurn3 + umOurn3 + wow0 

- n~(UmOUrn2 + urnOum2 

+ wowz}}A IA 2dal da2, 

1]! = ~2f f {Yg[(o/I,o - <P1,~(0/1,4 - <P1,4) 
o 

+ (0/2,0 - <P2,~(0/2,4 - <P2,4)] 

-(1] tn~ + 1] jn5)(umOurn2 + umOum2 

+ WOWz}}AIA2 dal da2 

- ~ij(1]tn~ + 1]jnD· 

(40) 

(41) 

(42) 

(43) 
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Using the normalization conditions (32)-(35), 
one can obtain the unique solutions for urn,i+ I , 
Urn,i+I' Wi+I, ifJl,i+I, and 0/2,i+1(i = 1,2,3,4) succes­
sively in accordance with Eq. (26) and corre­
sponding boundary conditions. If the calculation 
is not to be continued, one is left with the expres­
sions for the asymptotic solution given explicitly 
in Eq (24), without the residual terms indicated 
by ( ... ) on their right sides. The last two solu­
tions of Eq. (24) may be rewritten as 

(44) 

Equation (44) and (45) can be obtained by using 
the Pade approximants method (see appendix B 
in Ma and He, 1992). By calculating with Eqs. 
(44) and (45), one can often obtain better results. 

EXAMPLE 

Consider a circular viscoelastically damped sand­
wich cylindrical shell of radius a and length 1 
with simple support (type I) ends. Introduce the 
dimensionless coordinates al = xl a = ~ and 
a2 = 0 and let the ends of the shell be ~ = 0 and 
~ = ~ I = 1 I a. The following solution form that 
satisfies the boundary conditions for the ends is 
assumed: 

Urn = A cos(1T~/~I) sin mO, 

urn = B sin(1T~/~I) cos mO, 

W = C sin(1T~/~I) sin mO, 

ifJl = D cos(1T~/~I) sin mO, 

ifJ2 = E sin(1Tg!~I) cos mO. 

(46) 

Here we only attempt the lowest several natural 
frequencies and take the number of axial half 
waves to equal one. However, the circumferential 
wave number m is to be selected to associate with 
the lowest several natural frequencies. Substitut­
ing Eq. (46) into Eq. (18) leads an algebraic com­
plex eigenvalue equation. The exact solution in 
the form as Eq. (46) can be obtained directly from 
the algebraic equation. We are only interested in 
the transverse modes of vibration. The motions 
are mostly radial and the amplitudes C are pre­
dominant. The asymptotic solution is also calcu-
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FIGURE 2 Ratio of the asymptotic solutions of natural frequencies of simply supported 
cylindrical shells (Y = 3.5, A = 12 X 104) to the exact ones vs. the variable g (m = 4 and 
5). (- . -) nfitn~x; (-)n2tn~x. 

lated for comparison. It can be obtained by ex­
panding the amplitudes in Eq. (46) in the power 
series and using the procedure as given in the 
preceding section. 

Numerical calculation was done for a shell with 
a = 100 cm and 1 = 200 cm. Both the structural 
layer and the constraining layer are made of alu­
minum. Their common Poisson ratio v equals 0.3. 
The thicknesses of the layers are t) = t3 = 1 cm 
and t2 = 0.08 cm. The loss factor of the core f3 
equals 1. The two geometric parameters are Y = 

3.5 and A = 12 X 104. The value of the shear 
parameter g varies from 0.1 to 1000. The circum­
ferential wave number m associated with the low­
est natural frequency depends on the value of the 
variable g. Wheng = 0.1,1, and 10, m = 5. When 
g = 100 and 1000, then m = 4. In Fig. 2 curves 
showing the variation nij/n~x and n21n~x with 
the variable g are given with m = 4 and 5. The 
values of n 2 are calculated according to Eq. (44). 
n~x is the exact solution obtained from the alge­
braic complex eigenvalue equation. Figure 3 
shows '1/* / f3 as a function of the variable g, where 
the values of '1/* were calculated according to 
'1/ if3 or Eq. (45). The latter in this example is 
nearly identical with the exact value '1/:x, which 

was also obtained from the complex eigenvalue 
equation. Table 1 gives the values of nij, nL 
n~, and n2 calculated according to Eq. (44) for 
corresponding values of g of 1, 10, 100, and 1000 
and m of 3, 4, 5, and 6. The exact values n~x are 
also given for comparison. The values of '1/ i , 
'1/j, '1/5, and '1/* calculated according to Eq. (45) 
and the exact values '1/:x for the same values of 
g and m are given in Table 2. 

For comparison numerical calculation was also 
done for a simply supported (type I) thinner cylin­
drical shell with a = 50 cm and 1 = 200 cm. The 
thicknesses of the layers are t) = t2 = t3 = 0.25 
cm. However, the materials of the face layers 
and the core are the same. The two geometric 
parameters of the shell are quite different from 
those of the above-mentioned shell. They are 
Y = 12 and A = 48 X 104• The value of g varies 
as well. The values of nij, n~, n~, and n 2 calcu­
lated according to Eq. (44) and the exact values 
n ~x for corresponding values of g to be 0.1, 1, 
10, 100, and 1000 and m to be selected to associate 
with the lowest three natural frequencies are 
given in Table 3. The values of '1/ i , '1/ t , '1/ 5 , and 
'1/* calculated according to Eq. (45) and the exact 
values '1/:x for the same values of g and mare 
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FIGURE 3 Ratio of 'Y/* to f3 vs. the variable g (m = 4 and 5) for simply supported 
cylindrical shells (Y = 3.5, A = 12 X 104). (- . -) 'Y/f; (-) 'Y/*/f3. 

Table 1. Dimensionless Frequencies of Simply Supported Cylindrical Shells 

g m 05 o~ O~ 0 2 

3 4628.37 -2.026 -0.0134 4630.39 
4 2158.26 -2.497 -0.0066 2160.75 
5 1596.75 -2.794 -0.0035 1599.54 
6 1918.90 -2.983 -0.0019 1921.88 

10 3 4759.90 -39.534 -8.593 4792.37 
4 2457.06 -79.764 -9.851 2528.06 
5 2140.39 -122.507 -8.732 2254.75 
6 2781.56 -161.059 -6.859 2936.04 

100 3 4906.89 -28.213 -22.709 4922.52 
4 2947.94 -110.623 -78.827 3012.54 
5 3354.33 -311.017 -191.434 3546.85 
6 5240.13 -690.522 -360.179 5693.94 

1000 3 4938.08 -3.776 - 3.691 4939.99 
4 3085.13 -17.409 -16.783 3094.00 
5 3796.95 -59.380 -56.248 3827.44 
6 6387.46 -163.680 -151.780 6472.39 

{3 = 1.0, Y = 3.5, A = 12 X 104. 

O~x 

4630.37 
2160.74 
1599.55 
1921.87 
4792.37 
2528.05 
2254.75 
2936.03 
4922.52 
3012.54 
3546.86 
5693.93 
4939.99 
3093.99 
3827.46 
6472.37 
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Table 2. Modal Loss Factors of Simply Supported Cylindrical Shells 

g m 7/f 7/j 

1 3 0.005441 0.000038 
4 0.022499 0.000086 
5 0.049794 0.000149 
6 0.061344 o 000135 

10 3 0.017822 0.004020 
4 0.092391 0.014407 
5 0.214412 0.027552 
6 0.280598 0.028196 

100 3 0.006409 0.005195 
4 0.044454 0.033345 
5 0.118185 0.083702 
6 0.182459 0.119215 

1000 3 0.000773 0.000757 
4 0.005747 0.005573 
5 0.016068 0.015472 
6 0.026611 0.025358 

(3 = 1.0, Y = 3.5, A = 12 X \04. 

given in Table 4. In Figs. 4 and 5 the variations 
nijln~x and n2/n~x and TJ*/f3 with the variable g 
are respectively given with m = 4. 

From Figs. 2 to 5 and Tables 1 to 4 it is evident 
that for the both types of cylindrical shells with 
quite different values of Yand A. the errors in the 
values of n~ and TJ f are somewhat appreciable 
in a certain range of the value of g in comparison 
with the exact values of fl ~x and 7) ~x' while the 
values of fl2 and TJ* obtained from Eqs. (44) and 
(45) are nearly equal to the exact ones. 

From the results calculated it is shown that the 
maximum damping occurs at somewhere in the 
range of the value of g for a definite circumferen-

7/? 7/* 7/:x 

0.000000 0.005404 0.005404 
0.000000 0.022414 0.022414 
0.000000 0.049646 0.049645 
0.000000 0.061210 0.061210 
0.000908 0.014542 0.014542 
0.002248 0.079929 0.079929 
0.003541 0.189998 0.189998 
0.002833 0.254976 0.254977 
0.004212 0.003539 0.003539 
0.025012 0.025401 0.025401 
0.059280 0.069186 0.069185 
0.077893 0.110355 0.110355 
0.000740 0.000391 0.000391 
0.005404 0.002918 0.002918 
0.014898 0.008186 0.008186 
0.024164 0.013626 0.013626 

tial wave number m. It is quite analogous to the 
vibration analysis of viscoelastically damped 
sandwich plates of He and Ma (1988) and sand­
wich beams of Plunkett and Lee (1970). There­
fore, careful attention must be paid to geometric 
configuration of a sandwich shell to achieve maxi­
mum effectiveness for vibration control. 

CONCLUSIONS 

In this article a set of simplified governing equa­
tions and corresponding boundary conditions of 
viscoelastically damped unsymmetrical sandwich 

Table 3. Dimensionless Frequencies of Thinner Cylindrical SheDs 

g m nij n~ n 2 
4 n2 n~x 

0.1 4 809.812 -0.0976 -0.3507 x 10-5 809.909 809.918 
5 851.937 -0.1051 -0.1591 x 10-5 852.042 852.074 
6 1393.931 -0.1095 -0.0802 x 10-5 1394.041 1393.957 
3 1745.583 -6.314 -0.0571 1751.910 1751.898 
4 949.117 -8.340 -0.0269 957.429 957.433 
5 1087.008 -9.483 -0.0134 1096.478 1096.446 

10 3 2075.220 -101.045 -26.271 2155.415 2155.396 
4 1823.935 -241.720 - 34.129 2035.756 2035.739 
5 2784.250 -395.705 -31.200 3151.035 3151.031 

100 2 6220.304 -4.892 -4.470 6222.860 6222.831 
3 2394.386 -57.892 -48.181 2425.982 2425.966 
4 3145.337 -287.345 -211.299 3310.921 3310.884 

1000 2 6225.100 -0.552 -0.547 6225.378 6225.313 
3 2456.394 -7.409 -7.269 2460.134 2460.146 
4 3491.275 -43.371 -41.965 3513.317 3513.300 

{3 = 1.0, Y = 12, A = 48 X \04. 
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FIGURE 4 Ratio of the asymptotic solutions of natural frequencies of thinner cylindrical 
shells (Y = 12. A. = 48 X 104) to the exact ones vs. the variable g (m = 4). (- . -) niVn~x; 
(-) n2m~x' 
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FIGURE 5 Ratio of 71* to f3 vs. the variable g (m = 4) for thinner cylindrical shells 
(Y = 12, A. = 48 X 104). (- . -) 'Y/T; (-) 'Y/*/f3. 

g 
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Table 4. Modal Loss Factors of Thinner Cylindrical Shells 

g m 1/f 1/t 
0.1 4 0.020143 0.000003 

5 0.031732 0.000004 
6 0.028833 0.000002 

1 3 0.038781 0.000487 
4 0.154747 0.001859 
5 0.232158 0.002353 

10 3 0.095501 0.029477 
4 0.352706 0.096539 
5 0.506151 0.111843 

100 2 0.000823 0.000752 
3 0.026503 0.022698 
4 0.106535 0.088072 

1000 2 0.000089 0.000088 
3 0.003045 0.002997 
4 0.012629 0.012376 

f3 = 1.0, Y = 12, A = 48 X 104• 

shells in vibration are given. To avoid calculation 
with complex values, an asymptotic solution of 
the simplified governing equations was intro­
duced, with the loss factor of the viscoelastic 
material ofthe core as a parameter. As examples, 
calculations were carried out for two types of 
circular cylindrical shells With simply supported 
ends. The lowest three or four natural frequencies 
and modal loss factors of the shells are given. If 
in the asymptotic solution only the first terms 
of all quantities are adopted, then the result is 
identical with that as given in accordance with 
the MSE method. However, the results of the 
examples indicate that the errors in the values of 
the natural frequencies and modal loss factors are 
somewhat appreciable in a certain range of the 
value of the shear parameter g. By taking more 
terms of the asymptotic solution, with successive 
calculations and use of the Pade approximants 
method, accuracy can be improved. For the sam­
ple problems, the values of ,n2 and 71* calculated 
according to Eqs. (44) and (45) give the accurate 
prediction. Although the asymptotic solution in 
analytical form can only be obtained in simpler 
cases, in other cases one can use approximate 
methods, e.g., finite element methods, to obtain 
numerical solutions. With the character of the 
free transverse vibrations of a shell thus calcu­
lated, it is then possible to analyze further the 
response of the shell to various types of dynamic 
normal loads in order to provide a reliable basis 
for design. 

1/5 1/* 1/~x 

0.000000 0.020140 0.020140 
0.000000 0.031727 0.031726 
0.000000 0.028830 0.028832 
0.000006 0.038300 0.038301 
0.000022 0.152910 0.152910 
0.000024 0.229828 0.229835 
0.009100 0.072978 0.072978 
0.026426 0.276913 0.276915 
0.024714 0.414549 0.414550 
0.000688 0.000430 0.000430 
0.019440 0.014276 0.014276 
0.072810 0.058321 0.058321 
0.000088 0.000045 0.000044 
0.002949 0.001535 0.001532 
0.012129 0.006378 0.006376 
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