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Free Vibration of Thick 
Multilayer Cylinders 

In this study of the free vibration of multilayer thick cylinders, the medium is modeled 
by laminated linear viscoelastic cylinders of an infinite extent. The analytical modeling 
is based on three-dimensional wave propagation utilizing constant complex elastic 
moduli. The solution is achieved by determining the displacements and stresses for 
each interface and by complying with requirements at the interfaces. A propagator 
matrix relating the boundary displacements to boundary stresses is developed. Dimen­
sionless natural frequencies and modal loss factors for different circumferential and 
axial wave numbers are determined. The validity of the proposed method is verified 
by comparing the results for one-, two-, and three-layer elastic cylinders with properties 
similar to those reported for an equivalent single layer. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Most studies of the vibrations of sandwich cylin­
ders are based on the assumptions of thin shell 
theory for a significant number of thick cylindrical 
structures. The assumptions used in shell theory 
for cylindrical structures may not always be valid. 
In spite of this situation, few studies have been 
addressed to the analysis of the free vibrations 
of thick cylindrical structures. 

Armenakas et al. (1969) analyzed free vibration 
of thick elastic cylinders and presented tables of 
dimensionless natural frequencies for a wide 
range of geometrical possibilities. Armenakas 
(1967) investigated the propagation of harmonic 
waves with arbitrary circumferential nodes trav­
eling in traction free composite cylindrical shells. 
The composite shells consisted of an inner layer 
composed of one material bounded by and 
bonded to an outer casing made of a different 
elastic material. Armenakas (1971) studied the 
effect of changes in shell parameters on the fre­
quencies and mode shapes for the first few modes. 
Huang and Dong (1984) utilized a stiffness method 
to consider wave propagation in laminated aniso-
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tropic cylinders with an arbitrary number of lam­
ina. Braga and coworkers (1990) studied har­
monic wave propagation in a fluid-loaded cylinder 
composed of isotropic elastic layers. In their com­
putation, they developed an analytical method 
to determine impedance of the laminated shell. 
Hamidzadeh and Chandler (1991) investigated 
circumferential harmonic vibrations of viscoelas­
tic thick cylinders of infinite extent by employing 
the two-dimensional elastodynamic theory. Rat­
tanawangcharoen and Shah (1991) studied the 
propagation of harmonic waves in laminated iso­
tropic elastic cylinders. They provided dimen­
sionless natural frequencies of a two-layer cylin­
der for a circumferential wave number and a range 
of axial wave numbers. Rattanawangcharoen et 
al. (1992) also analyzed the effects of the circum­
ferential wave number, ply lay up configuration, 
number of layers, and thickness-to-radius ratio 
on the dispersion characteristics. 

This article addresses the study of free vibra­
tion of multilayer viscoelastic cylinders. To intro­
duce viscoelastic damping in the composite cylin­
der, the analysis allows complex shear modulus 
for each layer. The problem is formulated in the 
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form of matrix equations that relates displace­
ments of a point in the medium to the boundary 
stresses. An analytical approach for a single fre­
quency independent viscoelastic layer is devel­
oped to obtain the displacements and stresses in 
terms of boundary stresses for any given circum­
ferential and axial wave numbers. This formula­
tion is used to develop a relation between dis­
placements and stresses at the boundaries of each 
layer and consequently to obtain a propagator 
matrix relating displacement and stresses of the 
inner boundaries to the outer one. Invoking the 
zero boundary stresses leads to a frequency equa­
tion for free vibration of the multilayer viscoelas­
tic cylinder. The analytical procedure described 
here is applicable to multilayer cylinders of arbi­
trary laminated configuration and any material 
damping for each layer. 

MODAL DISPLACEMENTS AND STRESSES 
FOR A CYLINDER 

The governing equations for an isotropic linearly 
viscoelastic cylinder in terms of displacement 
vector u and in the absence of prescribed body 
forces satisfy the following equation: 

(A + p,)V Vu + p, V2u = pii (1) 

where ii = a2u/at2, A and p, are Lame's complex 
moduli and are presented by A = A (1 + i(3) and 
p, = p, (1 + i{3), {3 is the frequency independent 
material loss factor for the cylinder, and p is the 
mass density of the body. The stress tensor!!. is 
related to the displacement vector by the follow­
ing equation: 

!!. = A V . uI + p,(Vu + uV) (2) 

where I is the unit tensor. As reported by Armena­
kas et al. (1969), the equilibrium equation, Eq. 
0), can be solved by employing the potential 
function cp and H such that 

u = Vcp + V x H. (3) 

the potential functions are to satisfy the following 
wave equations: 

(4) 

and 

(5) 

In the above equations, VI and V2 are complex 
dilatational and shear wave velocities. From the 
foregoing equations, solutions to the potential 
functions for harmonic frequency of wand axial 
and circumferential wave numbers' and n are: 

where 

and 

cp = f(r)cos nO cos(wt + ,z) (6) 

Hr = gr(r)sin nO cos(wt + ,z) (7) 

Ho = gir)cos nO cos(wt + 'z) (8) 

Hz = g3(r)sin nO cos(wt + ,z) (9) 

f(r) = CIJn(ar) + C2 Yn(ar) (10) 

g3(r) = C3Jn(f3r) + C4 Yn(f3r) (11) 

2gk) = gr(r) - gk) 

= 2CsJn+l({3r) + 2C6Yn+l (f3r) 

2gir) = gr(r) + gir) 

= 2C7Jn- l(f3r) + 2CSYn- l(f3r) 

(12) 

(13) 

(14) 

(15) 

It can be shown that one of the three potentials 
gl' g2' and g3 can be set equal to zero, without 
loss of the generality of solution. Utilizing the 
property of the gauge invariance results in elimi­
nation of integration constants C7 and Cs in the 
above equations. 

Using Eqs. (2) and (3) the modal displacements 
and stresses vector {R} can be written as: 

{R} = [CS][SN]{C} (16) 

where 

and Ci are independent arbitrary constants. The 
elements of the 6 x 6 matrices [CS] and [SN] are 
given in the appendix. The elements of the matrix 
[CS] are functions of frequency, time, coordi­
nates r, 0, and Z, as well as circumferential and 



axial wave numbers. The elements of the [SN] 
matrix are functions of radius, frequency, mate­
rial damping, material properties, and the above­
mentioned wave numbers. 

FORMULATION OF 
PROPAGATOR MATRIX 

The composite cylinder is assumed to be formed 
by N viscoelastic layers bounded by inner and 
outer interfaces as shown in Fig. 1. The ith layer 
(i = 1, N) has a thickness of hi = ri - ri-I and is 
bounded by inner and outer interfaces located at 
radii ri-I and r i , respectively. Each ofthe visco­
elastic layers is characterized by a complex dilata­
tional wave velocity Vii' complex shear wave ve­
locity V2i , density Pi' Poisson's ratio Vi' and 
material loss factor f3i. For the ith layer, the model 
displacements and stresses vectors for inner and 
outer interfaces according to Eq. (16) can be writ­
ten as: 

{Rh-I = [CS][SNl;_I{C} (17a) 

{Rh = [CS][SNl;{C}. (17b) 

Eliminating vector {C} in the above equations re­
sults in 

or 

where 

itb 

layer 

{Rh = [SNHSN]t=-\{Rh_1 (18a) 

{Rh = [Pl;{Rh-1 (18b) 

[Pl; = [SNHSN]t=-\. (19) 

z 

FIGURE 1 Cross section of multilayered circular cyl­
inder. 
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Writing Eq. (18b) for all layers and eliminating {R} 
for all intermediate interfaces results in a relation 
between displacement and stress vectors at the 
inner and outer boundaries of the sandwiched cyl­
inder. 

(20a) 

or 

(20b) 

where 

Considering the traction free boundary conditions 
for free vibrations, Eq. (21) will be reduced to 
the following form: 

(22) 

where UI, VI, and WI are amplitudes of radial, 
tangential, and axial components of displacement 
at any location in the inner surface of the cylin­
der, respectively. 

Equating the determinant of the coefficient ma­
trix in Eq. (22) to zero provides the frequency 
equation for the system. It should be indicated 
that the elements of the above matrix are all re­
lated to the circumferential and axial wave num­
bers, frequency, material loss factor, and thick­
ness of each layer. Complex dimensionless 
natural frequencies (0) for different modes can 
be computed using Muller's iterative method. The 
initial approximations are provided by sweeping 
the frequency with fine increments for the ex­
pected range. The dimensionless natural frequen­
cies and the modal loss factors are extracted from 
the complex roots of the frequency equation by 
the following expressions: 

0i = Re(I!j2) 

'YJj = Im(I!j2)/Re(I!j2). 

(23) 

(24) 

RESULTS FOR DIFFERENT CASE STUDIES 

To verify the validity of the developed procedure, 
several case studies were performed and the re­
sults are presented in the following. 
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Case 1: Elastic Cylinder Dimensionless natural frequencies are defined as 

Dimensionless natural frequencies for different 
OJ = wjHI(TrV2), where Wj is the jth natural fre-
quency and V2 is the velocity of the shear wave 

circumferential wave numbers (n = 0, 1,2,3, and for the cylinder. 
4), ratios of (HIL = 0, 0.1, 0.5, and 1), HIR = 

0.3, and Poisson's ratio of 0.3 are computed and Case 2: Two-Layer Elastic Cylinder 
compared with those reported by Armenakas et 
al. (1969), where H, R, and L are thickness, mean A two-layer elastic cylinder with the same me-
radius, and half wave length of the cylinder, re- chanical properties is considered. Dimensionless 
spectively. These results are tabulated in Table natural frequencies for different circumferential 
1 and comparison indicates excellent agreement. wave numbers and two values for H/L are com-

Table 1. Comparison of Dimensionless Natural Frequencies for Single Cylinder (HIR = 0.3) 

Dimensionless Natural Frequencies 

n HlL ill il2 il3 il4 il5 il6 

0 0.0 Present 0.00000 0.16305 1.00344 1.87870 2.00174 3.00116 
AGH 0.00000 0.16306 1.00344 1.87871 2.00174 3.00118 

0.1 Present 0.13828 0.18945 1.02108 1.85679 2.02643 3.00083 
AGH 0.13829 0.18946 1.02055 1.85681 2.03137 3.00076 

0.5 Present 0.31801 0.82790 1.33439 1.74402 2.33664 3.00068 
AGH 0.31790 0.82791 1.33441 1.74402 2.33665 3.00068 

1.0 Present 0.78333 1.42000 1.91154 2.00292 2.82861 3.07879 
AGH 0.78471 1.42002 1.91156 2.00294 2.82864 3.07880 

0.0 Present 0.00000 0.09583 0.22521 1.00819 1.03402 1.85844 
AGH 0.00000 0.09584 0.22524 1.00819 1.03404 1.85845 

0.1 Present 0.06158 0.16483 0.26024 1.01826 1.04543 1.84228 
AGH 0.06158 0.16484 0.26027 1.01826 1.04544 1.84229 

0.5 Present 0.32108 0.51064 0.84136 1.13768 1.34520 1.74345 
AGH 0.32101 0.51065 0.84138 1.13767 1.34521 1.74344 

1.0 Present 0.73322 1.00433 1.43616 1.43616 1.91681 2.00869 
AGH 0.78856 1.00483 1.41665 1.43618 1.91684 2.00872 

2 0.0 Present 0.03596 0.19158 0.35146 1.02229 1.08211 1.82135 
AGH 0.03596 0.19161 0.35149 1.02230 1.08213 1.82136 

0.1 Present 0.05456 0.22783 0.38247 1.02966 1.09493 1.81191 
AGH 0.05456 0.22784 0.38247 1.02966 1.09492 1.81191 

0.5 Present 0.33333 0.54008 0.87974 1.15062 1.37682 1.74257 
AGH 0.33332 0.54009 0.87975 1.15063 1.37683 1.74257 

1.0 Present 0.83333 1.01913 1.41767 1.45418 1.93217 2.02637 
AGH 0.80015 1.01911 1.41769 1.45421 1.93221 2.02639 

3 0.0 Present 0.09554 0.28718 0.49297 1.04542 1.15516 1.78653 
AGH 0.09556 0.28721 0.49302 1.04543 1.15517 1.78652 

0.1 Present 0.10639 0.30949 0.51769 1.05171 1.16737 1.78117 
AGH 0.10638 0.30951 0.51772 1.00517 1.16737 1.78116 

0.5 Present 0.35967 0.58365 0.93778 1.17221 1.42710 1.74382 
AGH 0.35967 0.58365 0.93779 1.17220 1.42709 1.74383 

1.0 Present 0.72932 1.04213 1.42532 1.47738 1.95646 2.05673 
AGH 0.81956 1.04226 1.42537 1.47741 1.95649 2.05677 

4 0.0 Present 0.16994 0.38254 0.63690 1.07704 1.24634 1.75990 
AGH 0.16997 0.38258 0.63697 1.07706 1.24635 1.75991 

0.1 Present 0.17916 0.39824 0.65666 1.08278 1.25734 1.75718 
AGH 0.17917 0.39825 0.65666 1.08277 1.25739 1.75717 

0.5 Present 0.40148 0.63760 1.00884 1.20232 1.49258 1.75090 
AGH 0.40149 0.63760 1.00895 1.20233 1.49260 1.75099 

1.0 Present 0.88660 1.07349 1.43943 1.50490 1.98824 2.10042 
AGH 0.84673 1.07349 1.43945 1.50493 1.98827 2.10048 

AGH, Armenakis et al. (1969). 
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Table 2. Comparison of Dimensionless Natural Frequencies for Two Elastic Layers 

Dimensionless Natural Frequencies 

n fi, fi2 fi3 0.4 as fi6 

0 Present 0.13828 0.18946 1.02055 1.85681 2.03136 3.00075 
AGH 0.13829 0.18946 1.02055 1.85681 2.03137 3.00076 
Present 0.06158 0.16484 0.26027 1.01826 1.04544 1.84228 
AGH 0.06158 0.16484 0.26027 1.01826 1.04544 1.84229 

2 Present 0.05456 0.22784 0.38247 1.02966 1.09492 1.81191 
AGH 0.05456 0.22784 0.38247 1.02966 1.09492 1.81191 

3 Present 0.10638 0.30951 0.51772 1.05170 1.16736 1.78117 
AGH 0.10638 0.30951 0.51772 1.05170 1.16737 1.78116 

4 Present 0.17917 0.39825 0.65665 1.08277 1.25739 1.75717 
AGH 0.17917 0.39825 0.65666 1.08277 1.25739 1.75717 

HlR = 0.3, HlL = 0.1, ro = 1.0 in., r, = l.l5 in., and r2 = 1.3529 in. AGH, Armenakis et al. (1969). 

pared with those for an equivalent single-layer 
elastic cylinder. Results for two different geome­
tries are given in Tables 2 and 3. Table 2 presents 
the results for HIR = 0.3 and HIL = 0.1 for a 
laminated cylinder with radii of ro = 1.0 in., r, = 

1.15 in., and r2 = 1.3529 in. This is equivalent to 
a single layer of HIR = 0.3. Table 3 compares the 
dimensionless natural frequencies for two elastic 
laminated cylinders for HIR = 0.5 and HIL = 

0.5, and inner radii for layers are ro = 1.0 in., r, 
= 1.1666 in., and r2 = 1.6666 in. As indicated in 
these tables, computed results are very close to 
the results presented by Armenakas et al. (1969) 
for an equivalent single cylinder. Dimensionless 
natural frequencies for the multilayered cylinder 
are defined as OJ = wj HI(7rV21 ), where Wj is the 
jth natural frequency and V21 is the velocity of 
the shear wave for the first layer. 

Case 3: Three-Layer Elastic Cylinder 

Dimensionless natural frequencies for two differ­
ent three-layer cylinders with the same elastic 

properties are compared with those of equivalent 
single cylinders, and are provided in Tables 4 and 
5. Table 4 presents the results for HIR = 0.3 and 
HIL = 0.1 with radii of ro = 1.0 in., r1 = 1.15 in., 
r2 = 1.2 in., and r3 = 1.3529 in. This is equivalent 
to a single layer of HIR = 0.3. Table 5 compares 
the dimensionless natural frequencies for three 
layered cylinder with HIR = 0.5 and HIL = 0.5. 
The radii for l~yers are ro = 1.0 in~ r1 = 1.1666 
in., r2 = 1.3333 in., and r3 = 1.6666 in. The two 
tables show the computed results are in excellent 
agreement with those reported by Armenakas et 
al. (1969) for an equivalent single cylinder. 

Case 4: Three-Layered Sandwiched 
Cylinder with Viscoelastic Core 

In this case a three-layer sandwich cylinder with 
a viscoelastic core is considered. All layers are 
assumed to have the same elastic properties. En­
ergy dissipation in the core layer is allowed by 
introducing complex elastic moduli. The sand­
wiched cylinder has HIR = 0.3 and HIL = 0.0 

Table 3. Comparison of Dimensionless Natural Frequencies for Two Elastic Layers 

Dimensionless Natural Frequencies 

n a, 0.2 fi3 0.4 as fi6 

0 Present 0.36913 0.83335 1.34362 1.75354 2.34374 3.00328 
AGH 0.36919 0.83334 1.34362 1.75354 2.34374 3.00328 
Present 0.35885 0.53632 0.86722 1.17272 1.37979 1.75152 
AGH 0.35884 0.53632 0.86723 1.17273 1.37980 1.75153 

2 Present 0.37309 0.61399 0.95428 1.21002 1.47866 1.75287 
AGH 0.37308 0.61400 0.95428 1.21002 1.47867 1.75288 

3 Present 0.44122 0.71206 1.06769 1.27295 1.61076 1.78279 
AGH 0.44121 0.71206 1.06769 1.27295 1.61076 1.78280 

4 Present 0.55006 0.82384 1.18781 1.35816 1.71423 1.89819 
AGH 0.55006 0.82384 1.18781 1.35817 1.71424 1.89820 

HlR = 0.5, HIL = 0.5, ro = 1.0 in., r, = l.l666 in., and r2 = 1.6666 in. AGH, Armenakis et al. (1969). 
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Table 4. Comparison of Dimensionless Natural Frequencies for Three Elastic Layers 

Dimensionless Natural Frequencies 

n ill il2 il3 il4 ils il6 

0 Present 0.13828 0.18946 1.02055 1.85681 2.03136 3.00075 
AGH 0.13829 0.18946 1.02055 1.85681 2.03137 3.00076 
Present 0.06158 0.16484 0.26027 1.01826 1.04544 1.84228 
AGH 0.06158 0.16484 0.26027 1.01826 1.04544 1.84229 

2 Present 0.05456 0.22784 0.38247 1.02966 1.09492 1.81191 
AGH 0.05456 0.22784 0.38247 1.02966 1.09492 1.81191 

3 Present 0.10638 0.30951 0.51772 1.05170 1.16736 1.78117 
AGH 0.10638 0.30951 0.51772 1.05170 1.16737 1.78116 

4 Present 0.17917 0.39825 0.65665 1.08277 1.25739 1.75717 
AGH 0.17917 0.39825 0.65666 1.08277 1.25739 1.75717 

HlR = 0.3, HlL = 0.1"0 = 1.0 in.", = 1.15 in"'2 = 1.2 in., and,] = 1.35294 in. 

Table 5. Comparison of Dimensionless Natural Frequencies for Three Elastic Layers 

Dimensionless Natural Frequencies 

n ill il2 il3 il4 ils il6 

0 Present 0.36918 0.83335 1.34362 1.75354 2.34374 3.00328 
AGH 0.36919 0.83334 1.34362 1.75354 2.34374 3.00328 
Present 0.35883 0.53632 0.86723 1.17272 1.37979 1.75152 
AGH 0.35884 0.53632 0.86723 1.17273 1.37980 1.75153 

2 Present 0.37308 0.61399 0.95428 1.21002 1.47866 1.75287 
AGH 0.37308 0.61400 0.95428 1.21002 1.47867 1.75288 

3 Present 0.44122 0.71206 1.06769 1.27295 1.61076 1.78279 
AGH 0.44121 0.71206 1.06769 1.27295 1.61076 1.78280 

4 Present 0.55006 0.82384 1.18781 1.35816 1.71423 1.89819 
AGH 0.55006 0.82384 1.18781 1.35817 1.71424 1.89820 

HlR = 0.5, HIL = 0.5, ro = 1.0 in., r, = 1.1666 in., '2 = 1.3333 in., and 'J = 1.6666 in. 
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FIGURE 2 Variation of loss factor versus material 
loss factor of the core layer for the first mode. 

FIGURE 3 Variation of loss factor versus material 
loss factor of the core layer for the second mode. 
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Table 6. Variation of Dimensionless Natural Frequencies (OJ) and Corresponding Loss-Factors (11) with 
Respect to Core Material Loss-Factor (/12) for Different Circumferential Wave Numbers (HIL = 0.0) 

Mode I 

n /32 ill 7]1 

0 0.00 0.00000 0.00000 
0.10 0.00000 0.00000 
0.20 0.00000 0.00000 
0.40 0.00000 0.00000 
0.60 0.00000 0.00000 
0.80 0.00000 0.00000 
1.00 0.00000 0.00000 
0.00 0.00000 0.00000 
0.10 0.00000 0.00000 
0.20 0.00000 0.00000 
0.40 0.00000 0.00000 
0.60 0.00000 0.00000 
0.80 0.00000 0.00000 
1.00 0.00000 0.00000 

2 0.00 0.03597 0.00000 
0.20 0.03598 0.00537 
0.40 0.03603 0.00979 
0.60 0.03608 0.01285 
0.80 0.03614 0.01468 
1.00 0.03619 0.01564 

3 0.00 0.09556 0.00000 
0.20 0.09564 0.00953 
0.40 0.09585 0.01734 
0.60 0.09612 0.02266 
0.80 0.09640 0.02572 
1.00 0.09665 0.02716 

4 0.00 0.16997 0.00000 
0.20 0.17018 0.01374 
0.40 0.17071 0.02503 
0.60 0.17141 0.03274 
0.80 0.17213 0.03716 
1.00 0.17278 0.03918 

with radii of ro = 1.0 in., r l = 1.15 in., r2 = 1.2 
in., and r3 = 1.3529 in. 

The effect of the core material loss factor on 
the dimensionless natural frequencies and their 
corresponding modal loss factors for circumfer­
ential wave numbers of n = 0, 1, 2, 3, and 4 are 
studied. The computed results for three consecu­
tive modes are presented in Table 6. Figures 2 
and 3 illustrate the variation of the loss factor for 
the first and the second modes versus material 
loss factor of the core layer for different circum­
ferential wave numbers. In general, results indi­
cate that for these modes higher material loss 
factor provide better damping capability for all 
modes except for the second mode with n = 1. 
Three modes studied here are lowest extensional, 
breathing, and axial shear modes for n = O. For 

Mode II Mode III 

il2 '1'/2 il3 7]3 

0.16306 0.00000 1.00345 0.00000 
0.16306 0.01393 1.01818 0.02765 
0.16306 0.02786 1.02134 0.05403 
0.16307 0.05572 1.03291 0.09896 
0.16307 0.08357 1.04912 0.13000 
0.16307 0.11142 1.06695 0.14736 
0.16307 0.13927 1.08416 0.15417 
0.09584 0.00000 0.22524 0.00000 
0.12366 0.02242 0.22524 0.01420 
0.12315 0.02070 0.22524 0.02840 
0.12117 0.17362 0.22525 0.05678 
0.11819 0.14075 0.22527 0.08513 
0.12676 0.29102 0.22528 0.11344 
0.12706 0.32479 0.22531 0.14171 
0.19161 0.00000 0.35149 0.00000 
0.20881 0.18057 0.35151 0.02874 
0.21200 0.18407 0.35156 0.05741 
0.21572 0.21878 0.35163 0.08599 
0.21768 0.25698 0.35172 0.11447 
0.21843 0.29433 0.35182 0.14287 
0.28721 0.00000 0.49302 0.00000 
0.29555 0.10909 0.49307 0.02922 
0.30136 0.14136 0.49321 0.05830 
0.30584 0.18492 0.49343 0.08719 
0.30812 0.22684 0.49370 0.11588 
0.30893 0.26654 0.49401 0.14439 
0.38258 0.00000 0.63696 0.00000 
0.38636 0.05853 0.63708 0.02997 
0.39263 0.11232 0.63741 0.05970 
0.39696 0.16076 0.63791 0.08907 
0.39906 0.20475 0.63853 0.11808 
0.39960 0.24571 0.63925 0.14676 

n > 0, these modes are flexural (associated with 
large radial displacement), axial shear, and 
breathing. It should be noted that the given con­
figuration is not designed for achieving maxi­
mum damping. 

CONCLUSION 

An analytical solution for the free vibration of 
thick viscoelastic multilayer cylinders is formu­
lated. The developed method determines the nat­
ural frequencies and their corresponding modal 
loss factors for different circumferential wave 
number. In a special case of the three-layer sand­
wiched cylinder, the effect of different material 
damping for viscoelastic core constrained by two 
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elastic layers is studied. Comparison of the di­
mensionless resonant frequencies for one-, two-, 
and three-layer elastic cylinders, of the same 
properties with a single layer equivalent cylinder, 
verified the validity of the analytical method pre­
sented. 

APPENDIX 

The following are the elements of the matrices 
[CS] and [SN]. Only the nonzero elements are 
given. 

CSij = 0, when i ¥- j 

CSII = CS44 = cos n() cos(wt + ~z) 
CS22 = CS55 = sin n() cos(wt + ~z) 

CS33 = CS66 = cos n() sin(wt + ~z) 

SNII = aJ~Car), SN12 = aY~Car) 

SN25 = -(3J~C{3r), SN26 = -(3Y~Car) 

SN31 = -~Jn(ar), SN32 = -~Yn(ar) 

SN33 = -(3J~+lC{3r) - n + 1 I n+1C{3r) 
r 

SN41 = _).(0'.2 + ~2)JnCar) + 2I1-a2J~(ar) 

SN42 = _).(0'.2 + ~2)YnCar) + 2I1-a2Y~Car) 

SN43 = 211-~{3J~+1({3r), SN44 = -211-~{3Y~+lC{3r) 

SN45 = 211-!!. (3J~C{3r) - 211- ~ I n(f3r) 
r r 

SN61 = -211-~aJ~Car), SN62 = -211-~aY~(ar) 

_ (n + 1 2) () SN63 -11- ----;:r -, In+1 {3r 

_ (n + 1 2) () SN64 - 11- ----;:r - ~ Yn+1 {3r 

where prime denotes differentiation with respect 
to the arguments of the Bessel function. 
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