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Analysis of Multiaxis 
Vibration Simulators 

A mathematical procedure that quantitatively addresses issues critical to the design 
and operation of multiaxis vibration simulators is presented. Both kinematic and 
dynamic issues are considered. The analysis is applied to both 3 and 6 degrees of 
freedom configurations. The existence of singular configurations is mentioned and 
appropriate corrective measures are recommended. A methodology for determining 
the required actuator commands is also presented. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Due to the increasing complexity of new equip­
ment, vibration test specifications are changing. 
Currently, there is a shift away from the "boiler 
plate" testing of the past toward a "customer 
defined" testing procedure. This trend, along 
with these new specifications will require that 
vibration test facilities become more versatile; 
that is, test facilities will be required to perform 
true multiaxis vibration testing. By utilizing multi­
axis vibration testing facilities, the synergistic ef­
fects of simultaneously exciting all modes can 
be included, thus making customer defined tests 
more realistic. 

The idea of multiaxis vibration testing is not 
entirely new (Merklinghaus, 1977; Hahn and 
Raasch, 1986); it has been inexistence for some 
time in the seismic community (high frequency, 
> 1 kHz) and in the automotive and aerospace 
communities (low frequency, ~2-100 Hz). The 
success of multiaxis vibration simulators in the 
midfrequency range (100-500 Hz) has been lim­
ited to date. 

Existing multiaxis vibration simulators are, to 
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some extent, based on the Stewart platform de­
sign. In principle, the Stewart platform describes 
any two-body mechanism utilizing parallel con­
nections (Stewart, 1965; Fitcher, 1986). Typi­
cally, in these mechanisms, the direction of actua­
tion is not fixed in some "inertial" frame of 
reference. For low frequency applications, there 
are numerous actuation systems that can provide 
variable direction actuation (e.g., screw jacks, 
hydraulic cylinders, etc.); thus, the Stewart plat­
form is well suited for motion simulators and low 
frequency vibration simulators. However, for 
systems in the midfrequency range with large load 
capacities, electrohydraulic exciters are almost 
always required. In the current state of the art, 
these exciters operate more efficiently when an­
chored to reaction masses, resulting in fixed actu­
ation direction. Thus, one of the primary diffi­
culties associated with the design and utilization 
of large capacity, midfrequency vibration simula­
tors is the kinematic constraints imposed by exist­
ing hardware. 

In this article, the kinematic and dynamic is­
sues associated with the design and utilization 
of large capacity, midfrequency range, multiaxis 
vibration simulators are addressed. 
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KINEMATIC CONSIDERATIONS 

In the following text, it is assumed that the multi­
axis vibration simulator has a rigid platform. 
Thus, discussions on vibrational degrees of free­
dom (DOF) are actually discussions of the 6 DOF 
of the platform, those being the three translations 
of the center of mass (c.m.) and the three rotations 
about the c.m. It is also assumed that there are 
no redundant actuators; that is, there are r actua­
tors (r :::; 6) capable of imparting r vibrational 
DOF to the simulator. Each actuator has one end 
attached to the platform and the other attached 
to the base [see Fig. lea)]. 

Dextral, orthogonal, body fixed coordinate 
frames ?:fop and ?:foB are defined in the platform 
and the base, respectively [see Fig. l(b)]. It is 
convenient (see Dynamic Considerations) to lo­
cate the origin of ?:fop at the c.m., C, of the plat­
form; the origin, 0, of ?:foB can be arbitrarily lo­
cated. Let Pi denote the attachment point of the 
ith actuator in the platform and Bi the attachment 
point of the same actuator in the base. 

The following notation is adopted: a denotes 
a vector while Aa denotes a column matrix whose 
elements are the components of a coordinatized 
in ?:fo A; L pB denotes the orientation of the ?:fop rela­
tive to ?:foB. [Note: L pB will also be used as the 
transformation matrix from ?:foB to ?:fop that implies 
LBP (= LpA) represents the inverse transfor­
mation]. 

The force exerted by the ith actuator can be 
expressed as 

(1) 

where Hi is a unit vector in the direction of the 
line of action (LOA) of the force and /; is the 
magnitude of the force. The LOA, and hence Hi' 
are referred to as line coordinates (Fitcher, 1986; 
Hunt, 1978). The unit LOA vector is [see Fig. 
1 (b)] 

Hi = (r; - rf - R)/(Ti (2) 

where r; and rf are the position vectors of Pi and 
B i , respectively. R specifies the location of the 
origin of ?:foB relative to the origin of ?:fop and (T i is 
the magnitude of the LOA vector. Coordinatizing 
the unit LOA vector in '!FB results in 

where PrJ = [x; y; z;Y, Brf = [xf yf zfY, 
and BR = [X y zy. 

In general, Pi does not coincide with the c.m. 
of the platform. Thus, each actuator's force, F i , 

generates a moment about the platform's c.m. 
given by 

Mi = r; x Fi = (r; x HJ!; = m;/;. (4) 

mf is referred to as the moment arm of/; and is 
a vector normal to the plane formed by rf and Hi 
(i.e., the plane containing the origin and the LOA 
of the ith force). The magnitude ofm; represents 
the shortest distance from the LOA vector to the 
platform's c.m. Because Mi represents a moment 
about the platform's c.m., itis convenient to coor­
dinatize this quantity in '!Fp . Thus, 

(5) 

(a) (b) 

FIGURE 1 Generalized multiaxis simulator. 
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FIGURE 2 Typical actuator layout in 3-DOF simulators. 

where PmP = Pff pu.· PfP is the skew-symmetric 
I 1 I' I 

matrix 

[ 
0 -z; Y;pl 
z; 0 -Xi 

-Y; X; 0 

A 3-DOF Example 

Consider the case where r = 3. Figure 2 depicts 
a typical layout of the actuators. The actuators 
are so placed that the resulting motions of the 
platform are z translation (as seen from ;}B), roll 
and pitch (Fitz-Coy and Chatterjee, 1994). The 
actuators can be coupled to the platform in two 
ways-one results in a fixed LOA [Fig. 3(a)] and 
the other results in a variable LOA [Fig. 3(b)]. In 
both cases, the LOAs of the actuators output 
are fixed in ;}B; however, the LOA of the force 
transmitted to the platform is dependent on the 
coupling used. It is this transmitted force that we 
are concerned with and we will refer to its LOA 
as the LOA of the actuator. 

Consider the coupling concept depicted in Fig. 
3(a). In this case, BUi = [0 0 IV. Now, let us 

Co~~~g'S + 'ff Coupling 

Stt8%'S + 0 } Stinger 

(a) Fixed LOA 

assume the simulator is executing a pitching mo­
tion through an angle (}, then 

[

COS (} 

L BP = 0 

- sin (} 

and Eq. (3) becomes 

BU· = ~ Y; - yf - Y . [
X; cos () + z; sin () - xf - X 1 

I U"i -x;sin(}+zfcos(}-zf-Z 

(6) 

Because the location of the origin of ;}B is arbi­
trary, it can be chosen such that X = Y = 0 (i.e., 
the reference points are vertically aligned as seen 
from ;}B). Also, in most instances, the actuator 
attach points are in the xy plane of the respective 
coordinate frame (i.e., z; = zf = 0). Under these 
conditions, Eq. (6) becomes 

[
X; cos (} - Xfl 

BA I P B u·=- Yi - Yi . 
I U". 

I -xfsin(}-Z 
I 

Stinger 

(b) Variable LOA 

FIGURE 3 Typical actuator attachment. 
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The condition necessary for BO; = [0 0 If are 

xf cos (J - xf = 0 and yf - yf = o. 

The second requirement is easily satisfied by 
allowing vertical alignment of these points in the 
reference state. However, the first requirement 
implies that both P; and B; cannot be fixed points 
in their respective bodies. In fact, if we assume 
that P; is fixed in the platform, then B; must be 
allowed to move in the Xb direction. For the lay­
out depicted in Fig. 2, motion in the Xb direction 
is required for actuators 1 and 3; actuator 2 re­
quires no motion in the Xb direction because 
xf = xf == O. In a similar manner, if we assume 
that the platform is executing rolling motion, it 
can be shown that motion in the Yb direction must 
be allowed for either P; or B;. Thus, fixed LOA 
actuation requires movable actuator attachment 
points. An example of this coupling concept can 
be found at the RTTC Dynamic test facility at 
Huntsville. 

The need for movable actuator attachment 
points can be eliminated using the coupling con­
cept depicted in Fig. 3(b). However, it will be 
shown in the following section that this concept 
is singular unless other constraints are provided. 

DYNAMIC CONSIDERATIONS 

It is often necessary to determine the forces and 
moments that the actuators must provide to ob­
tain the desired vibrations. In this section, a pro­
cedure that allows the computation of actuator 
commands is developed. Although screw theory 
could be used to develop the procedure, the au­
thors see no reason to use this approach rather 
than the Newton-Euler approach (upon which 
the screw theory is based). 

A free body diagram of the system is shown 
in Fig. 4. There are r actuator forces, F], 

FIGURE 4 Free body diagram of platform. 

F2 , ••• , F" a weight force, W, and an external 
force FE (which includes all other forces) acting 
on the system. Application of Newton's second 
law of motion provides 

d p _ p 
dt (mV,,) - mac 

= F] + F2 + ... + F,. + W + FE' 
(7) 

It is convenient to coordinatize Eq. (7) in ?:foB be­
cause the translational motions of interest are best 
described in ?:foB' Coordinatizing and rearranging 
Eq. (7) yields 

+ BF,. = m(Ba~ - Bg) - BFE , 

(8) 

where BW is replaced with mBg. Utilizing Eqs. 
(1) and (3), the actuator forces can be expressed 
as BF; = Bol; that allows Eq. (8) to be rewritten as 

DU,] [1] ~ m(B.; - "g) - D]?E 

(9) 

The rotational motion is governed by Euler's 
equations (Goldstein, 1980). When applied about 
the c.m. of a body, Euler's equations take the 
simple form shown in Eq. (10)-hence, the moti­
vation for the choice of origin of ?:fop. 

where H~ = I~ . w P is the angular momentum of 
the platform about its c.m. I~ is the platform's 
centroidal inertia dyadic and wP is the angular 
velocity of the platform. The weight force acts 
through the c.m. and therefore produces no mo­
ment about that point. Because we are interested 
in the attitude of ?:fop with respect to ?:foB' it is 
convenient to coordinatize Eq. (10) in ?:fop. Substi­
tuting the expression for angular momentum into 
Eq. (10) and coordinatizing the resulting expres­
sion in ?:fop, yields 

PM] + PM2 + ... + PMr = PI~Pw 

+ PC;lI~Pw - PME • 
(11) 

Via Eq. (5), Eq. (II) can be rewritten as 



Combining Eqs. (9) and (12) yields 

Equation (13) is of the form 

!J> {j} 

(6 x r) (r x 1) 

{C€} 

(6 x 1) 

(12) 

(13) 

(14) 

where !J> is a matrix of line coordinates and mo­
ment arms; it is referred to in the literature as 
the matrix of Plucker coordinates (Fitcher, 1986; 
Hunt. 1978). The ith element of {j} represents 
the level of actuation of the ith actuator. The ith 
element of {C€} is the difference of the ith general­
ized inertia force and the ith generalized external 
force; in most instances, the ith generalized exter­
nal force will be zero. 

Equation (14) can be interpreted in the follow­
ing manner: given the desired generalized acceler­
ations (hence, the generalized force matrix {~}), 
determine the actuator commands {j} required to 
generate these accelerations. Before determining 
the desired actuator commands, we digress for a 
moment to prove using the singular value decom­
position (SVD) (Golub and Van Loan, 1989), that 
r actuators have, at most, control authority over 
r DOF (i.e., r actuators can at best excite r DOF 
in a controllable manner). 

Via the SVD, !J> can be represented as !J> = 
ULVT, where U and V are, respectively, (6 x 6) 
and (r x r) unitary matrices. Assuming that !J> 
has full column rank (i.e., there are no redundant 
actuators), then L is a (6 x r) matrix of the form 

L = [diag(O"\ , ... , O"r)] }r . 
o }6 - r 
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Substituting!J> = ULVT into Eq. (14) and premul­
tiplying both sides by UT yields 

(15) 

From the definition of L, the lower (6 - r) rows 
of Eq. (15) must be zero. Therefore, only r DOF 
are controllable with r actuators. For the case 
involving redundant actuators, the above also 
holds true except that the rank (!J» = p < r. Thus, 
in this case, only p DOF are controllable with r 
actuators. Although the discussion presented 
here is specific to the case of r :5 6, the analysis 
can easily be extended to include cases of r > 6. 

This completes the proof. We now return to the 
determination of the actuator commands. Two 
cases are considered: first, the fixed LOA de­
picted in Fig. 3(a), followed by the variable LOA 
depicted in Fig. 3(b). 

Case 1: r = 3, Fixed LOA 

Consider the 3-DOF layout shown in Fig. 2. For 
this case, the LOAs are given by BO; = [0 0 IV, 
i = 1, 2, 3. The actuator locations in the platform 
are Prf = [-x y oV, Prf = [0 -y oV, and 
Prf = [x y oV. 

The platform is assumed to execute small angu­
lar displacements (i.e., :510°) through angles cp, 
8, t/J that are, respectively, the roll, pitch, and yaw 
of the platform. This assumption is not mandatory 
for the analysis; however, the resulting expres­
sions are greatly simplified with its adaptation. 
Also, a requirement of small angular motion is 
not restrictive for vibration simulators. 

The small angle transformation matrix is 

-8] cp . 
1 

The moment arm of each actuator, Pmf, is deter­
mined from Eq. (5). For actuator 1, this becomes 
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Pmf = [-y 0 -OyYand Pmf = [y -x (Oy 
+ cPx)Y are obtained in a similar manner. The 
matrix of Plucker coordinates [Eq. (13)] can now 
be assembled. 

'!P= 

o 
o 

y 

x 

Oy - cPx 

o 
o 

-y 

0 

-Oy 

o 
o 

y 

-x 

Oy + cPx 

Assuming no actuator redundancy, it was 
shown above that the maximum number of con­
trollable DOF is three. Thus, we need only con­
sider (3 x 3) partitions of '!P, in which case, Eq. 
(14) becomes 

(16) 

The upper partition results in '!Pdf} = {Cf6ul, from 
which {f} is determined; this implies that '!Pu must 
be nonsingular to uniquely specify the force. The 
lower partition gives '!PL{F} = {m}, where m indi­
cates residual motion in the remaining three DOF. 
Ideally, m should be zero. 

The following partition of'!P results from con­
sidering the x, y, and z translations of the c.m. 
of the platform. 

In this case, '!Pu is singular, that implies that it is 
impossible to excite in a controllable manner the 
three translational DOF using three vertical LOA 
actuators. [Note: this is actually a case of actuator 
redundancy because rank ('!Pu) = 1.] Similarly, it 
can be shown that it is impossible to controllably 
excite the combination of three rotational DOF 
or any other combinations ofthree DOF involving 
either x or y translations. 

Consider now the combination involving z 
translation, roll, and pitch. In this case, 

'!Pu = l~ -y ;J and '!PL 

0 

loy ~ ~x 
0 

o ] 0 o . 
-Oy Oy + cPx 

The desired actuation levels are obtained from 

2
Y

] o {Cf6ul, 

-2y 

where ,1 = 4xy # O. Excitation in the z direction 
can be represented illustratively by Cf6d = 

[1 0 OY, which implies the amplitudes of the 
actuation commands be in the following ratio: 
{f} = [1 2 1 y. Computation of the lower parti­
tion provides m == 0, implying that motion exists 
only in the desired direction. Similar results can 
be obtained for roll and pitch motions. Excitation 
about the roll axis and the pitch axis is repre­
sented by {Cf6d = [0 I OY and {Cf6 u} = 

[0 0 IY, respectively. 

Case 2: r = 3, Variable lOA 

The results of the previous section are not entirely 
surprising. The more interesting case involves ap­
plication of the procedure to the variable LOA 
configuration. Consider again the 3-DOF layout 
shown in Fig. 2. To develop the variable LOA 
approach, variables (Xi and (3i that represent the 
roll and pitch, respectively, of the ith actuator's 
LOA (see Fig. 5) are introduced. These quantities 
are defined as: 

,1y - t/lx 
[ 

,1y 
(X2 = --[-, 

(3 = (3 =,1X - t/ly (3 =,1x + t/ly 
I 3 [' 2 [. 

In '!foB' the unit LOA vector of the ith actuator is 
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• i • Unperturbed location 
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FIGURE 5 Relative displacements of actuator attachment points resulting from arbitrary platform motions. 

Having determined BOi , the matrix of Plucker co­
ordinates is developed as outlined in the previ­
ous section. 

f31 

-al 

1 
CfP= 

y 

x 

f32 f33 

-a2 -a3 

1 

-y y 

° -x 

y(O - f3I) - x(cf> - al) -y(O - f3z) y(O - (33) + x(cf> - (3) 

Observe that, if ai = f3i = 0, then the fixed LOA 
case is recovered. 

As before, we are limited to the controllable 
excitation of 3 DOF. Consider the case of three 
translational DOF. For this case, CfPu is 

f3z 

In general, CfPu is nonsingular because !::.. = 
f31(a3 - (2) + f32(al - (3) + f33(a2 - al) # 0, 
provided that ai' f3i # 0, Vi. Therefore, unique 
actuator commands exist that are capable of pro­
ducing excitation in the three translational DOF. 
In a similar manner, other combinations on DOF 
could be considered, each resulting in a nonsingu­
lar CfPu implying that unique actuator commands 
exist for these DOF combinations. However, in 
each case, the lower partition, CfPL{f} = {ffi}, re­
sults in a nonzero residual in the remaining DOF. 
For example, in the case ofthe three translational 
DOF combination executing x translation, 
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Thus, it is impossible to uniquely excite only three 
DOF. This configuration is said to be singular 
because all 6 DOF are excitable with three ex­
citers. 

It was previously noted (see Kinematic Con­
siderations) that this configuration is singular un­
less constraints were provided. Now consider 
that the yaw rotation of the platform is con­
strained, then 

In this case, it can be shown that (fpu is singular for 
all 3-DOF combinations except the combination 
involving z translation, roll, and pitch. Computa­
tion of m shows additional motions in the x and 
y directions (which were not constrained) and no 
motion in yaw (which was constrained!). There­
fore, to obtain only the desired 3 DOF, the c.m. 
must also be constrained in the x and y directions. 

Case 3: r = 6, Variable LOA 

Consider the 6-DOF system shown in Fig. 6. The 
contributions of the three vertical actuators to 
(fp remain unchanged. The contributions of the 
horizontal actuators are determined in a manner 
similar to the variable LOA case discussed above. 
Again, it is necessary to define roll (vJ, pitch (AJ, 
and yaw (yJ attitudes for the LOA of the ith 

(32 

(fp= 

FIGURE 6 A 6-DOF simulator. 

horizontal actuator. These quantities are: 

Similar to the procedure of the previous section, 
the matrix of Plucker coordinates is constructed. 

y -y y 

x 0 -x 

[yeO - (31) -x(cfJ - (XI)] [-y(O - (32)] [yeO - (33) + x(cfJ - (X3)] 



Although not obvious, it can be shown that 
r;} is nonsingular. Therefore, the variable LOA 
6-DOF configuration can controllably simulate 
six vibrational DOF. It is important to notice that 
this is accomplished without the need for addi-

0 0 0 1 0 0 

0 0 0 0 1 1 

1 0 0 0 
r;}(to) = and 

Y -y Y 0 0 0 

x 0 -x 0 0 0 

0 0 0 0 -X5 Xs 

Illustratively, vibrations in the x direction are rep­
resented by {~} = [1 0 0 0 0 0 oy. From 
Eq. (14), {f}(to) = [0 0 0 1 0 0 oy, which 
implies excitation of actuator 4. However, excita­
tion of only actuator 4 results in all other DOF, 
except roll motion, being excited. This is demon­
strated by postmultiplying r;} by {f}(to). Similar 
results can be obtained for any other desired mo­
tion. These results reinforce the fact that kine­
matic and dynamic coupling exists in multi-DOF 
systems. Notice that the kinematic couplings 
(i.e., ai' f3i' Vi' Ai' 'Yi) are inversely proportional 
to the length of the device that couples the actua­
tor to the platform; therefore, by increasing the 
lengths of these devices, the kinematic coupling 
can be reduced, but cannot be eliminated. The 
dynamic coupling is a function of the geometry 
of the platform/payload combination and there­
fore it is not always possible to minimize the ef­
fects of dynamic coupling. 

SUMMARY/CONCLUSIONS 

The analysis described in this article confirms 
that true multiaxis vibration simulation is possible 
within the constraints of existing hardware. Much 
of the results presented here have been recog­
nized qualitatively for some time, but have never 
been addressed from a quantitative perspective: 
this is the contribution of this study. The issue 
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tional constraints, as was required with the 
3-DOF configuration. 

For illustrative purposes, consider an initial 
configuration in which all the LOAs are unper­
turbed, (i.e., ai = f3i = VI = Ai = 'Yi = 0), then 

0 0 
1 1 1 

0 -
4 4y 2x 

0 0 
1 

0 0 -
2 2y 

0 0 
1 1 1 

0 
4 4y 2x r;} -1(tO) = 

1 0 0 0 0 0 

1 1 
0 - 0 0 0 

2 2xs 

0 
1 

0 0 0 
1 

-
2 2xs 

of kinematic constraints was addressed for both 
fixed and variable LOA force inputs. It was 
shown that fixed LOA force inputs require mov­
able actuator attachment points; variable LOA 
force inputs require additional constraints (in par­
ticular, the x and y translations of the c.m. in CJFB 

and the rotation about the yaw axis). It was also 
shown that by using six variable LOA force in­
puts, 6-DOF simulation is possible without addi­
tional constraints; however, special measures are 
needed to compensate for the kinematic and dy­
namic coupling that occurs in the system. A 
mechanism for determining the required actuator 
commands for both 3- and 6-DOF simulation was 
also presented. 

The analysis presented here has direct implica­
tions on the development of closed-loop control 
systems for multiaxis simulation. 

The author wishes to thank Mr. Oscar Estrada and Mr. 
Mike Hale of the RTTC Dynamic Test Branch for their 
helpful suggestions and discussions. 
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