
Research Article
HPM: A Hybrid Model for User’s Behavior Prediction Based on
N-Gram Parsing and Access Logs

Sonia Setia ,1,2 Verma Jyoti ,3 and Neelam Duhan 3

1J. C. Bose University of Science and Technology, YMCA, Faridabad 121006, India
2Faculty of Computer Applications, MRIIRS, Faridabad, India
3Faculty of Computer Science, J. C. Bose University of Science and Technology, YMCA, Faridabad 121006, India

Correspondence should be addressed to Sonia Setia; setiasonia53@gmail.com

Received 26 July 2020; Revised 6 October 2020; Accepted 20 October 2020; Published 6 November 2020

Academic Editor: David Ruano-Ordás

Copyright © 2020 Sonia Setia et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(e continuous growth of the World Wide Web has led to the problem of long access delays. To reduce this delay, prefetching
techniques have been used to predict the users’ browsing behavior to fetch the web pages before the user explicitly demands that
web page. To make near accurate predictions for users’ search behavior is a complex task faced by researchers for many years. For
this, various web mining techniques have been used. However, it is observed that either of the methods has its own set of
drawbacks. In this paper, a novel approach has been proposed tomake a hybrid predictionmodel that integrates usage mining and
content mining techniques to tackle the individual challenges of both these approaches. (e proposed method uses N-gram
parsing along with the click count of the queries to capture more contextual information as an effort to improve the prediction of
web pages. Evaluation of the proposed hybrid approach has been done by using AOL search logs, which shows a 26% increase in
precision of prediction and a 10% increase in hit ratio on average as compared to other mining techniques.

1. Introduction

(e World Wide Web (WWW) has become an important
place for people to share information. (e amount of in-
formation available on the web is enormous and is growing
day by day. As a result, it is the need of the hour to develop
new techniques to access the information very quickly and
efficiently. For fast delivery of media-rich web content, la-
tency tolerant techniques are highly needed, and several
methods have been developed in the past decade in this
regard. Among these techniques, the two most prevalent
techniques are caching and prefetching. However, caching
benefits are limited due to the lack of sufficient degrees of
temporal locality in the web references of individual clients
[1]. (e potential for caching of the requested files is even
declining over the past years [2]. On the other side, pre-
fetching is defined as “to fetch the web pages in advance
before a request for those web pages” [3]. (e usefulness of
prefetching the web pages depends upon how accurately the

prediction for those web pages has been made. A good
prediction model can find various applications, of which the
most prominent ones are website restructuring and reor-
ganization, web page recommendation, determining the
most appropriate place for advertisements, web caching and
prefetching, etc. In recent years, due to the wide scale of
applications, the prediction process has gained more im-
portance. To make predictions, several web mining tech-
niques have been used in the past several years. Web mining
[4] can be divided into three distinct areas:

(i) Web usage mining: it involves analyzing user access
patterns collected from web servers better to predict
the users’ needs [5–7]

(ii) Web content mining: it involves extracting useful
information from websites to serve the users’
needs

(iii) Web structure mining: it is the study of the inter-
linked structure of web pages

Hindawi
Scientific Programming
Volume 2020, Article ID 8897244, 18 pages
https://doi.org/10.1155/2020/8897244

mailto:setiasonia53@gmail.com
https://orcid.org/0000-0003-1573-1386
https://orcid.org/0000-0002-6271-3001
https://orcid.org/0000-0002-2174-707X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8897244

Traditional prefetching systems make predictions based
on the usage information present in access logs. (ey
typically employ the data mining approaches like associ-
ation rule mining on the access logs to find the frequent
access patterns, match the user’s navigational behavior with
the antecedent of the rules, and then prefetch the conse-
quent of the rules. However, this approach’s problem is that
a relevant page that might be of user’s interest can be
exempted from the prediction list if it is new or it was not
frequently visited before; therefore, it does not appear in
frequent rules.

On the other side, predictions based on content infor-
mation present in web pages such as title, anchor text, etc.
resolve these problems, but they have their own set of
drawbacks. (ey lack the user’s intent of the search, and web
content alone is insufficient to make accurate predictions.

In this paper, instead of focusing only on the content,
i.e., anchor texts associated with URLs (Uniform Resource
Locator), the queries submitted by users recorded in web
access logs have also been crucial for actual user’s interest.
(erefore, a hybrid prediction model (HPM) has been
proposed, which incorporates both the history of the users’
browsing behavior and the information content inherent in
the users’ queries. It is based on the Query-URL click-
graph, a bipartite graph G between queries Q and URLs U,
which are extracted from the access logs. Edges E in the
diagram indicate the presence of clicks between queries and
URLs. Weight Cq,u is assigned to each edge, representing
the aggregated clicks between query q and URL u. N-gram
parsing of queries has also been used for better results as
compared to unigrams. An N-gram [8] is an N-word se-
quence. An N-gram of size 1 is referred to as a unigram, 2-
gram as a two-word sequence, also called bigrams, and size
3, i.e., 3-grammeaning a three-word sequence, trigram. For
example, parsing the query “college savings plan,” we get
three unigrams (“college,” “savings,” “plan”), two bigrams
(“college_savings,” “savings_plan”), and one trigram
(“college_savings_plan”). (e reason to use the N-gram
approach is that grams can capture more contextual in-
formation, which can help us to predict the frequency of
such kinds of keywords.

(e advantages of this prediction framework mainly lie
in three aspects:

(i) First, query terms are used through the Query-URL
click-graph to understand users’ behavior more
accurately rather than using noisy and ambiguous
web page content

(ii) Second, it captures information from both usage
logs and content knowledge, which increases the
accuracy of prediction

(iii) (ird, this framework further considers the N-gram
parsing of queries, which also improves the pre-
diction results

(e paper has been organized as follows. Section 2
highlights the detailed literature review on prefetching. (e
proposed approach is presented in Section 3, which dis-
cusses the following:

(i) (e architecture of the hybrid prediction model
(ii) (e workflow of both phases, i.e., online phase and

offline phase
(iii) Detailed pseudocode for the proposed method

Further, Section 4 discusses an example of the proposed
work. Experimental evaluation and comparison of the
proposed work with the existing approaches are provided in
Section 5. Section 6 finally concludes this work with future
enhancement.

2. Related Work

Web prediction is a classification problem to predict the next
web page that a user may visit based on its browsing history.
Several researchers have been trying to improve the pre-
diction of users’ browsing experience in the past decade to
achieve the following research objectives:

(i) To improve the accuracy of prediction
(ii) To remove the scalability problem
(iii) To improve prediction time

(is section talks about various techniques and methods
used to develop web page predictions categorized under
usage mining, content mining, and structure mining.

2.1. Prefetching Techniques Using Usage Mining. Markov
model is a mathematical tool for statistical modeling, one of
the popular methods used for prefetching. Generally, the
Markov model’s basic concept is to predict the next action,
which depends on the results of previous actions. Several
researchers have used this technique successfully in various
literature studies to train and test user actions or predict
their future behavior.

Deshpande and Karypis [9] and Kim et al. [10] inves-
tigated that high accuracy in the prediction of the next web
page can also be achieved by using higher-order Markov
models. Still, higher-order Markov models have high space
complexity, whereas lower-order Markov models cannot
capture the users’ browsing behavior accurately. To solve this
problem, Verma et al. [11] proposed a novel approach for
web page prediction using the k-order Markov model, where
the value of “k” has been chosen dynamically. In addition to
this work, Oguducu and Ozsu [12] and Lu et al. [13] worked
upon user sessions. User sessions were clustered and rep-
resented by clickstream trees for making predictions. But it
raises a scalability problem. Further, Awad and Khalil [14]
analyzed the Markov model and all-Kth Markov model to
solve the web prediction problem to remove scalability
problem. (e proposed framework by [14] improved the
prediction time without compromising prediction accuracy.

Zou et al. [15] found that more accurate prediction
models are required; therefore, more complex prediction
tasks must run. In this paper, the authors proposed the
intentionality-related long short-term memory (Ir-LSTM)
model, which is based on the time-series characteristics of
browsing records. Further, Joo and Lee [16] proposed a
framework for user-web interaction called WebProfiler.

2 Scientific Programming

Basically, it predicts the user’s future access based on user
interaction data collected by this profiler. (e authors
claimed that overall prediction performance using the
proposed model had been improved by 13.7% on average.

Martinez-Sugastti et al. [17] presented a prediction
model based on history-based prefetching approach. (is
model considers the cost of prediction in terms of cache hits
and cache misses of the forecast to train the prediction
model so that more accurate results can be achieved based on
the previous cache hits. (e authors claimed that, by using
this model, the precision of prediction had been improved,
and latency has been reduced. Veena and Pai [18] proposed
the “DensityWeighted Fuzzy CMeans” clustering algorithm
to cluster similar user’s access patterns. (is algorithm can
be used for the recommendation system as well as the
prefetching system.

2.2. Prefetching Techniques Using Content Mining.
Keeping content at the epicenter of the research approach,
Venkatesh [19] proposed a prefetching technique that used
hyperlinks and associated anchor texts present in the web
page for predictions. (e probability of each link was
computed by applying Näıve Bayes classifier on the anchor
text concerning keywords of the user’s interest. (e con-
nections with higher chances were chosen for prefetching.
Further, Setia et al. [20] extended this work by considering
the semantic preferences of the keywords present in the
anchor text associated with the hyperlinks.

Researchers [21–23] proposed a semantically enhanced
method for a more accurate prediction that integrated the
website’s domain knowledge and web usage data.

Authors [24, 25] found that only the user’s access pat-
terns are insufficient to predict the user’s behavior. (e
authors [24] worked upon an individual user’s behavior.
Authors [25] analyzed that web pages’ content should also be
taken into account to capture the user’s interest.

2.3.PrefetchingTechniquesUsingStructureMining. Web link
analysis [26] proved to be an important factor in per-
forming a good quality web search. It can also calculate how
the web pages are related to each other. Link analysis
approaches are divided into two types: “explicit link
analysis” and “implicit link analysis.” Hyperlinks present
on the web page are called explicit links. It has been proved
by Davison [27] that hyperlink information can help a lot in
web search. Web designers design the structure of the links
and embed the links in the website. (erefore, in the case of
the “explicit link analysis” technique, the user follows the
design that the website designer was responsible for making
any web page important, e.g., Kleinberg’s HITS [28].
However, in the “implicit link analysis” technique, the
importance of a web page is not determined by the web
page designer, but it is done by the users who are accessing
that web page.(e higher the number of users accessing the
web page, the more influential the page is. Whenever a user
accesses a web page, an implicit link is developed between
the user and the corresponding web page. Further, pages
are visited by the user in a sequential manner, forming

implicit associations one after another. So, in the latter case,
the web page is essential from the user’s point of view. An
example of the implicit link analysis approach is DirectHit
[29]. Researchers [26] used both techniques, i.e., “explicit
link analysis” and “implicit link analysis,” and further
improved the search accuracy by 11.8% and 25.3%,
respectively.

Authors [30–32] found that the poor structure of the
website may degrade the performance of any algorithm
which works upon the structure of the website for user
navigation. Sheshasaayee and Vidyapriya [30] proposed a
framework to reorganize the website using splay trees, a self-
balancing data structure. Further, (ulase and Raju [32]
extended this approach by using concept-based clustering.
Vadeyar and Yogish [31] developed farthest first clustering-
based technique to reorganize the website.

Table 1 describes in brief different methods for pre-
fetching technique with appropriate justification in the
context of research work.

A critical look at the above table highlights the fact that
each of the existing prefetching techniques proposed by
researchers has its drawbacks. Either these techniques are
lacking in making the right set of prediction or the choice of
parameters is not sufficient or the cost involved in making
such predictions is very high.

2.4. Problem Statement. A precarious look at the literature
highlights the following areas of improvements:

(i) Most of the techniques utilize the browsing history
of users stored in client logs, proxy logs, or server
logs in the literature. (e information found in any
type of access logs varies according to the format of
the records. Administrators select the log data in
their way. But due to insufficient information
present in logs, inaccurate predictions are derived,
rendering the prefetching approaches to work in-
efficiently. (ese techniques cannot predict those
web pages which are newly created or never visited
before.

(ii) Web pages’ content information has also been
widely used for predictions as a solution to the
above-said problem. (ese techniques use the
content information such as titles, anchor text, etc.
which do not provide sufficient details of the user’s
interest and thus cannot be considered alone for
prediction algorithms to work.

(iii) Structure mining-based prediction techniques de-
pend only upon how website structure has been
designed. (e reorganization of the website structure
for user navigation increases computational cost.

It leads to the following main problems of prediction:

(i) Less accurate prediction results and, therefore, less
precision

(ii) Low hit ratio of predicted pages and, therefore, more
consumption of network bandwidth

Scientific Programming 3

To improve the prediction technique, a hybrid predic-
tion model is proposed in this work, which utilizes the best
of both the information, i.e., the usage information and the
content information of the web pages. (e poor structure of
a website may degrade the performance of such kind of
techniques. (erefore, we are not considering structure
mining for our proposed approach.

3. Proposed Hybrid Model

(is work uses the Query-URL click-graph concept, which
enables incorporating crucial contextual information in the
prediction algorithm. In general, the workflow of our
proposed approach (shown in Figure 1) is carried out in two
phases, which is discussed as follows:

(i) Offline phase: the offline phase works at the backend
and runs periodically to update the logs. Since it is a
hybrid model, the input to this phase is the access logs
and the content information of the web pages. (e
combined data from both sources is then put to use by
using various intermediary steps to make a relevant
prediction of users’ behavior.(e output of this phase
is the weighted logs (WL) that contain the weighted
N-grams corresponding to the respective URLs.

(ii) Online phase: the online phase involves both the
proxy and the client. While users interact with the
system, the system predicts users’ behavior
according to the user’s information. (is informa-
tion is matched with the information collected from
the logs in the offline phase.

Table 1: Prefetching technique with various methods and their justification.

Sr.
No. Method used Literature

reference Description Justification in the context of research work

1. Markov model [9–13]

It is a well-known approach for pattern
recognition. It determines the next state from
the current state based on the orders of the

Markov chain

(e main problem is lack of prediction
accuracy with lower-order chain, while high
complexity with the higher-order chain.
However, this approach does not suit the

current research context

2. Prediction by
partial match [15, 16, 33] (e PPMmodel uses a set of previous objects

to predict the next item in a particular stream

It is a restricted version of Markov chain that
provides prediction based on the only selected
set of objects and selection of a right set of

objects is a very challenging task, so this kind of
vision is not also; it limits the result as it does
not cover all the objects, thereby ruling it out of

the scope of current work

3. Cost function [14, 17]
Prediction of future requests has been made
based upon certain factors like the popularity

and lifetime of web objects

A very less popular approach for pattern
determination as the cost functions vary from
time to time, thereby reducing the contribution
in making the right set of prediction. So this
approach is also not suitable in the context of

the proposed research

4. Data mining [18]
It is also one of the most popular approaches
in the modern era for pattern recognition of

structured objects

(e data mining approach consists of many
techniques which are ideal for pattern

generation task. But the proposed research is
not working upon pattern generation task

5. Keyword based [19, 20, 24, 25]
Prediction is made by retrieving confidential
information present in the contents of web

documents

To work upon only this category is not much
beneficial since it does not deal with multiple

user transactions

6.
Integration of

domain
knowledge

[21–23]
It works by the integration of domain
knowledge with other methods of

prefetching; semantics are taken into account

It gives useful information based on semantics
but increases prediction time as well as extra

overhead

7. Implicit link
analysis [26, 29–32]

In the “implicit link analysis” technique, the
importance of a web page is determined by

the users who navigate the web page

It is a significantly less popular approach for
pattern determination. Extra work is required
to reorganize the structure of the website as per

user navigation

8. Explicit link
analysis [26–28]

In the “explicit link analysis” technique, the
importance has been given to the design that
has been structured by the designer who

makes any web page more important or less
important

It gives useful information based on hyperlink
structures of the web

4 Scientific Programming

3.1. Work Flow of the Offline Phase. (is phase works in
several steps, as follows:

(1) Preprocessing: initially, the offline phase considers
access logs. Logs contain an entry for each request of
the web pages made by the client. Various fields [34]
of the records are anonymous user id, requested
query, date and time at which the server is accessed,
item rank, and URL clicked by the user corre-
sponding to the requested query.
Each access log entry is preprocessed to remove stop
words and extract the requested query, clicked URL
corresponding to the requested query.
(e processed information gets stored in the form of
processed logs (PL).

(2) Bipartite graph generation: a bipartite graph between
queries Q, and URLs U, taken from PL, is generated.
(e bipartite graph has been chosen because it helps
us to improve readability. (is new representation
naturally bridges the semantic gap between queries
and web page content and encodes rich contextual
information from queries and users’ click behaviors
for prediction. (is helps to reduce the space and
computational complexity as it eliminates the need
to scan the logs each time. Also, click count of the
queries for the respective URLs is calculated as the
graph is being generated in order to reflect the users’
confidence in the query, i.e., how close the queries
are connected with the clicked URLs. (e edges
between Q and U indicate the presence of clicks

Query (Q)

Query(Q)

Query (Q)

Query
parser

Query parser

Web logs

User interface

Cache

URL request

Corresponding web pages
Server

Prefetching module

Prefetching module

Offline phase

Output of offline phase
goes to online phase

Extract URLs and
corresponding
query

Fetch web pages corresponding to URLs

Prioritized URLs

Prioritized
URLsPrioritizer

URL listQuery N-grams

Query N-
grams Weighted

logs

Weighted logs (W)

Weighted logs

Query q URL u

Biparite graph generator

{Cq, u}

Weight
assignment

Preprocessing

Preprocessor
Processed logs

Matcher

Figure 1: Architecture of hybrid prediction model.

Scientific Programming 5

between queries and their corresponding URLs. (e
generated bipartite graph is known as Query-URL
click-graph (C-graph). (e nomenclature for the
generated C-graph is as follows:

(i) Q � q1, q2, . . . , qm􏼈 􏼉.
(ii) U � u1, u2, . . . , un􏼈 􏼉.
(iii) 〈Cq,u〉 is an edge depicting number of clicks

between Q and U.
Consider an example having Q � q1, q2􏼈 􏼉 and
U � u1, u2, u3􏼈 􏼉. A sample C-graph is depicted
in Figure 2.
Here, the label on the Edge 〈q1, u1〉, i.e., Cq1,u1,
depicts that the URL u1 has been clicked five
times corresponding to the query q1.

(3) Query parsing: queries present in C-graph are parsed
into N-grams that describe the URLs’ content,
resulting in N-gram associated click-graph (NC-
graph).

(4) Weight assignment: weights are assigned to each
N-gram in the query, present in NC-graph, based
on the number of times a query has been clicked,
which is depicted on the edges by Cq,u in C-graph.
(e same click count is assigned to each N-gram of
query, i.e., Cn,u, which is equivalent to Cq,u, where
〈Cn,u〉 is an edge depicting the number of clicks
between N-gram n and URL u. For example, query
q1 is parsed into N-grams n1 and n2 which results
in NC-graph depicted in Figure 3. As we can see in
Figure 2, Cq1,u1 � 5; therefore, its N-grams, i.e.,
Cn1,u1 � 5, and Cn2,u1 � 5.

Corresponding to each URL “u,” a weighted vector is
defined that comprises the weighted N-gram wn,u . Further,
Wn,u is computed by adding click count of the N-grams
(Cn,u) coming from different queries for that URL.

Finally, weighted N-grams are normalized to rescale the
values by using

Wn,u �
wn,u

􏽐v∈VuCv,u

,

Vu � V ∈ Nq : Nq ∈ 〈q, u〉􏽮 􏽯,

(1)

where wn,u is divided by the summation of click counts of all
the terms corresponding to all the queries representing the
URL u,where

u represents the URL
n represents one N-gram for the query
v is a term

Vu defines all the words belonging to N-grams about
the different queries representing the URL u
Nq represents all the N-grams of the query q

wn,u represents weight of N-gram n in the URL u
Cv,u represents click count of each term for the URL u

All the processing is done in temporary memory, and
finally, it outputs weighted logs, which contain the URLs and
their corresponding N-grams and their associated weights.
(e schema of access logs (AL), processed logs (PL), and
weighted logs (WL) is shown in Figure 4.

(e description of different attributes is given in Table 2.
It is important to note here that the offline phase runs

periodically to update access logs. On every periodic update,
only the fragment containing new entries in access logs is
considered for further processing, and accordingly, weighted
logs are updated. (is job is done by the Incremental
Module, a submodule of the prefetching module, as depicted
in Figure 5.

3.2. Work Flow of the Online Phase. (e online phase can be
discussed in five major steps, as follows:

(1) Query initiation at interface: user enters a query
according to his interest, which goes to the server
through a proxy using the HTTP GETmethod. (e
server responds with the list of URLs corresponding
to the respective query.

(2) Parser activation: while the user views the current
page, the proxy server uses this query for further
processing at the back end. (is initializes the parser
that parses this query into N-grams called query
terms stored in set T. (e resulting query terms are
used to find the relevant URLs (from the weighted
logs (WL)) corresponding to the respective query.

(3) Matcher activation: this phase takes as input the
query terms from T from the online phase and
weighted logs (WL) from the offline stage. (e
weights of URLs corresponding to the users’ query
are calculated by comparing the users’ query terms T
with the weighted N-grams of URLs in WL. (is
process is carried with the help of (2):

Wu � 􏽘
t∈T

Wt,u ∗ It,u, (2)

where
Wu represents the weight of each URL,
Wt represents the weight of each term present in the
URL,
It,u is a vector for each URL, i.e.,

It,u �
1, if t present inURL u,

0, otherwise.
􏼨 (3)

(4) Prediction list generation: these weights are then fed
to the prediction unit. It prioritizes the URLs based
on their weights generated in step 3. A prediction list
of URLs corresponding to the user query based on
this prioritization is generated.

(5) Prefetching: prefetcher prefetches the predicted
URLs and stores them in the cache.

6 Scientific Programming

Access logs
Anon ID Query Query time Item rank Click URL

Processed logs
URL Query

Weighted logs
URL N-grams Weights

Figure 4: Schema of logs used for proposed approach.

Table 2: Attributes of schema and their description.

Attribute Description
AnonID An anonymous user ID number
Query (e query issued by the user
QueryTime (e time at which the query was submitted for search
ItemRank If the user clicked on a search result, the rank of the item on which they clicked is listed
ClickURL If the user clicked on a search result, the domain portion of the URL in the related work is listed
N-grams Parsed query in N-grams
Weights Count of a query clicked for URL

Query
Query module

URL request

Server

Access logs

Prefetching
module

Incremental module

Weighted logs

Processed
logs

Figure 5: Incremental Module.

u1

q1

Cq1,u1 = 5 Cq1,u3 = 7 Cq2,u2 = 5

u2 u3

q2

Figure 2: Example of C-graph.

Cn1,u1 = 5 Cn2,u1 = 5

u1

n1 n2

Figure 3: Example of NC-graph.

Scientific Programming 7

3.3. Pseudocode for Proposed Algorithm. (e pseudocode for
the proposed approach is as: Given in Algorithms 1–6.

4. Example Illustration

(is section explains the offline and an online phase steps
with the help of some sample of URLs, submitted queries
present in the processed logs, and their respective clicks, i.e.,
the number of times URL has been clicked.

4.1. Preprocessing Phase

(i) In the first phase, preprocessing is done by removing
stop words. A sample of preprocessed logs is shown
in Table 3.

4.2. Bipartite Graph Generation Phase

(i) Calculate click count Cq,u for each pair of query q
and URL u<q ∈ Q, u ∈ U> using processed logs.
After calculating the click counts, a Query-URL
click-graph (C-graph) is generated as discussed in
step 5 of algorithm BipartiteGraphGen (); e.g., let
<q1, u1> edge is created with label Cq1,u1, i.e., 10.
Similarly, <q5, u1> and <q8, u1> edges are created
with labels 10 and 5, respectively.

(ii) Further in step 7 of BipartiteGraphGen (), the
queries are parsed into N-grams by using n� 3 as
shown in Figure 2; e.g., q5 is parsed into 3-grams
(gov, college, gov-college).

(iii) According to the algorithm’s next step 8, N-gram
associated click-graph (NC-graph) is generated as
depicted in Figure 6.

4.3. Weight Calculation Phase

(i) (e same click count is assigned to each N-gram in
the query for each URL based on click count of
queries as in step 6 of WeightCalculator(), e.g., with
the URL u1 associated queries, and their labels are
q1⟶ 10, q5⟶10, q8⟶ 5.

Against each query, parsed N-grams are
q1⟶ {ymca}, q5⟶ {gov, college, gov-college},
q8⟶ {best, college, best-college}.
(us, each N-gram will get the respective label of
its query, i.e., (ymca:10), (gov: 10, college: 10, gov-
college:10), (best:5, college:5, best-college:5).

(ii) In the next step, weights are assigned to each
distinct N-gram associated with URL u in NC-
graph by adding click count of the N-grams
coming from different queries for that URL; e.g.,
weighted N-grams corresponding to URL u1 are
(ymca: 10, gov: 10, college: 15, gov-college: 10, best:
5, best-college: 5)

(iii) Perform normalization as in step 10 of Weight-
Calculator() Wymca,u1 � 10/(10 + 10+15 + 10+5 + 5)
� 0.22. (e normalized weighted N-grams for their
respective URLs are shown in Figure 7.

4.4. Online Phase

(i) In the online phase, when the user submits a query,
e.g., “ncrgov college,” it is parsed in 3-grams as
discussed in step 3 of Matcher () algorithm and
shown in Figure 7.

(ii) Further, weights of URLs are calculated corre-
sponding to the user’s query as per step 7 of the
Matcher() algorithm, e.g.,
Wu1 � 0 + 0.22 + 0.33 + 0.22 + 0 + 0� 0.77. To calcu-
late the weight of u1, weights of the user’s query
terms (ncr, gov, college, ncr-gov, ncr-college, gov-
college, ncr-gov-college) are taken from the
weighted N-grams of the URL u1: (ymca: 0.22, gov:
0.22, college: 0.33, gov-college: 0.22, best: 0.11, best-
college: 0.11) if they are present in that URL; oth-
erwise, it is considered 0.

(iii) Based on the calculated weights of URLs, the system
gives the prioritized list of URLs, as depicted in
Figure 8. For further processing, the prioritized list
will be passed to the prefetching engine.

(us, the proposed approach predicts by considering the
content information and the information collected using
logs instead of directly deriving the frequent patterns from
the access logs. (erefore, this process indicates those web
pages that are not frequently visited before making more
accurate predictions.

In the next section, the proposed approach’s perfor-
mance evaluation is carried out with a unigram approach. It
has been observed that the proposed hybrid approach sig-
nificantly improves performance.

5. Experimental Evaluation

(e effectiveness of the proposed prediction model is il-
lustrated by implementing and testing with a large dataset.
To explore the performance of prediction, Microsoft Visual
Studio 12.0 in conjunction with SQL server 2012 is used. In
this section, we first list the measures for the performance
evaluation of prediction and then present the impact of the
n-grams followed by comparing experimental results.

5.1. Training and Testing Data. To run the experimental
cases, American Online (AOL) search logs are collected for
three months spanning from 01 March 2006 to 31 May
2006. (is dataset consists of 20M web queries collected
from 650 k users over three months. (e dataset [35] in-
cludes (AnonID, Query, QueryTime, ItemRank,
ClickURL).

8 Scientific Programming

Input: access logs (AL)
Output: Weighted N-grams stored in weighted logs (WL) of order m× n
Begin

(1) Read (AL);
(2) PL←Preprocess (AL);//PL�Processed Logs
(3) NC-graph←BipartiteGraphGen (PL); //NC-graph�N-gram associated click-graph
(4) WL←WeightCalculator (NC-graph); //WLis weighted logs stored in form of m× n weight matrix
(5) Return (WL);

End

ALGORITHM 1: Weight generator.

Input: access logs (AL)
Output: processed logs (PL)
Begin

(1) Read AL;
(2) Extract session id, query, clicked URL from AL;
(3) PL←Remove stop words from each log record;
(4) Return PL;

End

ALGORITHM 2: Preprocess.

Input: processed logs (PL)
Output: N-gram associated click-graph (NC-graph)
Begin

(1) Read (PL);
(2) Q←Read queries from PL;
(3) U←Read URLs from PL;
(4) Calculate click count Cq,u for each pair 〈q ∈ Q, u ∈ U〉 using PL;
(5) C-graph← create an edge between 〈q, u〉 with label Cq,u;
(6) For each query q ∈ Q do
(7) Nq← Parser (q); //parsing of query into N-grams
(8) NC-graph←Create an edge between 〈q, Nq〉

(9) EndFor
(10) Return (NC-graph);

End

ALGORITHM 3: BipartiteGraphGen.

Input: query q
Output: N-grams associated with query (q), i.e., (Nq)
Begin

(1) Read q;
(2) Nq←Extract N-grams from q;
(3) Return Nq;

End

ALGORITHM 4: Parser.

Scientific Programming 9

(e dataset is divided into two subsets, one for training
and the other for testing in the proportion of 80 : 20. (e
training set has been used to build a predictionmodel while a
testing set comprising various query sets has been used to
run multiple test cases. A snapshot of the web access logs is
displayed in Figure 9.

5.2. Implementation. Initially, access log file is preprocessed
to extract the meaningful entries such as queries and the
requested URL and removal of stop words is done. Further
queries are parsed into N-grams as shown in Figure 10.

In the next step, weights are assigned to the N-grams.
Further, weights are normalized, which is the output of the
offline phase, as shown in Figure 11.

In the online phase, when the user submits the query to
the server, the prefetching module is also used to predict the
user’s behavior. A list of prioritized URLs has been given by
the online phase to be fetched in the cache before the user’s
request, as shown in Figure 12.

5.3. Performance Evaluation. In literature [33, 36], predic-
tion performance is measured using two primary

Input: N-gram associated click-graph (NC-graph)
Output: weighted N-grams corresponding to distinct URLs stored in matrix WL
Begin

(1) Create a matrix WL of order m× n//m⟶ no. of distinct N-grams of all the queries of PL and n⟶ no. of URLs of PL
(2) Wi,j � 0;//elements of WL
(3) For each URL u ∈ U in NC-graph do
(4) Wn,u � 0//weight of N-gram associated with query q corresponding to URL u
(5) For each N-gram n ∈ Nq in NC-graph do
(6) Cn,u �Cq,u; //n ∈ Nq

(7) wn,u+ � Cn,u;
(8) End For
(9) For each N-gram n ∈ Nq in NC-graph do
(10) Wn,u � wn,u/􏽐v∈VuCv,u and Vu � V ∈ Nq : Nq ∈ 〈q, u〉􏽮 􏽯//normalization of calculated weights
(11) Store in WL;
(12) EndFor
(13) EndFor
(14) Return WL;
(15) End

ALGORITHM 5: Weight calculator.

Input: user’s query (UQ), weighted logs (WL)
Output: prioritized URLs List (PUL)
Begin

(1) PUL�Ø
(2) Read UQ;
(3) T← Parser (UQ);
(4) For each URL u ∈ U in WL do
(5) Wu � 0//weight of URL u
(6) For each term t ∈ T do
(7) Wu � 􏽐t∈T Wt,u ∗ It,u

(8) EndFor
(9) EndFor
(10) If Wu! � 0
(11) PUL � PUL∪ u

(12) Sort elements of PUL;
(13) Return PUL;

End
In the next section, an example concerning the above-proposed work is presented.

ALGORITHM 6: Matcher.

10 Scientific Programming

Table 3: Sample of preprocessed logs.

URL Query after removing stop words
http://www.ymcaust.in Ymca
http://www.amity.edu Ncr college
http://www.ymcaust.in Gov college
http://www.galgotias.org Top university
http://www.gdgoenka.edu Ncr college
http://www.ymcaust.in Ymca
http://www.amity.edu Amity
http://www.gdgoenka.edu Top university
http://www.galgotias.org Galgotias
http://www.amity.edu Best college
http://www.amity.edu Amity
http://www.ymcaust.in Ymca
http://www.gdgoenka.edu Top university
http://www.galgotias.org Galgotias
http://www.amity.edu Best college
http://www.amity.edu Amity
http://www.ymcaust.in Ymca
http://www.amity.edu Ncr college
.

u1: www.ymcaust.in

q1: ymca

10 10 10 10 10
10

Step 5

Step 8

5 5 5 5 5

Ymca

q2: ncr, college

Ncr, college,
Ncr-college

q3: nit

nit

q4: amity

Amity

q5: gov college

Gov, college,
Gov-college

q6: top university

Top, university,
Top-university

q7: galgotias

Galgotias

q8: best-college

Best, college,
Best-college

u2: www.amity.edu u3: www.nit.org u4: www.galgotias.org u5: www.gdgoenka.edu

Figure 6: Generation of NC-graph.

url1: ymca: 10, gov:10, college: 15, gov-
college:10, best:5, best-college:5

url2: ncr: 5, college: 5, ncr-college: 5, amity: 10

url: nit: 10, gov: 5, college: 5, gov-college: 5

url4: top:5, university: 5, top-university: 5,
galgotias: 10

url5: ncr: 5, college: 5, ncr-college: 5, top: 10,
university: 10, top-university: 10

url1: ymca: 0.22, gov: 0.22, college: 0.33, gov-
college: 0.22, best: 0.11, best-college: 0.11
url2: ncr: 0.2, college: 0.2, ncr-college: 0.2,

amity: 0.4
url: nit: 0.4, gov: 0.2, college: 0.2, gov-college: 0.2

url4: top: 0.2, university: 0.2, top-university: 0.2,
galgotias: 0.4

url5: ncr: 0.16, college: 0.16, ncr-college: 0.16,
top: 0.32, university: 0.32, top-university: 0.32

Figure 7: Generation of normalized weights.

URL1

URL2

URL3

URL5

Prioritized URLs

Prioritization

(Step 13 of
matcher)

Weight calculation of URLS
(Step 7 of matcher)

Ncr, gov,college,ncr_gov,ncr_college,
gov_college. ncr_gov_collegeNcr gov college

ParsingQuery

Wu1 = 0 + 0.22 + 0.33 + 0.22 + 0 + 0 + 0 = 0.77

Wu2 = 0.2 + 0 + 0.2 + 0 + 0.2 + 0 + 0 = 0.66

Wu3 = 0 + 0.2 + 0.2 + 0.2 + 0 + 0 + 0 = 0.6
Wu4 = 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0

Wu5 = 0.16 + 0 + 0.16 + 0 + 0.16 + 0 + 0 = 0.48

Figure 8: Generation of prioritized URLs based on the users’ given query.

Scientific Programming 11

http://www.ymcaust.in
http://www.amity.edu
http://www.ymcaust.in
http://www.galgotias.org
http://www.gdgoenka.edu
http://www.ymcaust.in
http://www.amity.edu
http://www.gdgoenka.edu
http://www.galgotias.org
http://www.amity.edu
http://www.amity.edu
http://www.ymcaust.in
http://www.gdgoenka.edu
http://www.galgotias.org
http://www.amity.edu
http://www.amity.edu
http://www.ymcaust.in
http://www.amity.edu

performance metrics: precision and hit ratio. In our work
also, we have used these parameters to measure the accuracy
of prediction:

(i) Precision: precision is useful to measure how prob-
able a user will access one of the prefetched pages.
Precision is calculated by taking the percentage of the
total number of requests found in the cache to the
number of predictions.

precision �
total number of requests fetched by the cache

total predictions
.

(4)

(ii) Hit ratio: hit ratio is useful to measure the prob-
ability of the user’s request fulfilled by the

Figure 9: A snapshot of the web access logs.

Figure 10: Parsing queries into N-grams.

12 Scientific Programming

prefetched pages in the cache. Hit ratio is calculated
by taking a percentage of the total number of re-
quests found in the cache to the total number of
users’ requests.

hit ratio �
total number of requests fetched by cache

total users’ requests
. (5)

5.3.1. Observation: Impact of N-Grams. (is subsection
compares the proposed model with N-grams against the
unigrams approach on the same query sets. Multiple test
cases were run by setting up the different thresholds for
prefetching. Here, the threshold is a fixed number of pages
that are going to be prefetched. On an experimental basis, a
broad scale of threshold has been taken. Test cases are
discussed as follows:

Figure 11: Weighted N-grams.

Figure 12: Online phase: prioritized list of URLs.

Scientific Programming 13

0.3 0.4

0.4
0.4

0.5
0.4

0
0.2
0.4
0.6
0.8

1

5 10 15
Pr

ec
isi

on

Threshold

Test case I for precision

0.2 0.3
0.40.3 0.3

0.45

0

0.5

1

5 10 15

Pr
ec

isi
on

Threshold

Test case II for precision

0.2 0.2
0.3

0.4
0.3 0.4

0
0.2
0.4
0.6
0.8

1

5 10 15

Pr
ec

isi
on

Threshold

Test case III for precision

Unigrams
N-grams

0.3 0.25 0.3

0.4
0.45 0.35

0
0.2
0.4
0.6
0.8

1

5 10 15

Pr
ec

isi
on

Threshold

Test case IV for precision

Figure 13: Precision comparison of N-grams and unigrams.

0.6
0.8

1
0.8

1 1

0
0.2
0.4
0.6
0.8

1

5 10 15

H
it

ra
tio

H
it

ra
tio

H
it

ra
tio

Threshold

Test case I for hit ratio

0.4

0.8

1

0.6

0.8
1

0
0.2
0.4
0.6
0.8

1

5 10 15

H
it

ra
tio

Threshold

Test case II for hit ratio

0.4

0.6

1

0.8

1 1

0

0.2

0.4

0.6

0.8

1

5 10 15
Threshold

5 10 15
Threshold

Test case III for hit ratio

Unigrams
N-grams

0.6

0.8

1

0.8

1 1

0

0.2

0.4

0.6

0.8

1

Test case IV for hit ratio

Figure 14: Hit ratio comparison of n-grams and unigrams.

14 Scientific Programming

Test case I: test the effectiveness of HPM by taking a
query having two keywords. Two-keyword-based
queries have been extracted from the same AOL logs to
run the test case, and an approximate 55000 queries
appropriate for this test case were found.
Test case II: test the effectiveness of HPM by taking a
query having five keywords. Five-keyword-based
queries have been extracted from the same AOL logs to
run the test case, and an approximate 65000 queries
appropriate for this test case were found.
Test case III: test the effectiveness of HPM by taking a
query having eight keywords. Eight-keyword-based
queries have been extracted from the same AOL logs to
run the test case, and an approximate 50000 queries
appropriate for this test case were found.
Test case IV: test the effectiveness ofHPMby taking a query
having more than ten keywords. Ten-or-more-keyword-
based queries have been extracted from the same AOL logs
to run the test case, and an approximate 20000 queries
appropriate for this test case were found.

All the test cases were run by taking unigrams as well as
N-grams of the query. Based on this, precision and hit ratio
curves were plotted to evaluate the proposed model, as
shown in Figures 13 and 14, respectively.

In general, models withN-grams yield better results than
the unigrams in terms of both measures, i.e., precision and
hit ratio.

It can be observed from the above graphs that the results
of the HPM are much better with an approximately 9%

increase on average in precision and about a 13% increase on
average in the HIT ratio, as depicted in Table 4. (is implies
that when the threshold value is less, i.e., the window to fetch
the pages for prefetching is small, better precision and hit ratio
are achieved in the case ofN-grams as compared to unigrams,
although when the prefetch threshold increases up to 15, both
cases’ performance is the same. But the number of prefetches
is more in this case, which is not a practical solution.(us, we
can conclude that our system performs better to yield the
optimal results in fetching the relevant web pages while
consuming less network bandwidth.

5.3.2. Observation: Impact on Latency. A series of test cases
comprising the query sets from the testing set of the access
logs were run with different inputs, and it is observed that, by
using HPM for prefetching, the time taken to fetch the web
pages is almost reduced to half of that without prefetching as
shown in Table 5. Hence, latency reduction has also been
achieved in an impactful manner. (e same is shown in
Figure 15.

(e results of the graph given in Figure 15 are evaluated
in Table 5.

5.3.3. Comparison between Web Usage Mining, Web Content
Mining, and Hybrid Model. A comparison between these
three has been made with various test cases. A series of test
cases were run for several types of sessions, i.e., smaller to
longer sessions. In our experiments, association rule mining
and Markov model-based technique [11] have been used for
the WUM technique, and the keyword-based approach [20]
has been used for WCM. (e proposed model performed
well compared to the other two, as shown in Figure 16.

From experiments, it has been concluded that web
usage mining and web content mining may perform better
in longer user sessions, but in smaller sessions, these
techniques do not perform well. Because usage mining-
based methods make their predictions based on URLs’
sequences, the longer the sequences, the better the results.
Similarly, content mining-based strategies learn the user’s
behavior as they start surfing, and longer sessions provide
better learning. However, the proposed hybrid prediction
model performs well in smaller as well as longer sessions.
From the graphs depicted in Figure 16, we evaluate the
results in Table 6.

From the results, it can be summarized that our ap-
proach, i.e., hybrid prediction model, clearly provides better
results with an approximately 26% increase on average in

Table 4: Comparison of unigrams and n-grams results for various threshold values.
(reshold value Unigram (%) N-gram (%) Increase % (%)

Precision
(reshold� 5 25 37 12
(reshold� 10 28 38 10
(reshold� 15 35 40 5

Hit ratio
(reshold� 5 50 70 20
(reshold� 10 70 90 20
(reshold� 15 100 100 0

Table 5: Comparison of latency.

Average time taken
Reduction (%) in time

Without prefetch With prefetch
751 245 50.6

0

500

1000

Test case 1 Test case 2 Test case 3Ti
m

e t
o

fe
tc

h
w

eb
pa

ge
s (

in
 m

s)
 Latency comparison

Without prefetch
With prefetch

Figure 15: Latency comparison with n-grams prediction model.

Scientific Programming 15

precision and almost an average of roughly 10% increase in
HIT ratio.

6. Conclusion and Future Work

Predicting users’ behavior in a web application has been a
critical issue in the past several years. (is work presented a
hybrid prediction model that integrates the history-based
approach with the content-based approach. History in-
formation such as user’s accessed web pages is collected
from access logs. Our proposed model used Query-URL
click-graph derived from the access logs by using queries
submitted by the users in the past and corresponding
clicked URLs. (is Query-URL click-graph is represented
in the form of a bipartite graph. N-grams are generated by
parsing the queries in 3-grams to give more weightage to
those N-grams which frequently come together and are
assigned weights for each URL, and URLs are prioritized by
considering the query submitted by the user. (e predic-
tion model is efficient and predicts URLs based on content
and history. Experimental results have shown a significant
improvement in precision of 26% and hit ratio of 10%.

Future work will be devoted to the following:

(i) (e prediction model developed so far precisely
matches the query terms of the user’s interest with
the weighted logs. It would be useful to enhance the

weighted logs with semantics so that semantics of
content could be analyzed to increase the precision
and hit ratio further.

(ii) A threshold module will be introduced to dynami-
cally calculate the threshold value based on the server
load to optimize the network bandwidth while
prefetching.

Data Availability

Data are available upon request to the corresponding author.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References

[1] T. M. Kroeger, D. D. E. Long, and J. Mogul, “Exploring the
bounds of web latency reduction from caching and pre-
fetching,” in Proceedings of the USENIX Symposium on In-
ternet Technologies and Systems, pp. 13–22, Monterey, CA,
USA, December 1997.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira,
“Characterizing reference locality in the WWW,” in Pro-
ceedings of the Fourth International Conference on Parallel and
Distributed Information Systems, pp. 92–103, Miami Beach,
FL, USA, December 1996.

0.1
0.15

0.2
0.07

0.15 0.25
0.35

0.4
0.5

0

0.2

0.4

0.6

0.8

1

5 10 15

Pr
ec

isi
on

Threshold

5 10 15
Threshold

5 10 15
Threshold

Precision comparison in smaller session

0.3
0.4 0.45

0.25 0.3
0.4

0.7
0.8 0.8

0

0.2

0.4

0.6

0.8

1

H
it

ra
tio

Hit ratio comparison in smaller session

0.5 0.64

0.8

0.54

0.7 0.790.7
0.8

0.9

0

0.2

0.4

0.6

0.8

1

Pr
ec

isi
on

Precision comparison in longer session

WUM
WCM
Hybrid

0.67 0.7
0.84

0.69 0.76 0.83
0.75

0.87 0.94

0

0.2

0.4

0.6

0.8

1

5 10 15

H
it

ra
tio

Threshold

Hit ratio comparison in longer session

Figure 16: Comparison between WUM, WCM, and hybrid prediction model.

Table 6: Comparison of WUM, WCM, and hybrid approach for precision and hit ratio.

WUM (%) Hybrid (%) Increase (%) WCM (%) Hybrid (%) Increase (%)
Precision 15 41 26 15 41 26
Hit ratio 41 55 14 50 55 5

16 Scientific Programming

[3] P. Barford, A. Bestavros, A. Bradley, and M. Crovella,
“Changes in web client access patterns: characteristics and
caching implications,” World Wide Web: Special Issue on
Characterization and Performance Evaluation, vol. 2, no. 1-2,
pp. 15–28, 1999.

[4] S. K. Pal, V. Mitra, and P. Mitra, “Web mining in soft
computing framework: relevance, state of the art and future
directions,” IEEE Transactions on Neural Networks, vol. 13,
no. 5, pp. 1163–1177, 2002.

[5] R. Suguna and D. Sharmila, “An overview of web usage
mining,” International Journal of Computer Applications,
vol. 39, no. 13, pp. 11–13, 2012.

[6] O. Kumar and P. Bhargavi, “Analysis of web server log by web
usage mining for extracting users patterns,” International
Journal of Computer Science Engineering and Information
Technology Research, vol. 3, no. 2, pp. 123–136, 2013.

[7] N. Goel, S. Gupta, and C. K. Jha, “Analyzing web logs of an
astrological website using key influencers,” International
Research Journal, vol. 5, no. 1, pp. 2–11, 2015.

[8] D. Lee, “Methods for web bandwidth and response time
improvement,” in World Wide Web: Beyond the Basics,
M. Abrams, Ed., Prentice Hall, Upper Saddle River, NJ, USA,
1998.

[9] M. Deshpande and G. Karypis, “Selective Markov models for
predicting web page accesses,” ACM Transactions on Internet
Technology, vol. 4, no. 2, pp. 163–184, 2004.

[10] D. Kim, N. Adam, I. Im, V. Atluri, M. Bieber, and Y. Yesha, “A
clickstream-based collaborative filtering personalization
model: towards a better performance,” in Proceedings of the
6th Annual International Workshop on Web Information and
Data Management, pp. 88–95, ACM, Washington, DC, USA,
November 2004.

[11] J. Verma, A. Sharma, and G. Amit, “A novel approach to
determine the rules for web page prediction using dynami-
cally chosen K-order Markov models,” International Journal
of Research in Computer and Communication Technology,
vol. 2, no. 12, 2013.

[12] S. G. Oguducu andM. T. Ozsu, “A web page prediction model
based on click-stream tree representation of user behavior,” in
Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, August
2003.

[13] L. Lu, M. Dunham, and Y. Meng, “Discovery of significant
usage patterns from clusters of clickstream data,” in Pro-
ceedings of the WebKDD’05, pp. 139–142, ACM, Chicago, IL,
USA, August 2005.

[14] M. A. Awad and I. Khalil, “Prediction of user’s web-browsing
behavior: application of Markov model,” IEEE Transactions
on Systems, Man, And Cybernetics—Part B: Cybernetics,
vol. 42, no. 4, pp. 1131–1142, 2012.

[15] W. Zou, J. Won, J. Ahn, and K. Kang, “Intentionality-related
deep learning method in web prefetching,” in Proceedings of
the 2019 IEEE 27th International Conference on Network
Protocols (ICNP), pp. 1-2, Chicago, IL, USA, October 2019.

[16] M. Joo and W. Lee, “WebProfiler: user interaction prediction
framework for web applications,” IEEE Access, vol. 7,
pp. 154946–154958, 2019.

[17] J. Mart́ınez-Sugastti, F. Stuardo, and V. González, “Web
browsing optimization: a prefetching system based on pre-
diction history,” in Proceedings of the 2017 XLIII Latin
American Computer Conference (CLEI), pp. 1–10, Cordoba,
Argentina, September 2017.

[18] K. M. Veena and R. M. Pai, “Clustering of web users’ access
patterns using a modified competitive agglomerative

algorithm,” in Proceedings of the 2017 International Confer-
ence on Advances in Computing, Communications and In-
formatics (ICACCI), pp. 701–707, Udupi, India, September
2017.

[19] P. Venketesh, “Semantic web prefetching scheme using Näıve
Bayes classifier,” International Journal of ComputerScience
and Applications, vol. 7, no. 1, pp. 66–78, 2010.

[20] S. Setia, V. Jyoti, and N. Duhan, “A novel approach for se-
mantic web prefetching using semantic information and se-
mantic association,” in Big Data Analytics, pp. 471–479,
Springer, Singapore, 2018.

[21] T. T. S. Nguyen, H. Y. Lu, and J. Lu, “Webpage recom-
mendation based on web usage and domain knowledge,” IEEE
Transactions on Knowledge And Data Engineering, vol. 26,
no. 10, pp. 2574–2587, 2014.

[22] Y. Hu, C. Kang, J. Tang, D. Yin, and Yi Chang, “Large-scale
location prediction for web pages,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 9, pp. 1902–
1915, 2017.

[23] D. Yin, Y. Hu, J. Tang et al., “Ranking relevance in yahoo
search,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 2016.

[24] Y. Deng and S. Manoharan, “Predicting web accesses using
personal history,” in Proceedings of the 2017 IEEE Conference
on Open Systems (ICOS), pp. 7–12, Miri, Malaysia, November
2017.

[25] P. M. Bharti and T. J. Raval, “Improving web page access
prediction using web usage mining and web content mining,”
in Proceedings of the 2019 3rd International Conference on
Electronics, Communication and Aerospace Technology
(ICECA), pp. 1268–1273, Coimbatore, India, June 2019.

[26] Z. Chen, Li Tao, J. Wang, L. Wenyin, and W.-Y. Ma, “A
unified framework for web link analysis,” in Proceedings of the
Dird International Conference on Web Information Systems
Engineering, 2002. WISE 2002, Singapore, December 2002.

[27] B. D. Davison, “Topical locality in the web,” in Proceedings of
the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information
Retrieval—SIGIR’00, Athens, Greece, July 2000.

[28] J. M. Kleinberg, “Authoritative sources in a hyperlinked
environment,” in Proceedings of the 9th ACM-SIAM Sym-
posium on Discrete Algorithms, Francisco, CL, USA, January
1998.

[29] January 2020 http://www.directhit.com.
[30] A. Sheshasaayee and V. Vidyapriya, “A framework for an

efficient knowledge mining technique of web page reorgan-
isation using splay tree,” Indian Journal of Science and
Technology, vol. 8, no. 29, pp. 11–15, 2015.

[31] D. A. Vadeyar and H. K. Yogish, “Farthest first clustering in
links reorganization,” International Journal of Web and Se-
mantic Technology, vol. 5, no. 3, pp. 17–21, 2014.

[32] M. B. (ulase and G. T. Raju, “Website reorganization for
effective latency reduction through splay trees and concept-
based clustering,” Artificial Intelligence and Evolutionary
Algorithms in Engineering Systems, vol. 325, pp. 173–182,
2015.

[33] C. D. Gracia and S. Sudha, “A case study on memory efficient
prediction models for web prefetching,” in Proceedings of the
International Conference on Emerging Trends in Engineering,
Technology and Science (ICETETS), pp. 1–6, Pudukkottai,
India, February 2016.

[34] S. Kalaivani and K. Shyamala, “A novel technique to pre-
process web log data using SQL server management Studio,”

Scientific Programming 17

http://www.directhit.com

International Journal of Advanced Engineering, Management
and Science, vol. 2, no. 7, pp. 973–977, 2016.

[35] January 2020, http://www.researchpipeline.com/mediawiki/
index.php?title=AOL_Search_Query_Logs.

[36] C.-Z. Xu and T. I. Ibrahim, “A keyword-based semantic
prefetching approach in internet news service,” Journal of
IEEE Transactions on Knowledge and Data Engineering,
vol. 16, no. 5, 2004.

18 Scientific Programming

http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs

