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Optimal Constrained Layer 

Damping of Beams: 
Experimental and 
Numerical Studies 

This article deals with the optimal damping of beams constrained by viscoelastic 
layers when only one or several portions of the beam are covered. The design variables 
are the dimensions and locations of the viscoelastic layers and the objective function 
is the maximum damping factor. The discrete design variable optimization problem 
is solved using a genetic algorithm. Numerical results for minimum and maximum 
damping are compared to experimental results. This is done for a various number of 
materials and beams. © 1995 John Wiley & Sons. Inc. 

INTRODUCTION 

Structural vibration control is a major design 
problem for a variety of structures. This control 
may be approached in several ways such as active 
attenuators, structural damping, etc. In most 
cases the designer's objective is to minimize vi­
bration amplitudes in a wide frequency range to 
prevent damage by fatigue. For this purpose, two 
main processes may be followed by engineers. 
One is the use of composite materials that gener­
ally exhibit excellent material damping properties 
one or two orders higher than most common met­
als; the other is to damp the structure itself by 
viscoelastic material coatings or to insert passive 
dampers at the most efficient locations. Each of 
these solutions has it own advantages, but it may 
be pointed out that the second method may often 
be used without any change in the design require­
ments. An efficient technique to damp beams or 
other structures is the use of viscoelastic con­
strained layers glued on the surface (Fig. 1). This 
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article is concerned with the optimal damping of 
beams partially covered by constrained viscoelas­
tic layers. The optimization problem is the deter­
mination of the sizes and the locations of these 
specific dampers. This article combines a numeri­
cal study of optimized partial coverage of a con­
strained viscoelastic layer on a beam with experi­
mental results for the predicted configurations of 
maximum and minimum damping. 

There exist too few references for optimal con­
strained layer damping. The present article can 
be considered as the continuation of two previous 
articles. Marcelin et al. (1992) dealt with a similar 
problem but only with a numerical approach; con­
ventional nonlinear programming optimization 
was used but was not very efficient. Indeed, as the 
design variables that represent the constrained 
viscoelastic layers positions are not continuous, 
the objective function has no derivatives and the 
classical mathematical approaches are invalid. 
The second article of Marcelin and Trompette 
(1994) was devoted to optimal location of plate 
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FIGURE 1 Beam damped by viscoelastic material. 

damped parts by use of a genetic algorithm; but 
there was only numerical results and no compari­
son with experiments was achieved. It was shown 
how stochastic optimization methods as genetic 
algorithms offer a new and attractive way for solv­
ing this kind of question. In another article from 
Nokes and Nelson (1968), theoretical and experi­
mental studies were also presented on partially 
covered beams, but without an optimization step. 
The major conclusion of Nokes and Nelson (1968) 
was the following: it is not necessary to cover the 
whole beam to achieve adequate damping in a 
structure. The tests of Nokes and Nelson indi­
cated a peak in the damping at about 60% cover­
age (of the central portion) of a free-free beam. 
Here both partial covering, optimization, and for 
the first time, experimental validation are consid­
ered. The design variables are the dimensions and 
the locations of all the viscoelastic layers. Special 
beam finite elements are used to represent the 
behavior of the sandwich parts of the beam, and 
a genetic search is used for the optimization prob­
lem (Marcelin and Trompette, 1994). The same 
problem, with similar techniques and similar re­
sults, was dealt with in Hajela and Lin (1991), 
but without any experimental approach and for 
additional design variables corresponding to the 
thicknesses of the viscoelastic layers and the con­
straining layers. Hajela and Lin (1991) show that 
genetic search methods are well suited for such 
generically difficult design. Applications in the 
design of isotropic and composite beams for maxi­
mum damping and minimum weight are shown in 
Hajela and Lin (1991). 

OPTIMIZATION METHOD 

The dynamic behavior of partially covered beams 
is obtained from a modal model. The homoge­
neous parts of the beam are discretized by con­
ventional Cl finite elements (FEs) and the hetero­
geneous or sandwich ones by specific FEs 
designed to represent accurately the viscoelastic 
core shear damping effect. The finite elements 
of the damped and undamped parts must be as 

compatible as possible. Such elements have been 
used previously for plates in Marcelin and Trom­
pette (1994). 

The equilibrium equations associated to struc­
tural damping are: 

Because of time dependent stress-strain rela­
tions, the representation (1) of the structural 
damping is simple only for periodic excitations. 
For such excitations a viscoelastic material be­
havior may be represented by a complex Young's 
modulus: Ev = Evr + jEvi . This means that the 
damping introduced by viscoelastic constrained 
layers is a special case of structural damping. It 
can be assumed that the real and the imaginary 
part of Ev ' the storage and the loss modulus, are 
frequency dependent. This hypothesis is often 
experimentally verified for Evr • The frequency de­
pendence of EVi might be taken into account but 
without adding anything to the main results of the 
optimization process that does not depend on this 
parameter; this is the reason why it is not consid­
ered hereafter. 

Frequencies and mode shapes of the undamped 
associated structures can be considered as a good 
and simple modal basis to be used for predicting 
the dynamic behavior of the corresponding 
damped structure. Wi and CPi' i = 1, n are the 
undamped frequencies and corresponding mode 
shapes obtained from the matrix equation: 

(-w2IMI + IKI){x} = {O}. (2) 

Performing the usual transformation {x} = IFI{q}, 
and preumltiplying by WiT, Eq. (3) is obtained for 
free vibrations: 

(-w2Imdiagl + (Ikrdiagl + jlkil){q} = {cpl. (3) 

Because of the orthogonality of the modes, Iml 
and Ikrl are diagonal matrices, but not IkJ Gener­
ally for beams the frequencies are well separated, 
so the full damping matrices can be considered as 
diagonal dominant. In these conditions the modal 
system (3) is the sum of n uncoupled equations. 
It follows from the preceding that in a modal re­
sponse, a good approximation of the structural 
loss factor for the optimization may be easily cal­
culated from (3), so the objective function to be 
maximized has the general form: 

(4) 



in which Es is noted as the elastic strain energy 
and Ed the dissipation energy. Due to the above 
hypothesis, the damping can be written: 

Lk=nb of retained modes (Xkkk 
(5) 

(Xk is a weighting modal factor given by the user. 
It is pointed out here that the use ofthe undamped 
modes simplify readily the calculation of the ob­
jective function. The denominator of (5) is invari­
ant during all the optimization process. 

Because the design variables are the locations 
and the dimensions of the viscoelastic parts, the 
optimization problem is obviously a discrete one. 
So to maximize the damping factor a genetic algo­
rithm is used (Goldberg, 1989). Genetic algo­
rithms are based on the principles of natural selec­
tion and survival of the fittest. The genetic 
analogy is maintained in the terminology used in 
the method. An initial popUlation is generated by 
random selection of the individual bits in a binary 
string of given length. The strings represent, di­
rectly or indirectly, the design variables in the 
objective function. Groups are formed, initially 
at random, to compose families of strings, each 
family containing a single set of parameters com­
prising a design. The fitness of each group is then 
evaluated and assessed against the objective func­
tion. The strings in the best families are given 
favorable weightings in a selection process 
whereby pairs of strings (parents) are chosen, 
combined by a crossover process. It is useful 
also to introduce an element of mutation whereby 
some bits are switched to encourage the develop­
ment of new genetic material. The incidence of 
mutation is controlled by the user through the 
prescription of a mutation probability. After each 
cycle of selection, crossover, and possibly muta­
tion, the fitness of each family is again assessed 
by converting the binary strings to decimal digits 
(decoding) and evaluating the objective function. 
The cycle then continues into the next generation. 
The process is terminated when convergence is 
detected or when the specified maximum number 
of generations is reached. Genetic algorithms are 
particularly well suited to represent simply the 
dimensions and the locations of the viscoelastic 
layers. In the present work, heterogeneous beam 
elements may be coded by 1 and homogeneous 
beam elements by 0, so a design point (a chromo­
some) is an n binary number in which n is the 
number of finite elements. All the details are given 
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in Marcelin and Trompette (1994). In the study 
by Marcelin et al. (1995) about optimization of 
composite beam structures, they show that ge­
netic algorithms are a very attractive and efficient 
way to optimize damping of mechanical struc­
tures. In the article by Marcelin et al. (1995), 
the optimization problem is to find an optimal 
stacking sequence of composite materials to max­
imize a modal damping factor. 

EXPERIMENTS 

For measurement of damping vibration in the 
structures there are several methods; they are 
explained in Ewins (1989). The best method is the 
impulse frequency response technique, because 
with an only hammer shock, different frequencies 
are excited and therefore one can gain several 
modes of vibrations. In this work damping in 
flexural vibration for the first mode is considered. 
One can apply different boundary conditions on 
the beam specimens, but to avoid the different 
effects of supports and fixations on the structure, 
a free-free beam is selected. The beam specimens 
are suspended on the nodes ofthe first frequency; 
and with a modally tuned hammer one excite the 
specimens. Therefore there are rigid body mo­
tions as well as the other modes of vibration. 
Figure 2 shows a schematic of the test and appa­
ratus. 

Response 
Signal 

Excitation Signal 

Printer 

FIGURE 2 Apparatus for free-free vibration of 
beam. 



448 Marce lin , Shakhesi, and Pourroy 

Hammer 

For exciting the beams with an impulse shock, we 
use a modal-tuned impact hammer. This hammer 
reduces the input force so that the amplitude of 
the beams is small enough to eliminate aerody­
namic damping as a significant factor. The nonlin­
earity and external noise are less than the other 
methods of excitation. There are different tips 
with different hardness for exciting different 
beam materials. A force transducer is installed in 
the tip of hammer. The hammer is energized by 
a power supply. 

Accelerometer 

An accelerometer is installed in the middle of the 
free-free beam for acquiring the acceleration of 
the beam at that location. An amplifier and a con­
ditioner are used for amplifying and conditioning 
the signals. 

Data Acquisition 

The input signal of the force transducer and re­
sponse signal of the accelerometer are sent to the 
data acquisition system. An analyzer fast Fourier 
transform (FFT) is installed for treatment of the 
data acquired. 

Computer 

A PC computer is used for FFT computation by 
curve fitting to the frequency response function. 
The resonant frequencies and the modal loss fac­
tors are determined with good accuracy. Zoom 
measurement of the frequency response near the 
resonant frequency improves the results. The ma­
jor advantage of the curve fitting is that much 
more data near a resonance are used to measure 
damping. For minimizing the errors associated 
with curve fitting, a Nyquist plot is applied using 
a circle fit algorithm (Fig. 3). Equation (6) is used 
for determination of the loss factor. 

W~ - wb 
YJ = -----=-~--

w2 (tan (J a + tan (J b) 
r 2 2 

(6) 

where wa ' (Ja' and Wb, (Jb are points on the modal 
circle below and above the resonant frequency, 
Wr • A close correlation exists between the experi­
mental damping properties of a known aluminum 

FIGURE 3 Properties of modal circle. 

specimen and the theoretical Zener thermoelas­
tic prediction. 

Two kinds of beams are considered in the nu­
merical and experimental processes. The first 
beams are made of polyurethane (PU). The di­
mensions of these beams are the following; length 
0.950 m, section 0.05 x 0.014 m. The loss factor 
of PU at normal temperatures is around 1%. The 
first free-free frequency of the PU beams is 19 
Hz. The second beams are sandwich aluminum­
PU-aluminum beams. The dimensions of these 
beams are the following; length 1.5 m, width 0.07 
m, aluminum thicknesses 0.0006 m, PU height 
0.0108 m. The first free-free frequency of the 
sandwich beams is 28 Hz. In the two cases, the 
constrained viscoelastic layers have a thickness 
of 0.0008 m; the loss factor of the viscoelastic 
material used is near 1%; the constraining layers 
are made of aluminum and their thickness is 
0.0006 m. 

RESULTS 

The locations of viscoelastic layers are deter­
mined from numerical optimization for minimum 
and then for maximum damping for the two kinds 
of beams. In both cases only the first free-free 
mode is considered and the total length of the 
damped parts are set equal to 25% of the length 
of the beams. Sixteen FEs were used to model 
the beams. Only a part (4) of the elements can be 
covered. In this case, the string length is 16, but 
the first four strings determine the location of 
the first element, the following four other strings 
determine the location ofthe second element, and 
so on. There are no equality or inequality con­
straints. 



25 % of fength covered 
height of constraining fayers 0.0006 m 
height of constrained layers 0.0008 m 

length of PU beam 0,950 m 
width 0.05 m height 0.01 4 m 

maximum damping for mode 1 

FIGURE 4 Maximum damping solution for PU beam. 

An example of string when only fo ur e lements 
are covered is: 

0010 0000 1000 1011 

that means that elements 3 (0010) , I (0000), 9 
(1000) , and 12(1011) a re covered . The results for 
the PU beams are the following. Figure 4 gives 
the genetic search results for maximum damping 
only for mode I. The parameters defining the ge­
netic algorithm are the following: population size 
20, number of generations 40 , probability of 
crossover 0.6 , probability of mutation 0.1 . We do 
not use the weighting modal factor defined in Eq. 
(5). The damped parts are separated. In this way , 
flexural vibration causes more shearing strain in 
the viscoelastic core and thus more energy is dis­
sipated . The experiments for this configuration 
give a damping factor of 1.55% (the numerical 
one is 1.36%). Figure 5 gives the genetic search 
re sult for minimum damping for mode I . The ex­
periments for thi s configuration give a loss factor 
of 0.99% (the numerical one is 0.11 %). The diffe r­
ence between the two cases is about 50%. The 
opt imization was not performed for modes 2 and 
3: nevertheless experiments were done for modes 
2 and 3. For the configuration of Fig. 4, the damp­
ings of modes 2 and 3 a re, respectively , 1.53 and 
1.48% . For the configuration of Fig. 5, the damp­
ings of modes 2 and 3 are , respectively, 0.97 and 
0.93% . In conclusion, in this case the optimum 
results for mode I also seem val id for modes 2 
and 3. 

The res ult s for the sandwich beams are the 
fol lowing. Figure 6 gives the genetic search re­
su lts for maximum damping only for mode I. The 
distribution of the damped parts is the same as 

.. ______ 111 

FIGURE 5 Minimum damping sol ut ion for PU beam . 
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25% of beam covered 
height of constraining layers 0.0006 m 
height of constra ined layers a.OaDBm 

length 1.5 m 
width 0.07 m 
aluminium thicknesses 0.0006 m 
PU height 0.0108 m 
maximum damping 

FIGURE 6 Maximum damping so lution for sand­
wich beam. 

that in the previous example. The experiments 
for thi s configuration give a damping factor of 
0.45% (the numerical one is 1. 17%). Figure 7 gives 
the genetic search result for minimum damping 
for mode I. The experiments for this configura­
tion give a loss factor of 0.06% (the numerical 
one is 0.22%). The difference between the two 
cases is very important and shows the interest of 
an optimal partial coverage . The phys ical reasons 
that the configuration of Fig. 4 or 6 provides maxi­
mum damping and the configuration of Fig. 5 or 7 
provides minimum damping may be the following: 
for maximum damping , the constrained viscoelas­
tic layers are located in the areas where shear 
strain energy is maximum and the layers are di­
vided into four parts , so shear strain is increased ; 
for minimum damping , the constrained viscoelas­
tic layers are located at the two ends of the beams 
in the areas where strain energy is minimum and 
they are not divided . 

The experimental validations follow the nu­
merical calculations because the numerical calcu­
lations of damping give only qualitative results 
and allow one to see whether damping is impor­
tant or not. Numerical calculations do not give 
the exact values so the numerical damping cannot 
be compared with the experimental ones . Other 
investigators have achieved much better agree­
ment between numerical a nd experimental re­
sults. The reasons why the numerical results are 
at such variance with experimental results are: 
first, the same modal basis (the undamped modes) 
is used all along the calculations to guarantee the 
efficiency of the optimization (which need a lot 
of calculations); second , we have not determined 

FIGURE 7 Minimum damping so lution for sand­
wich beam. 
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the frequency dependence of the damping of the 
materials that we used. Nevertheless the inaccu­
racy of our numerical prediction of damping does 
not seem to affect the accuracy of our prediction 
of the optimum damping configuration. 

CONCLUSION 

The optimization of damping of beams by con­
strained viscoelastic layers, when only one or 
several portions of the beam are covered, was 
considered. Applications may exist in several 
areas such as the aeronautics, automobile, sports, 
and building industries. The comparison between 
the computational and the experimental results 
show that the proposed approach is an efficient 
and attractive way for minimizing vibration am­
plitudes. 

We are grateful to the Society Rossignol for having 
provided the experimental beams. 
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