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As the main tool to realize data mining and efcient knowledge acquisition in the era of big data, machine learning is widely used
in data center energy-saving research. Te temperature prediction model based on machine learning predicts the state of the data
center according to the upcoming tasks. It can adjust the refrigeration equipment in advance to avoid temperature regulation lag
and set the air conditioning temperature according to the actual demand to avoid excessive refrigeration. Task scheduling and
migration algorithm based on temperature prediction can efectively avoid hot spots. However, the choice of hyperparameter of
machine learning model has a great impact on its performance. In this study, a hyperparameter optimization algorithm based on
MLP is proposed. On the basis of trying certain hyperparameters, the MLP model is used to predict the value of all hyper-
parameters’ space, and then, a certain number of high-quality hyperparameters are selected to train the model repeatedly. In each
iteration, the amount of training data decreases gradually, while the accuracy of the model improves rapidly, and fnally, the
appropriate hyperparameter are obtained.We use the idea of mutation in the genetic algorithm to improve the probability of high-
quality solutions and the loss function weighting method to select the solution with the best stability. Experiments are carried out
on two representative machine learning models, LSTM and Random Forest, and compared with the standard Gaussian Bayes and
Random Search method. Te results show that the method proposed in this study can obtain high-precision and high-stability
hyperparameter through one run and can greatly improve the operation efciency. Tis algorithm is not only efective for LSTM
but also suitable for other machine learning models.

1. Introduction

Te era of big data and cloud computing promotes the rapid
expansion of data centers, and the excessive expansion has
caused the waste of resources. Te energy consumption cost
accounts for about 50% of the long-term operation costs of a
data center [1]. Among all the energy costs, the energy
consumption of refrigeration equipment accounts for about
40%. During the working state, the temperatures of 10%
cabinets in a data center are higher than the allowable range
of equipment, which is very dangerous and cause the
downtime risk. In order to ensure safety, many data centers
are set to a lower temperature for a long time, resulting in a
large waste of refrigeration energy consumption. Data center
server temperature is mainly afected by load and changes

dynamically. Terefore, strengthening the temperature
monitoring of the data center and timely adjusting the re-
frigeration equipment can efectively reduce the refrigera-
tion energy consumption [2, 3].

Te response cycles of servers and air-conditioning
equipment are diferent. Te CPU frequency of modern
servers is as high as several GHz, so the response time of
servers is very short, which can be as fast as milliseconds.Te
form of heat exchange in a data center is mainly convection,
so the heat fow in the data center is relatively slow. Te
temperature change of refrigeration equipment may take
some time to be sensed by the server. Generally, the period of
temperature regulation in the machine room is relatively
long, which may be several minutes. Te traditional tem-
perature perception method is to dynamically monitor the
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air inlet temperature of the server. Once the air inlet tem-
perature of the server is found to exceed the limit, the server
load is reduced by decreasing the room temperature or task
dynamic migration. However, this feedback based method
has the problem of feedback lag. Another popular tem-
perature sensing model is based on Computational Fluid
Dynamics (CFD) simulation. Singh et al. [4] used CFD to
establish the temperature distribution model of the data
center, Chen et al. [5] used CFD to establish the temperature
prediction model of the data center and usedsensor data for
calibration to achieve good prediction efect. However, CFD
simulation has the disadvantages such as large amount of
calculation, long running time, and strong dependence on
the environment. Experts are required to accurately model
the data center computer room. Terefore, it is not suitable
for online real-time temperature prediction.

Machine learning algorithm using computers and
mathematics methods to learn from data and predict future
results, which efectively solve the above problems [6, 7].
Moore et al. [8] used the artifcial neural network to establish
the thermal model of data center, Li et al. [9] combined
physics with machine learning, which used continuous
temperature and real-time airfow data to establish pre-
diction models. Xu et al. [10] used the LSTM time series
model to establish the data temperature prediction model
and adjusted the state of cooling equipment in real time
according to the model.

Since the server load in the data center is regular and the
temperature is sequential, LSTM canmake good use of long-
term correlation and short-term correlation to capture long-
termmemory problems.Terefore, LSTM is very suitable for
data center modeling. Te temperature prediction model
established by machine learning not only has the advantages
of fast prediction speed but also does not depend on a
specifc machine room. However, there is often a problem
that the prediction accuracy needs to be optimized.

Te performance and computational complexity of
machine learning models heavily depend on the hyper-
parameters, which need to be adjusted to improve the
performance of machine learning algorithms in practical
applications [11, 12]. Machine learning is a “black box
model,” and for a given machine learning model, its internal
performance (such as gradient information, etc.) cannot be
obtained. A lot of machine learning algorithms, such as
random forest, LSTM, and support Vector machine, contain
at least a dozen or as many as dozens of parameters, and
tuning hyperparameter is an onerous task. Te traditional
manual of tuning hyperparameters can no longer meet the
needs.

Tis paper proposes a hyperparameter optimization
method, which uses the MLP model and optimal value
perturbation technology to improve the global optimization
ability of the MLP. At the end of the training, the stability
model of the training process is used to ensure that the
selected hyperparameter has excellent performance and
good stability.

Te machine learning model can ensure that the data
center server runs at a safe temperature and efectively
guides the adjustment of air conditioning equipment and

server task scheduling. Terefore, the performance and
prediction accuracy of the model are very important.
Choosing better hyperparameters for machine learning
model has become the key to accurate energy management
in data center, and it is also an important topic in the feld of
machine learning [13, 14].

2. Background and Related Work

Te background and related work are described as follows.

2.1. Long and Short Term Memory Network. Te data center
temperature is afected mainly by the server load and the
surrounding environment.Te changing of loads is the most
important factor of server temperature fuctuation. In the
closed computer room environment, the heat fow is rela-
tively slow. Te heat generation and heat dissipation is a
gradual process. Terefore, the time series prediction model
is more suitable for data center modeling.

Recurrent neural network (RNN) had a better efect in
processing time series data. It uses the internal hidden layer
node state to remember any length of input.Te result of the
output layer is not only related to the current input but also
related to the result of the last hidden layer, which means
that it has some memory functions. Te prediction model of
long short term memory network (LSTM) is a variant of
RNN. It uses Input Gate, Output Gate, and Forget Gate to
adjust whether the previous network state acts on the current
calculation, which is conducive to dealing with long distant
nodes in the time series. RNN has the problem of gradient
explosion or gradient disappearance when dealing with
long-distance nodes in time series. Compared with RNN,
LSTM has great advantages in processing long-distance
nodes of time series. Compared with BP neural network,
LSTM has advantages in processing data with high corre-
lation. Under the same input, the output of BP neural
network is fxed and has little correlation with input se-
quence, which makes BP network insensitive to temperature
trend. LSTM is a good choice for data center temperature
modeling. Figure 1 is the structural diagram of LSTM
[15–17].

In Figure 1, Xn and Yn represent input and output data,
U, V, and W represent weight coefcients, hn represent
hidden layer status, and hn are related to the current input
Xn input and the previous R hidden layers. Te LSTM
adjusts whether the previous network memory state acts on
the calculation of the current network through three gates
acting on the node. Te functions of the three gates are as
follows: the Forget Gate controls how much of the previous
hidden layer state is retained to the current time; the Input
Gate controls how much input Xn of the network at the
current time is saved to the hidden layer state hn; and the
Output Gate controls how many hidden layer states are
output to the current time output value Yn. Te current time
step hidden layer states can be expressed as

hn � UXn + Wn−1hn−1 + Wn−2hn−2 + . . . + Wn−Rhn−R. (1)
In this way, the association with the frst R input is

realized.
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Te three gates constitute the basic unit of LSTM called
cell. Te basic structure of LSTM neural network cell is
shown in Figure 2.

Te calculation of Forget Gate fn, Input Gate in, and
Output Gate on are shown in formulas (1)–(3):

fn � δ WfxXn + WfyYn−1 + bf􏼐 􏼑, (2)

in � δ WixXn + WiyYn−1 + bi􏼐 􏼑, (3)

on � δ WoxXn + WoyYn−1 + bo􏼐 􏼑. (4)

Te calculation of current cell state hn and output yn is
shown in (5) and (6):

hn � hn−1fn + intanh WcXn + UcXn−1 + bc( 􏼁, (5)

yn � ontanh hn( 􏼁. (6)

In formula (2), δ is the sigmoid activation function
acting on the valve.Te output value is [0, 1], indicating how

much information will be retained in this part.W represents
weight, Wfx is the weight of the last temporal output in-
formation corresponding to the forgetting gate, and b
represents the ofset amount of this gate. Te tanh activation
function acts on the cell state and the output cell [18].

2.2. Date Center Temperature Prediction Model. In [10], we
used LSTM to establish a data center temperature prediction
model. Temodel input data includes the air inlet and outlet
temperature, CPU utilization and fan speed of the server, as
well as the air inlet and outlet temperature of the neigh-
boring upper and lower servers of the same cabinet (cur-
rently numbered n and neighboring n− 1 and n+ 1), and
CRAC air outlet and return air outlet temperature.
According to the corresponding timestamp, each sample is
represented by P(t):

P(t) � Tn,in, Tn,out, ucpu, fans, Tn+1,in, Tn+1,out, Tn−1,in, Tn−1,out, TCRAC in, TCRAC out􏼐 􏼑, (7)

where Tn,in and Tn,in indicates the temperature at the air inlet
and outlet of the server and ucpu and fans represents the
current server CPU utilization and fan speed,
Tn+1,in, Tn+1,out, Tn−1,in, Tn−1,out represent the inlet and outlet
temperatures of the upper and lower servers neighboring to
the server, TCRAC in, TCRAC out indicate the temperature of
the return air outlet and air outlet of CRAC, respectively.

Te neighboring R samples in the time series are used to
predict the server inlet temperature after a period of time
interval (this time interval is called the prediction feld of
view, expressed in K), that is, time_Steps�R, and the pre-
dicted visual feld K is an integral multiple of the time in-
terval s for collecting data. If N represents the total number
of samples and C represents the dimension of vector P(t),
then the data of the input layer [N,R,C] and the input data of
a sample are expressed as
<P(t − R + 1), P(t − R + 2), · · · , P(t − 1), P(t)>, and the
output data pair can be expressed as <Tt+k,in >, so we can get
the temperature of the server air inlet after K time.

Using this method, we can freely set the prediction
duration, select number of groups of historical data to
predict the temperature, and establish a fexible data center
temperature prediction model.

2.3. LSTM Model Hyperparameters. When implementing
the LSTM network, the following parameters that have an
important impact on the network structure need to be set.

Activation is the activation function. It is set to “tanh” by
default and can also be set to “linear,” “sigmoid” and “reLU.”

Dropout represents that neurons are discarded
according to a certain probability to prevent over ftting.

Batch_Size indicates the number of samples for a
training. In general, if the Batch_Size is large, the training
speed is fast, but the generalization ability of the model is
poor.

Epochs represents the number of iterations, that is, the
number of complete training using all samples.
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Figure 2: Basic structure of the LSTM neural network cell.
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Optimizer is the optimizer. When establishing the
model, select the appropriate optimizer to calculate the
update step.

Timestep is the prediction step. Te current output is
related to the previous time steps.

Unit represents the number of hidden layers. If the
number of hidden layers is set to be too small, the network
ftting efect is poor; if it is set as too much, the training time
will be prolonged and it is easy to fall into a local minimum.
Generally, this parameter is usually set by empirical value.

Te setting of hyperparameters has a great impact on the
complexity and accuracy of the model. Neural network
belongs to the black box model, and the infuence of
hyperparameters on accuracy can only be obtained after the
model is executed. Blind attempt is inefcient, and the
parameters settings of Timestep and Unit are also afected by
specifc data sets. Terefore, an efcient hyperparameters
optimization algorithm can better improve the model ac-
curacy and network optimization efciency.

2.4. Hyperparameter Optimization Problem. Hyperparameter
optimization (HPO) is the process of choosing a set of
hyperparameters that achieve the best performance on the
data in a reasonable budget, which is defned as follows.

Let A denote a machine learning algorithm with a
confguration space of the overall hyperparameters Y. A has
n hyperparameters, and the hyperparameters space are Y �

Y1 × Y2 × Y3 . . . × Yn. Aλ is denoted as A with its hyper-
parameters λ, where λ ∈ Y; for the given data set Dtrain and
Dvalid, the optimization problem goal is to fnd a set of
optimal hyperparameters λ to minimum the value L [19]:

λ ∈ argminλ∈YL Aλ, Dtrain, Dvalid( 􏼁, (8)

where L(Aλ, Dtrain, Dvalid) denotes the loss of the model
generated by algorithmA and its parameter λ on the training
set and the test set.

Hyperparameter optimization is actually a function
optimization problem.Te previous numerical optimization
methods are generally applicable to the problem that the
mathematical form of the objective function can be derived.
Te main ones are the simplex algorithm, gradient descent
algorithm, Newton algorithm, quasi-Newton algorithm etc.
However, these algorithms are more restricted. Generally,
factors such as the setting of the initial value, the type of the
objective function, and the constraints of the function will
have a greater impact on the results of these algorithms.
When there are multiple decision variables in the problem,
the benefts and consumption of these algorithms are hardly
proportional [20].

In recent years, the widely used hyperparameters’ op-
timization methods mainly include Grid Search, Random
Search, Bayes optimization algorithm, and some improved
algorithms based on Bayes, such as TPE (Tree-Structured on
Parzen Estimator) and SMAC algorithm [21].

Grid Search is an exhaustive method with a certain step
size. It divides the parameters into grids within its range,
then traverses all possible values of the parameters in the
grid, and calculates the corresponding results. In order to

fnd the optimal parameter confguration, it is necessary to
continuously reduce the step size of grid division to expand
the search space. Tis will lead to the “exponential explo-
sion” problem, so it is more suitable for small data sets.

Random search is random sampling in the hyper-
parameters space. When the sample set are enough, the
optimal value or approximate optimal value of hyper-
parameter can be obtained through multiple searches. Te
Random Search algorithm has been proved by Bergstra in
[22], which is superior to the Grid Search algorithm. Its
drawback is that the results of each search are quite diferent,
which cannot be considered scientifcally. In fact, whether
Grid Search or Random Search, it is easy to have very poor
results due to the explosion of the number of hyper-
parameter combinations. Tis is not an efective hyper-
parameter optimization method.

Bayes optimization [23, 24] fnds the minimum value of
the objective function by establishing a proxy function based
on the past evaluation results of the objective function.
Unlike Random Search or Grid Search, Bayes saves a lot of
useless works by referring to previous evaluation results
when trying the next hyperparameter. Te more typical one
is the Bayes optimization algorithm based on the Gaussian
process, which uses the Gaussian regression model as the
proxy model. In the training process, it uses data to con-
tinuously update the proxy model to generate new sampling
points and iterates these processes until better expressions
are generated. Te selection of initial sampling points is very
important in this algorithm, and the matrix operation is
time-consuming in the process of algorithm evaluation [25].

SMAC (Sequential Model-based Algorithm Confgura-
tion) [26] is an optimization algorithm based on the se-
quence model, which uses random forest to model the proxy
function and has better exploration ability. SMAC will
produce large variance for points with less exploration time
and is good at dealing with optimization problems with
many discrete values. For continuous temperature changes
in the data center, the optimization efect is not good
enough.

TPE is an improved version of nonstandard Bayes op-
timization algorithm based on tree structure Parzen, which
is implemented in Sklearn’s machine learning hyper-
parameter optimization toolkit Hyperopt [27]. Te TPE
algorithm constructs a probability model according to the
past results and determines the next set of hyperparameters
to be evaluated in the objective function by maximizing the
expected improvement. Similar to the Bayes optimization
method, the TPE algorithm can achieve good optimization
performance, but it is also easy to fall into local optimum.
Terefore, it is suitable for hyperparameter optimization
problems in the low-dimensional space.

Because there are many random factors in the training of
neural network, even if the same group of parameters are
trained for many times, the results are not the same. In the
previous methods, the program needs to be run many times,
and the group with the best average performance is manually
selected as the fnal result. We cannot obtain the optimal
hyperparameters at one time [28, 29]. Tis paper proposes a
hyperparameter optimization algorithm based on MLP
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prediction. On the basis of Random Search, the MLP is used
to predict the possible value of the hyperparameter space,
and the neighbor value perturbation and stability model are
used to improve the operation efciency. Te optimal
hyperparameter with the best average accuracy and stability
can be selected at one time.

3. Hyperparameter Optimization Algorithm
Based on MLP

Te hyperparameter optimization algorithm based on MLP
is described in the following sections.

3.1. Te Overall Design and Process of the Algorithm.
Initially, the random search algorithm is adopted. Firstly,
random sampling is carried out in the hyperparameter
space and brought into the machine learning model to
verify the efect. Ten, some verifed data are used to train
the MLP model so as to predict the possible value of the
hyperparameter space and take it as the basis for the next
sampling.

Each time, we selected some hyperparameters which
have a good verifcation efect and combined the idea of
genetic algorithm to perturb the neighboring value to
produce more high-quality solutions. Te solutions
predicted by MLP and obtained by disturbance are
brought into the machine learning model again for
verifcation. After several iterations, the validation data
are gradually decreasing, the MLP model prediction
accuracy is improved, and the hyperparameters opti-
mization is fnally realized.

Because of the uncertainty of the neural network
training process, the algorithm uses the stability model in
the fnal selection of the optimal hyperparameters. By
calculating the square loss function of the model in the
training process, and adding it with a certain weight
coefcients to the objective function, it ensures that the
fnally selected hyperparameter has excellent perfor-
mance and high stability.

Te overall fow of the algorithm is shown in Figure 3.
At the beginning, N groups of hyperparameters are
randomly sampled and substituted into the original
machine learning model to verify its accuracy. Subse-
quently, the best performing N �N/t group of hyper-
parameters is taken to train the MLP model until n is
reduced to 0. t determines the descent speed of N. In this
algorithm, t is set to 2 and N/k is the number of dis-
turbances. In order to ensure the quality of hyper-
parameters generated by disturbances, the value of k
should not be too large. In this algorithm, k � 10 is set.

Te pseudocode of the algorithm is shown in Algorithm 1.
Te main advantages of the MLP hyperparameter op-

timization algorithm proposed in this study are as follows:

(1) use the MLP model to predict the possible results of
the hyperparameter space and combine the gradient
descent method to iterate the model to improve the
model prediction accuracy.

(2) In the process of the algorithm, the neighboring
value perturbation is added to mutate some high-
quality solutions. Te proportion of high-quality
hyperparameter is increased and the search efciency
is improved.

(3) establish the loss function stability model of the
training process. When the model is basically stable
in the iteration process, we calculate the square sum
of the RSME diference between each iteration and
the last iteration of the hyperparameter and add it to
the variance with a certain weight coefcients. In this
way, the RSME and training smoothness can both be
considered, and fnally, a group of hyperparameter
combinations with the best comprehensive perfor-
mance can be selected.

3.2. Multilayer Perceptron (MLP) Model Prediction Improves
theAccuracy ofHyperparameter Sampling. TeMLPmethod
is a multifunctional kind of ANN comprised of an input layer,
hidden layers, and a single output layer. However, the MLP
network with multilayers is more widely used, which solves
the nonlinear problem that a single-layer perceptron cannot
solve, and it has high accuracy. It has strong adaptive learning
ability and is a highly parallel information processing system.
Moreover, it does not depend on the mathematical model of
the research object and has good robustness to the system
parameter changes and external interference of the controlled
object. Terefore, it is suitable for dealing with complex
multiinput and multioutput nonlinear systems [30].

Te MLP method can be expressed as

Y � F 􏽘
m

j�1
Wkj.F 􏽘

n

i�1
Wjixi + Bj

⎛⎝ ⎞⎠ + Bk
⎛⎝ ⎞⎠, (9)

whereWkj denotes the weight coefcients between the hidden
layer and output layer, Wji defnes the weight coefcients
between the hidden layer and the input layer, m is the hidden
layer neurons number, n is the number of neurons in the
input layer, Bj represents the ofset of hidden layer neurons,
Bk represents the ofset of neurons in the output layer, F is the
transfer function, and Y is the output function. Tis study
uses Sigmoid as the activation function, and the signal transfer
functions for diferent values of h are as follows:

σ(h) �
1

1 + EXP(−h)
. (10)

Tis algorithm frst randomly samples in the hyper-
parameters space, brings it into the model to calculate the
RSME corresponding to each group of hyperparameters, and
generates a data set ([θ1, θ2, θ3 . . . θn], RSME) for training the
model of MLP. Take the hyperparameters and its RSME as
input, the objective function is to minimize RSME. Te
verifed sample hyperparameter combinations are divided
into training set and test set according to the ratio of 0.8 and
0.2. Te MLP model is trained to predict the entire
hyperparameters space and guide the next sampling to avoid
the blindness of random search. Te predicted better results
are brought into the model for verifcation again. After
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several iterations, the accuracy of the model is continuously
improved, and fnally, the hyperparameters with excellent
performance are obtained. Compared with Grid Search and
Random Search, the hyperparameter sampling based on the
MLP is more scientifc and the optimization speed is faster.

3.3. Neighboring Value Perturbation Promotes the Generation
of High-Quality Hyperparameters. After all the hyper-
parameters’ space are predicted, some hyperparameter
combinations which minimize the RSME of the objective
function are selected to disturb the neighboring value to
obtain more and better hyperparameters.

For example, for the hyperparameter combination
{θ1, θ2, θ3 . . . θn}, we change one hyperparameter θi each time.
If θi ’s in its domain is k, we select the close two values
θi[k−1], θi[k+1] to replace parameter θi . In general, changing one
parameter will produce two new values θi′ and θi″. However, if
the parameter itself is at the boundary of domain space, only a
new hyperparameter combination θi′ or θi″ is generated:

θi′ � θi[k−1], if θi[k−1] ∈ Yi,

θi″ � θi[(k+1)], if θi[k+1] ∈ Yi,

⎧⎨

⎩ (11)

where θik represents the kth component of the ith hyper-
parameter in the hyperparameter space andYi represents the
domain of the ith hyperparameter. After a combination of
hyperparameters is perturbed, n to 2n new solutions are
generated, as showed in the following:

1: θ1′, θ2 . . . θn( 􏼁, θ1″, θ2 . . . θn( 􏼁,

2: θ1, θ2′ . . . θn( 􏼁, θ1, θ2″ . . . θn( 􏼁,

. . .

i: θ1 . . . θi
′, . . . θn( 􏼁, θ1 . . . θi

″ . . . θn( 􏼁,

. . .

n: θ1 . . . θn−1, θn
′( 􏼁, θ1 . . . θn−1 . . . θn

″( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Each line represents to change a value of the hyper-
parameter space, and then replace the original hyper-
parameter value with two neighboring values. If the parent

Begin

Random selection of N group's
hyper-parameters

N>1?

Verify the effect of hyper-parameters
in machine learning model and

obtain the result set < HP, RMSE >

Training MLP model with the verified
result set < HP, RSME > and predict

all hyper-parameters spaces

N=N/t

Select the first N groups of hyper-
parameters with the smallest RSME

according to the MLP prediction results

Perturb the first N/k groups of
hyper-parameters

Obtain the top k optimal hyper-
parameters and calculate the Loss

square function

Add the squared loss function to RSME
with a certain weight

End

yes

no

Figure 3: Flow chart of the hyperparameter optimization algorithm based on MLP.
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individual value is at the boundary of the domain, only one
new child hyperparameter will be generated, and the original
one will be replaced with the new hyperparameter value.Te
operation is shown in (12).

Te actual efect of each hyperparameter is verifed in the
model. Before verifcation, it is necessary to judge whether
the hyperparameter combination exists in the verifed data
set. If it exists, this hyperparameter will be skipped directly.
Te results of all experimental individuals whose objective
function (RSME) value is less than their parents are added to
the training data. Otherwise, the experimental individuals
will be eliminated and the parental individuals will be
retained.

Table 1 shows the partial hyperparameter disturbance
efects. Te results show that, in each iteration, 89.6% of the
optimal solution is improved by neighbor value perturba-
tion, and the maximum improvement rate is 49.1%. By the
disturbance of hyperparameter, the target function is re-
duced more efectively, and the optimization efciency is
efectively improved.

3.4. Stability Model of the Training Process. Te loss and
val_loss functions in the open source artifcial neural net-
work library Kera refect the loss values of the training set
and the test set. In the course of training, the more stable the
loss function is, the more stable the performance of the
model is.

Te precision of several groups of hyperparameters
fnally selected by the optimization algorithm is often very
close. Te usual method is to select the best combination of
parameters by running it multiple times. Te time and
calculation cost of this method is too high. In this algo-
rithm, the loss function in the training process is modeled,
the square loss function is calculated frst, and then added
them to RSME with a certain weight coefcients to ensure

that the hyperparameter combination has better stability
while maintaining high precision, which is given as
follows:

L � W∗NormalizedQuadraticLossFunction[i]
+ RSME[i]. (13)

Normalized_Quadratic_Loss_Function is the square loss
function of the ith group of hyperparameter, which is nor-
malized.Teweight coefcients ofW can be adjusted to set the
proportion of stability. Te value ofW shall not be too high to
ensure the accuracy of hyperparameters. In this article, our
weight coefcient W� 0.002. In order to verify the efective-
ness of stability weighting calculation, we conducted the
hyperparameter optimization experiment of LSTM algorithm.
Te performance of two groups of hyperparameters in the
actual training process is selected, as shown in Figures 4 and 5.
It can be seen from the fgure that, with the increase of training
times, the variance of loss function of the training set and test
set gradually decreases and fnally tends to be stable. Te fnal
prediction accuracy (RSME) of the two groups of hyper-
parameters is very close.Te RSME of Figure 5 is 0.290, which
is slightly better than that of Figure 4. However, from the
stability of the training process, Figure 4 is obviously better
than Figure 5. According to the traditional hyperparameter
optimization algorithm, the hyperparameter in Figure 5 with
the smallest RSME is selected. However, through the stability
calculation of the two groups of hyperparameter, we found
that the variance of the hyperparameter, shown in Figure 5, is
only slightly higher than that in Figure 4, but the stability is
much worse than that in Figure 4.

According to our algorithm, the optimal hyperparameter
combination is [“sigmoid,” 120.256.0, ’Adam]
RSME� 0.291.

Te experiment ran the two sets of hyperparameters
three times, respectively, and the results are recorded in
Table 2. It is shown that the hyperparameter combination [“

Input: hyperparameter space (X), initial selection of hyperparameter amount (N), screening ratio (t), disturbance ratio (k),
stability weight coefcients (W)
Output: a set of optimal hyperparameters
Step:

(1) x� random_get_hyperparameters (N)//initially randomly select N sets of hyperparameters from the hyperparameter space
(2) R� run_and_get_loss (A (x))//Train the A model with the selected hyperparameters to get RMSE
(3) MLP.ft (x, R)//Training MLP model with trained hyperparameters and their RMSE
(4) While (N> 1) Do
(5) N�N/t//Gradually reduce N according to the screening ratio
(6) MLP.predict (x)//Predict the RMSE of hyperparameters with MLP model
(7) x� use_MLP_get_hyperparameters (N)//

Select the top N sets of hyperparameters according to the MLP prediction results
(8) x�++use_disturbance_hyperparameters (N/k)//Perturb the optimal hyperparameters according to a certain proportion to

increase the possibility of optimal solutions
(9) R� run_and_get_loss (A (x))
(10) MLP.reft (x, R)//retraining MLP
(11) For i≤ k DO//Take the frst k groups of hyperparameters with the smallest RSME
(12) L[i]�W∗Normalized_Quadratic loss function [i] +RSME[i]//Normalize the squared loss function
(13) Return x, R, L

ALGORITHM 1: Hyperparameter optimization algorithm based on MLP.
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sigmoid,” 120.256.0, “Adam”] selected by the algorithm
proposed in this paper is not the lowest in a single run, but
the average value of RSME is the lowest after multiple
verifcations. Te traditional method needs to run many
times to get the correct results, but our algorithm only needs
to run once, which shows higher efciency in practical
application.

4. Experimental Results and Analysis

In order to optimize the efect and use the range of the
algorithm, we conducted optimization experiments on two
diferent machine learning models and jointly used pre-
diction accuracy, stability, and operation efciency indica-
tors to evaluate the optimization efect.

4.1. Experimental Method and Data Set. For data centers,
temperature rise or fall is a gradual process related to time
series. Terefore, we choose long short term memory
(LSTM), which has great advantages in processing data
highly correlated with time series for data center temper-
ature prediction modeling.Temodel is trained by using the
temperature monitoring data of the data center and the
actual operating parameters of the server. It can accurately
predict the evolution of the server inlet temperature under
the dynamic load in the future. Te LSTM temperature
prediction model is a data center energy management al-
gorithm developed by our project team, which has been
applied in practice.

Te experimental data use the temperature data set
measured by the project team in the actual data center
computer room, including 15 servers (model: Dell Power-
Edge 850) and 2 air conditioners. Te server is placed on a
rack, and the air conditioner adopts the mode of air supply
on the elevated foor and air return on the top. A wireless
temperature sensor (model: telosb mote tpr2420ca) is placed
at the inlet and outlet of each server. A temperature sensor
and air velocity sensor (model: degree f333) are placed at the
foor air inlet to monitor the air speed and the fow rate of the
air conditioner. Te temperature of the server using the
IPMI protocol to collect.

A total of 5899 pieces of data were collected from the 25
hour operation data of the data center. It includes 46 pa-
rameters such as the air inlet and outlet temperature of the
server, the temperature of the CRAC air outlet and air inlet,
the indoor and outdoor temperature, the temperature of the
server, and CPU utilization. Te data time interval is 5
seconds, and the server load changes dynamically.

After the original data are preprocessed, the entire data
set is divided into two parts: a training set and a test set. Te
training set accounts for 80% of the entire data and is used
for the establishment of machine learning models. Te
remaining 20% is the test set and is used for measuring the
performance of the selected hyperparameters.

For the universality of the algorithm, we verifed it by
another representative machine learning algorithm, i.e.,
Random Forest. Because in reference [31], by comparing the
efectiveness of 179 machine learning algorithms, Random
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Figure 5: Efect of hyperparameter [sigmoid, 100.32.0, Ada]
(RSME� 0.290, the single operation result is the best, but the
stability is poor).
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Figure 4: Efect of hyperparameter [“sigmoid”, 120.256.0, “Adam]
(RSME� 0.291, the single operation result is not the best, but the
stability is high).

Table 1: Part of the optimal value perturbation results.

Unit Batch_Size Dropout RSME Update (%)
Predictive 190 4 0 13.72

49.1Disturb

180 4 0 7.21
200 4 0 6.96
190 2 0 11.15
190 8 0 13.23
190 4 0.05 12.61

Predictive 200 16 0 7.46

8.85Disturb

190 16 0 6.80
200 8 0 12.48
200 32 0 12.17
200 16 0.05 10.76
200 16 0.05 10.76
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Forest is proved to be a very excellent machine learning
algorithm. We used the UCI standard data set (Beijing
PM2.5 atmospheric data) to establish a Random Forest
model. Similarly, the training set and verifcation set were
established using the same proportions as above.

Te corresponding hyperparameters and their ranges of
the two machine learning algorithms are listed in Table 3.

4.2. Experimental Results and Analysis. At present, the most
representative optimization algorithms include Random
Search, Grid Search, Bayes Optimization, and its variants.
Since Grid Search has been proved to be less efective than
Random Search, no comparison will be made in this study.
Tere are many variations of Bayes optimization, but the
principle is basically the same. All of them are based on
certain sampling, and the agent is established to carry out the
next sampling. Te algorithm proposed in this paper is also
an improvement of Bayes method in principle.Terefore, we
choose the most concise, efcient, and representative
Gaussian Bayes algorithm for comparative experiments,
which can start from one point to fnd the next better one.

In the experiment, two typical machine learning algo-
rithms, LSTM and Random Forest, were modeled using the
operation data of the own data center and the UCI standard
data sets, and three kinds of hyperparameter optimization
algorithms were compared.

4.2.1. Hyperparameter Optimization Experiment of the Data
Center LSTMModel. Figure 6 shows the optimization efect
of Random Search, Gaussian Bayes, and MLP algorithms on
the temperature model of LSTM data center.

Since both the algorithm proposed in this paper and
Gaussian Bayes need to accumulate a certain number of
random sampling results, in order to facilitate comparison,
the frst 100 groups of hyperparameters of the two algo-
rithms use the same initial random sampling (represented by
black lines).

It can be seen from the fgure that the random algorithm
has no obvious change trend in the process of 200 samples.
Te better two group hyperparameters appear in the 6th
(RSME� 0.316) and 47th (RSME� 0.315) part of the sam-
pling. With continuous sampling, no better hyper-
parameters are found. However, for Gaussian Bayes and
MLP algorithms, after 100 initial random samples, RSME
gradually decreases. Gaussian Bayes fnally converged at
RSME� 0.314 (196th), and the MLP-based optimization
algorithm achieved RSME� 0.291 (193rd). Among the three
algorithms, our algorithm has the best optimization efect.

In order to show the training process more clearly,
Figures 7 and 8 show the iterative process of MLP and
Gaussian Bayes optimization, respectively. Te vertical line
in the fgure indicates the beginning of a new round of it-
eration of MLP algorithm.We also made a vertical line at the
corresponding position in the Gaussian Bayes iteration
process diagram (Figure 8) to make a better comparison.

As can be seen from Figure 7, the whole training process
has six iterations. In each iteration, the MLPmodel is used to
predict the possible values of all hyperparameters spaces,

and some efective hyperparameters are selected to repeat
the training model. Te training data selected each time are
gradually reduced, and the prediction accuracy of the model
is rapidly improved. In this way, the accuracy of the next
sampling is efectively improved, and the optimal combi-
nation of hyperparameter is fnally predicted.

GPR selects one group of hyperparameter to train and
update the model according to the prediction results each
time. In the initial stage of iteration, RSME has an obvious
rising process, as shown in Figure 8. Te highest RSME in
the iterative process reaches 0.989, even exceeding the
highest RSME in the initial sampling stage, which is 0.973,
and then gradually decreases. After trying about 100 sets of
hyperparameter, the result becomes stable. Te newly se-
lected hyperparameters are not changing, and the appro-
priate hyperparameters can be considered to be found. But
in fact, this group of hyperparameters is [“sigmoid,” 0.2, 64,
110, “Adam”], and its RMSE value is about 0.32, which is not
the optimal result. Due to the limitations of ftting, Bayes
optimization can easily fall into a local optimal solution. In
the actual use of Bayes optimization, we often set an ac-
ceptable threshold of the accuracy of the results, that is, to
fnd the hyperparameters within a certain accuracy range.

4.2.2. Hyperparameter Optimization Experiment of the
Random Forest Model. Figure 9 shows the optimization
efects of three kinds of hyperparameter optimization al-
gorithms on the Random Forest model. Te data set is from
the Beijing PM2.5 atmospheric data
(prsa_data_2010.1.1–2014.12.31. CSV) of UCI standard data
set. Te hyperparameters to be optimized and their value
ranges are shown in Table 3.

As showed in the fgure, the Random algorithm tries 200
random samples, and MLP and Gaussian Bayes algorithms
use the same results of the frst 100 samples. Among the
three algorithms, the MLP algorithm also shows the best
optimization efect on the RF model, with RSME� 0.0562.
Te second is random algorithm, whose hyperparameter
RSME� 0.0566, and then Gaussian Bayes fnally converges
to RSME� 0.0571. Gaussian Bayes and the MLP-based al-
gorithm, after 100 random samples, and the subsequent
samples are gradually accurate, then RSME decreases and
fnally converges. Although Random Search has achieved
lower RSME than Gauss, there are also more samples with
poor accuracy. Tis is due to its strong randomness and lack
of efective evidence. From the above experiments, we can
see that our algorithm can be extended to more machine
learning models and is still efective.

In terms of running speed, the three algorithms need a
lot of sampling and verifcation, and the operation time is
long. Te running time mainly depends on the calculation
speed of the original machine learning model. Random
Search, Gaussian Bayes, and MLP algorithms take 1379 s,
1703 s, and 1406 s to optimize the LSTMmodel, respectively,
while the time to optimize the RF model is only 356 s, 409 s,
and 370 s. Since the RF operation speed is higher than that of
LSTM, the diference in operation time is greater after
hundreds of sampling. For the same machine learning
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model, Random Search runs the fastest because of its simple
sampling method. MLP only runs at the beginning of each
iteration, predicting all the hyperparameter values, and runs
a total of six times in the whole iteration process. However,
Gaussian Bayes needs to run every sampling, so MLP runs
faster than Gaussian Bayes. In general, all the three algo-
rithms take a lot of time, so they are not suitable for online
optimization.

4.2.3. Conclusion. Trough the above two groups of ex-
periments, it can be seen that the hyperparameter optimi-
zation algorithm based on MLP proposed in this paper have
better results than the Random Search and Gaussian Bayes
algorithm. With each iteration, the MLP model will become
moreaccurate, and the proportion of training parameter
groups will become less accurate, and the training hyper-
parameter results will become better. Although Random
Search may fnd better results, it will lead to great uncer-
tainty due to the randomness of the sampling process. Es-
pecially with the increase of search space, the search
efciency of Random Search algorithm decreases, and the
time spent on model training will increase.

Table 2: Te results of three runs of hyperparameter combinations.

Run number
Hyperparameter

[“sigmoid,” 120.256.0, “Adam”] [“sigmoid,” 100.32.0, “Adam”]
1 0.291 0.290
2 0.293 0.295
3 0.291 0.293
Average 0.2917 0.2927
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Figure 6: Te hyperparameter optimization process of the LSTM
model (the horizontal axis represents the number of training
sessions; the vertical axis represents the accuracy of the selected
hyperparameter on the validation set after each sampling. MLP
stands for the algorithm proposed in this paper; Random stands for
Random Search; Gauss Bayes stands for Gaussian Bayes algorithm).

Table 3: Algorithm model and corresponding hyperparameters.

Algorithm Hyperparameter Ranges Interval

LSTM

Act.ivation [“linear,” “sigmoid”, “relu,” “tanh”] 0.1
Dropout [0∼0.5] 10
Unit [20∼200] N ∗2

Batch_Size [32, 64∼512]
Optimizer [“SGD,” “adagrad,” “Adadelta,” “Adam,” “nAdam”]

Random forest

n-estimators max_depth [100∼1200] 100
min_samples_split [2∼30] 2
min_samples_leaf [1∼99] 2
max_features [1∼9]
criterion [sqrt, log2, None]
bootstrap [gini, entropy] [True, False] 2
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Figure 7: MLP Model iteration process.
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Te Gaussian Bayes method can predict the posterior
distribution of the data set according to only a few data and
gradually settles the optimal hyperparameters from one
point. Te disadvantage is the great dependence on the
initial point, which is easy to cause overftting and eventually
falls into the local optimum. In general, Bayes optimization
usually sets an accuracy range, and when hyperparameters
with acceptable accuracy are found, Bayes Optimization
stops optimization.

In fact, the hyperparameter optimization algorithm in
this paper cannot guarantee that the optimal hyper-
parameters will be selected at the end of the iteration. At
present, there is no hyperparameter optimization algorithm
to ensure that the optimal hyperparameter can be obtained
because there are random factors in the training process of
neural networks. However, during each iteration of our
algorithm, the performance of the selected hyperparameter
is getting better and better.

In the algorithm, we use the idea of mutation in the
genetic algorithm to perturb the neighbor value of high-
quality solution. In Section 3.3, it has been proved that 89.6%
of the perturbations have improved the original hyper-
parameters, and the variation accuracy of some hyper-
parameters is greatly improved. When the number of
attempts is the same, the proposed MLP based hyper-
parameters optimization algorithm has better results and
faster speed than the Gaussian Bayesian optimization
algorithm.

Hyperparameter optimization algorithms usually re-
quire a long training time. It can be seen from the above
experiment that the optimization for LSTM needs more than
1300 seconds, and the optimization for Random Forest also
needs more than 300 seconds, which takes a long time. It will
be highly inefcient to obtain the hyperparameters through
the traditional multiple running procedures and manual
selection results. By establishing the stability model of the
loss function in the training process, the algorithm only
needs to run once to obtain high precision and high stability
hyperparameter. It has the same efect as other algorithms by
calculating the average value through multiple runs, which
greatly improves the efciency of the algorithm. But even so,
this algorithm is still only applicable to general of-line
hyperparameter optimization scenarios.

5. Summary and Outlook

Te temperature of the server changes much faster than the
ambient temperature. Understanding the temperature
changes in the data center and adjusting the refrigeration
equipment in advance can efectively avoid temperature lag
and hot spots. Te machine learning algorithm cannot rely
on the specifc machine room structure, and only uses
historical data to model the data center. It can predict the
temperature change of the data center according to the
upcoming tasks, with the characteristics of rapid prediction
and early sensing of temperature change. However, the
accuracy of machine learning algorithm is greatly afected by
the hyperparameters.

Te hyperparameter optimization algorithm of LSTM
temperature prediction model proposed in this paper is
realized through four steps: (1) random sampling; (2) es-
tablish the MLP model according to the adopted results; (3)
perturb part of the prediction results, and repeat the training
model with efective prediction values and perturbation
values; and (4) evaluate the stability of the hyperparameters
in the training process, and select the optimal hyper-
parameter. Te method of neighbor value perturbation
improves the probability of optimal solution; the method of
stability evaluation changes the traditional method of cal-
culating the average value through multiple operations. It
can select the optimal hyperparameter at one time, greatly
improving the efciency.

In practical application, this algorithm optimizes the
LSTM temperature prediction model of our data center and
efectively improves the prediction accuracy of the model.
Based on the prediction data, we achieved accurate refrig-
eration regulation and server task scheduling. In this way,
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Figure 9: Hyperparameter optimization of the Random Forest
mode.
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Figure 8: Bayes hyperparameter iteration process.
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the safety of the server is ensured, and the long-term low-
temperature operation of the refrigeration equipment is
avoided, and the energy saving of the data center is efec-
tively realized.Tis algorithm is not only applicable to LSTM
model. We have carried out experiments on two machine
learning models, random forest model, and LSTM, and
compared them with the Gaussian Bayes method and
Random Search. Te results show that our algorithm is
equally efective for the two machine learning algorithms
and has good performance in accuracy and efciency, which
proves the availability for other machine learning methods.

5.1. Suggestions for Improvement. In each training process of
the MLP model, we will adjust the amount of hyper-
parameters to take into account the optimization speed. At
present, we set the number of hyperparameters we tried at
each iteration to half of the previous one. In the case of poor
initial random sampling, this method may still not fnd the
optimal solution when the iteration is completed. In future
research, we can make the number of hyperparameters tried
in each iteration set automatically according to the efect. By
increasing the number of attempts in the case of poor
random sampling and reducing iterations in the case of good
random sampling, the optimization efect is guaranteed.
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