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Aiming at the problem of network congestion and unbalanced load caused by a large amount of data capacity carried in elephant flow in
the data center network, an elephant flow detection method based on SDN is proposed. ,is method adopts the autodetect upload
(ADU)mechanism. ADU is divided into two parts: ADU-Client and ADU-Server, in which ADU-Client runs in the host computer and
ADU-Server runs in the SDN controller. When the host sends the elephant flow, the ADU-Client generates a packet with forged source
IP address and triggers the Packet_inmessage of the edge switch to report the information of the elephant flow to the SDN controller and
the ADU-Server completes the elephant flow identification. Experimental results show that the ADU elephant flow detection
mechanism can effectively detect elephant flow in the data center network, reduce detection time, and improve network performance.

1. Introduction

In the data center network, the problem of network link
congestion and uneven load caused by elephant flow is
becoming increasingly serious. In the process of elephant
flow forwarding, a large number of data packets are easily
congested to a link node, thus causing problems such as the
collision of transmission links, network congestion, and
transmission delay. At the same time, the mouse flow cannot
obtain sufficient bandwidth, which increases the transmis-
sion delay of the mouse flow. Although the number of el-
ephant flow accounts for about 2% of the total flow, the 2%
data flow carries 90% of the total flow [1]. Wang et al. [2]
proposed a novel flow scheduling scheme, which uses path
diversity in DCN topology to ensure that mouse flows are
completed within the deadline and the network utilization
rate is high. Hu et al. [3] designed a coding-based adaptive
packet spraying. It spreads short-stream packets to all paths,
while elephant flow is limited to a few paths by equal-cost
multipath. To solve the resource competition problem be-
tween mixed flows, Liu et al. [4] proposed an adaptive traffic
isolation scheme. Based on the grouping spraying scheme in
multipath transmission, it dynamically separates the

elephant flow from the mouse flow on different paths,
thereby providing low latency for the mouse flow.

To effectively solve the problems of low link utilization and
unbalanced link load in the data center network [5, 6], it is
particularly important to identify and perform reasonable
scheduling for elephant flows. Hedera [7] is a dynamically
adaptive network traffic scheduling system based on business
flow. By dynamic scheduling traffic flows with large traffic re-
quirements, it avoids collision problems of large equal-cost
multipath flows. In theHedera architecture, the business flow on
the switch is monitored. When the flow demand increases to a
set threshold, the flow is marked as a large flow. On the edge
switch, a periodic polling scheduler is used to collect flow
statistics.,e large flow is monitored every 5 seconds to achieve
an accurate balance between the large business flowdemand and
the minimum scheduler overhead. Mahout [8] detects the el-
ephant flow directly on the terminal, uses the “clip lamellar”
added on the terminal to identify the elephant flow, and then
reports it to the elephant flowmanagement server.,e terminal
monitors the socket sending buffer to determinewhether there is
an elephant flow that needs to be transmitted in the data center
network. When the terminal detects the elephant flow, it will
mark a specific identification in the differentiated services code
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point (DSCP) field of the IP header of the first packet of the
elephant flow. ,e controller will send a flow table with the
lowest priority to all switches after startup. When an identified
elephant flow data packet is sent to the network, the switch will
match the flow table of the DSCP field and send this packet to
the controller through the Packet_in message to report the
elephant flow. ,is method can effectively reduce the detection
time, but it needs to deploy a dedicated server to collect the
elephant flow information reported by the clip lamellar, which
has a high deployment cost. Fincher [9] is based on a stable
matching elephant flow scheduling algorithm. According to the
global network information counted by the data center, it
generates a prior table of network traffic and switches to provide
a stable match between switches and elephant flows and a
suitable forwarding path for all network traffic. ,e algorithm
can effectively use network space, decrease data transmission
time, reduce transmission delay, and prevent network link
blockage caused by elephant flow. Liu et al. [10] proposed a
traffic load balancing scheme based on software-defined net-
working (SDN) technology, using flow engineering to identify
and manage elephant flows and using a weighted multipath
routing algorithm to dispatch elephant flows to multiple roads.
Forwarding improves network throughput and link usage ef-
ficiency.,ismethod solves the scheduling of elephant flowwell,
but it cannot avoid the forwarding conflict between elephant
flow and mouse flow, which is easy to cause transmission delay
of mouse flow in the scheduling process.

To reduce the detection time of the elephant flow, reduce
the transmission delay of the network, and improve the link
utilization while taking advantage of the SDN technology,
this paper studies the elephant flow detection mechanism of
the data center network. Compared with the existing lit-
erature, this paper has the following major contributions:

(1) According to the fat-tree topology of the data center
network and the characteristics of the SDN network,
a frame for SDN-based central data networks is
proposed.

(2) An autodetect upload (ADU) detection mechanism
based on the OpenFlow protocol is proposed. ,is
mechanism reduces the time consumption by self-
reporting the elephant flow from the terminal.

(3) ,e reporting process of ADU depends on the
Packet_in mechanism of the OpenFlow protocol.
,e switch can directly send information to the
controller through the Packet_in message, which
realizes a low-consumption and high-efficiency el-
ephant flow detection mechanism.

,is paper is organized as follows. We introduce data
center networks and SDN networks and propose a frame
for SDN-based data center networks in Section 2. Section
3 presents a mechanism for ADU elephant flow detection
in the SDN-based data center network. ,e effectiveness
of the algorithm is verified by a simulation experiment in
Section 4. Finally, the conclusion is given in Section 5.

2. SDN-Based Data Center Network

Traditional network technology cannot solve the problem of
poor network performance existing in the current data
center network. ,e emergence of an SDN, which has the
characteristics of visualization and centralized management,
can realize the programmable operation of the end-to-end
virtual paths to the data center network. ,rough the SDN
controller, multiple core devices can be aggregated together
for high-speed forwarding management.

2.1. Data Center Network. With the increasing popularity of
cloud computing and virtualization technology [11–16], a
large number of servers are connected to switches through
high-speed links. ,erefore, the data center carries a huge
amount of data and an efficient flow scheduling strategy is
needed to achieve load balancing of current network flow,
improve link utilization, and reduce link congestion [17].
,e network congestion caused by the elephant flow in the
data network center is becoming increasingly prominent. To
ensure efficient flow scheduling, the current network situ-
ation must be monitored. In other words, first, detect and
identify the elephant flow and then reasonably schedule the
elephant flow to avoid link congestion and flow transmission
delay caused by the elephant flow. At the same time, the
centralized exchange of data in the network and a large
amount of east-west traffic are the characteristics of the data
center network [18]. Consequently, the data center network
must have efficient network communication protocols,
flexible topology, and agile link capacity control. Meanwhile,
it also needs to meet large-scale, highly extensible, low
configuration overhead, and high bandwidth between
servers. Not only should green energy be saved, but also the
cost should be reduced [19].

Fat-tree topology is the most common topology in data
center networks. It is divided into three layers: core layer,
convergence layer, and border access layer [20].,e switches
in the edge access layer and convergence layer form a Pod,
and the switches in the two layers form a 1:1 bandwidth
convergence topology. ,e convergence switch in the Pod
will be connected with the switches in the core layer so that
each edge switch can establish a connection with the core
switch to achieve maximum utilization. In a Pod, there are k
switches, of which (k/2) are located in the convergence layer
and (k/2) are located in the access layer, while the core
switches have (k/2)2 connected to the k convergence layer
switches.

,is one-to-many design can enable each node to have
multiple paths and can better handle the conflict problem of
lateral traffic. ,is kind of design can disperse the traffic and
is beneficial to the load balance of the network. When one of
the links fails, it can switch quickly and continue trans-
mission on other paths. ,e redundancy performance of
links is improved, greatly reducing the impact of a single
point of failure on the network.
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2.2. Software-Defined Networking. SDN is a new type of
network architecture, and it is derived from the idea of
network abstraction [21–28], which separates the network
and consists of the control layer and data layer so that the
controller can obtain global views, topology structure,
network state information, etc. ,e data layer is mainly
responsible for forwarding, decoupling the traditional
tightly coupled network equipment, providing centralized
management and dynamic maintenance of the distributed
network, optimizing the network management, and making
the network framework more flexible and agile. According
to ONF’s standardized definition of SDN, the software-
defined network can be divided into three functional layers
from top to bottom [29]: application layer, control layer, and
forwarding layer. SDN separates the control plane from the
forwarding plane, which is centrally controlled andmanaged
by the control plane. In the application plane of SDN,
through the API interface, the required network behavior in
the switch can be submitted to the upper-layer controller,
including a plurality of northbound interface drivers. At the
same time, it can abstract and encapsulate its functions to
provide the northbound proxy interface to the outside. ,e
forwarding layer is mainly responsible for forwarding data as
well as processing data and reporting network information.
According to the OpenFlow protocol, when a new flow
reaches the OpenFlow switch [30], the matching informa-
tion is first found in the forwarding table. If the match is
successful, it is forwarded according to the rules. If the flow
table does not match, it is reported to the controller.

,e OpenFlow protocol is a standard SDN communi-
cation protocol. It is the standard communication protocol
between the control layer and the forwarding layer and is
also the most important southbound interface protocol at
present. OpenFlow switch is the lowest-level forwarding
device in the SDN architecture. ,rough OpenFlow
switches, SDN controllers can monitor the network and
formulate forwarding rules for the data plane. ,e SDN
controller can control the flow table in the switch and send
all decisions to each switch through the OpenFlow switch. In
SDN networks, each OpenFlow switch has a secure channel
that connects the switch to a remote controller, allowing
commands and data packets sent between the controller and
the switch to pass through. ,e OpenFlow protocol uses the
form of a flow table. ,e main idea is that the controller is
mainly responsible for controlling the network, while the
switch is mainly responsible for forwarding. Once the data
packet [21] is received, the OpenFlow switch will look up the
corresponding flow entry from the first flow table, with the
highest priority, parse the packet header field, and send it to
the system for data package match. If the corresponding
entry of the flow is found, the instruction set contained in the
flow executes the forwarding rules of the entry. ,ese in-
structions will include changes to data packets, operations,
and pipeline processing. When the flow table entry set by the
instruction does not contain the go-to table instruction, the
pipeline stops processing and operating the execution data
packets. If the packet does not have a matching flow table,
the OpenFlow switch will send a Packet_in message to the
controller [31]. Meanwhile, the data packet is encapsulated

and forwarded to the controller. ,e controller will reply
with a flow table and the original data packet, and the switch
will set up the flow table entry. Also, when the switch re-
ceives a data packet if the flow table has multiple levels, the
header field of the data packet and the flow table entry will be
matched one by one according to the priority. ,e data
packet will match the entry with the highest priority as the
matching result. ,e data packet will be processed according
to the specified operation in the flow entry [32], but if the
match is unsuccessful, it will be sent to the SDN controller
through the secure channel of the switch.

,e main function of the Packet_in message is to send the
data packets in the OpenFlow switch to the controller. In
general, the conditions under which a Packet_in message is
triggered are as follows: (1) the corresponding flow entry
cannot bematched; (2) thematch is successful, but thematched
flow entry has a “send message to the controller” behavior.

2.3. SDN-Based Data Center Network. ,e scale of the data
center network is continuously expanding, and its traffic has
many large business flows, strong traffic bursts, and strong
traffic periodicity. ,e data center network needs centralized
management and monitoring, and multipath forwarding is
required to achieve load balancing of transmission links.
Traditional network technology limits the flexibility of re-
source provision and the real-time management of the
network in the cloud era, making the network performance
unable to improve and falling into a bottleneck. To solve the
problem of the flexible allocation of network resources in the
data center, SDN technology is introduced. SDN separates
control from forwarding, realizes flexible control of the
network, and has a global view of the network. In the
meantime, introducing SDN into the data center network
can logically centralize the management of the network.
Multipath forwarding can be achieved through the SDN
controller. ,e openness and virtualization of SDN network
capabilities can fully meet the needs of open data center
capabilities, intelligent deployments and migration of virtual
machines, and mass virtual tenants. ,e SDN-based central
data network is shown in Figure 1.

SDN divides the network into the control layer and
forwarding layer. ,e SDN controller performs centralized
monitoring on the control plane, and the OpenFlow switch
is deployed on the forwarding plane. ,e two establish a
connection through the standard OpenFlow southbound
interface protocol. ADU detectionmechanism is deployed in
the SDN-based data center network. ,e ADU-Client runs
in the host and the ADU-Server runs in the controller.
Report the elephant flow information to the controller by
triggering the Packet_in message of the edge switch. ,is
method not only can achieve ultraefficient elephant flow
detection but also does not need to consume additional
deployment costs.

3. ADU Elephant Flow Detection

,is paper proposes a new elephant flow detection meth-
od—ADU, which is divided into two parts: ADU-Client and
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ADU-Server. ADU-Client runs in the host, and ADU-Server
runs in the controller. When a host is about to send out an
elephant flow, ADU-Client will generate a data packet with a
forged source IP address and report the information of the
elephant flow to the controller by triggering the Packet_in
message of the edge switch. An elephant flow detection
mechanism with low consumption and high efficiency is
realized.

3.1.Principle of theMethod. ADU-Server runs as a module in
the controller. After the OpenFlow switch is connected to
the controller, the ADU-Server will issue a flow table with
the highest priority to all edge switches.,ematching item is
the source IP address��ADU-IP, and the action is to
forward the flow table to the controller. And let the flow table
take effect permanently, that is, the Hard_timeout of the flow
table is set to 0. ADU-IP is a variable, which indicates the
unique identifier of the message reported by the ADU.
ADU-IP must be set to an IP address that does not exist in
the current data center network; otherwise, it will affect the
normal operation of the network. After issuing the flow
table, the ADU-Server will continuously monitor the
Packet_in message received by the controller. When the
controller receives the Packet_in message, the ADU-Server
module preferentially filters and compares the data fields of
the Packet_in message. If it is found that the data field of the
Packet_in message contains the packet header of the net-
work layer IP protocol and the source IP address is ADU-IP,
then the data packet is identified as an elephant flow de-
tection report data packet, and the information of the ele-
phant flow is analyzed according to relevant rules. ,e
algorithm running in ADU-Server is shown in in
Algorithm 1.

,e main function of the ADU-Client is to monitor the
network data transmission buffer queue of the host

computer. When the amount of data to be transmitted for a
certain connection exceeds the judgment threshold of the
elephant flow, the flow is judged to be an elephant flow, and
the elephant flow information is encapsulated according to
the reporting rule. ,en, it constructs a data packet whose
source IP address is ADU-IP and the destination address of
the data packet is the destination address IP of the elephant
flow, and the packet is called an ADU message. ,en, send
the ADU message. ,e process of ADU-Client is shown in
Figure 2.

3.2. Reporting Process of ADU Detection. ,e reporting
process of ADU depends on the Packet_in of OpenFlow
protocol. ,e switch can send information to the controller
through the Packet_in message. Generally, there are two
mechanisms to trigger Packet_in messages. One is that the
switch does not match the flow table corresponding to the
current data to be forwarded. ,e other is that the action
specified by the flow table matching the data to be forwarded
is to report to the controller. ,e reporting process of ADU
is based on the second trigger mechanism of Packet_in
mentioned above. ADU-Server will send a flow table to all
edge switches that trigger Packet_in messages. ,e ADU
report message is a network layer IP data packet, which is
mainly composed of ADU-IP, elephant flow starting IP,
elephant flow destination IP, and elephant flow size. Figure 3
shows an ADU message whose transport layer is TCP
protocol.

,e ADU-IP is used as the unique identifier for the
controller to identify the report message. ,e destination
address of the elephant flow is the destination IP address of
this IP packet, which is a part of the elephant flow in-
formation. ADU-DATA is a data segment. ,e first 4 bytes
are the hexadecimal data of the source IP address of the
elephant stream. ,e content of the remaining data

Control layer

Forwarding layer

Host

Core switch

ADU-Server

ADU-Client

SDN
controller

OpenFlow
protocol

OpenFlow
protocol

…

…

Figure 1: SDN-based central data network.
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segment represents the size of the elephant stream (in KB as
a unit). In Figure 3, the content of ADU-DATA is
0x2800000107E2, the first 4 bytes are 0x28000001, which is
converted to IP address: 40.0.0.1, and 0x07E2 is converted
to decimal system equal to 2018. From this, it can be parsed
that the information reported in Figure 3 is an elephant
flow with a size of 2018 KB sent from the host 40.0.0.1 to the
host 40.0.0.16.

4. Experiments and Results

4.1. Experimental Setup. ,e experiment uses two physical
hosts PC1 and PC2, both running Ubuntu 16.04 operating
system. ,e experimental steps are as follows. (1)

OpenFloodlight is deployed on PC1 as an SDN controller,
and the ADU-Server module runs in OpenFloodlight. (2)
Mininet is deployed on PC2 to simulate the experimental
topology and configure the network switch to connect it to
the OpenFloodlight controller. (3) ,e ADU-Client is
deployed to simulate the network card driver on each host
simulated by Mininet and provides the data transmission
interface in the manner of HTTP. At the same time, each
host runs a data stream generation program, and the length
of the data stream obeys exponential distribution, and the
generation time of the data stream obeys Poisson distri-
bution, calling the ADU-Client sending interface to send
data.

To verify the efficiency of ADU, we compare the ADU
elephant flow detection algorithm with Hedera’s elephant flow
detection algorithm under various elephant flow determination
thresholds. ,e detection time and the detection accuracy rate
of elephant flow are taken as evaluation indexes. Elephant flow
detection time refers to the time required for an elephant flow
to enter a network link to obtain information about this ele-
phant flow. ,e correct detection rate of elephant flow is di-
vided into two parts: the missing rate and the false reject rate.
,e missing rate refers to the ratio of the number of elephant
flows that have not been correctly detected to the total number
of elephant flows. False reject rate refers to the proportion of the
number of elephant flows misjudged by the mouse flow as a
proportion of all elephant flows.

In the experiment, the data flow generating program
generates data flows greater than or equal to the elephant
flow decision threshold and less than the elephant flow
decision threshold with a probability of 1:1. Considering
that the Hedera algorithm detects elephant flow as a link-
state polling method, the communication mode uses the
Staggered mode (0.33, 0.33), which makes the number of
flows sent to the same edge switch, Pod, and other hosts
similar. Take one minute for each different elephant flow
decision threshold and record the timestamp of all elephant
flows issued within one minute and the timestamp of the
elephant flow identified by the controller program, which
will eventually be different. Finally, the average value of the

Start

Wait for data entry into
buffer queue

Single flow >=
elephant threshold

Create row
socket 

Generate ADU
packet

Send ADU packet

Signal

End

N

N

Y

Y

Figure 2: Process of ADU-Client.

Figure 3: Packet_in of elephant flow.

Input: Packet_in
Output: elephant flow info
(1) When wait for Packet_in
(2) If package.src_ip��ADU-IP
(3) data� getTcpData (package)
(4) elephant_flow.src_ip� data [0: 3]
(5) elephant_flow.size� data [4:]
(6) return elephant_flow
(7) Else
(8) return NULL

ALGORITHM 1: Process of ADU-Server.
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detection time of all elephant flows under different decision
thresholds is obtained.

4.2. Results. Figure 4 shows the time required for elephant
flow detection. As can be seen from Figure 4, the time re-
quired by the ADU elephant flow detectionmethod is far less
than that required by the Hedera method, both at the
millisecond level. ,is is because ADU adopts host network
buffer monitoring mode. When a packet with the same
destination address appears in the send buffer of a host that
is larger than the elephant flow decision threshold, the ADU
detection method can immediately detect the elephant flow
and report it to the controller. But the Hedera elephant flow
detection method takes dozens of times longer than the
ADU method. ,is is because the main idea of the Hedera
method is to periodically poll the samples and then analyze
whether the flow of each link exceeds the elephant flow
determination threshold. When an elephant flow is sent
from the host, Hedera cannot detect it immediately but waits
for several polling periods to determine that flow is an el-
ephant flow.

Figure 5 shows the false reject rate. As can be seen from
Figure 5, ADU and Mahout do not have false detection
under various elephant flow thresholds, and the false reject
rate is always 0. ,is is because the elephant flow detection
methods used by ADU and Mahout both judge the elephant
flow or mouse flow from the socket buffer queue detected by
the terminal, so it is difficult to cause false detection. Hedera
uses flow to poll the number of packets in each switch to
identify the elephant flow. However, the number of data
packets cannot obtain an accurate value, so there is a certain
probability of misjudgment.

Figure 6 shows the missing rate of elephant flow. It
can be seen from Figure 6 that the missed detection rate
of the ADU is always 0 under various decision thresh-
olds, while the missed detection rate of Mahout, which
also adopts the terminal detection and reporting
mechanism, exceeds 0.1%. ,is is due to a defect in
Mahout’s elephant flow reporting mechanism. ,e pri-
ority of the matching flow table of the elephant flow
reported by the switch is the lowest. ,e controller’s
default forwarding flow table has idle timeout duration
and forced timeout duration. When host A sends a mouse
flow Fm to host B for the first time, the switch will ask the
controller for the forwarding path through the Packet_in
message because it cannot find the forwarding flow table,
and then the controller will send the default forwarding
path to the relevant switch to establish the forwarding
path from host A to host B. In the future, a forwarding
path flow table from host A to host B will temporarily
exist in the network. Before this flow table times out, the
terminal can correctly identify the DSCP field in the first
IP packet header of Fe. At this time, the forwarding flow
table from host A to host B already exists in the network,
and the priority of the DSCP flow table is lower than that
of the forwarding flow table. If host A sends an elephant
flow Fe to host B again, the packet of the elephant flow Fe
cannot trigger the Packet_in message of the switch after

reaching the switch, thus causing the elephant flow Fe to
miss detection. Hedera caused a small amount of missed
detection due to certain uncertainty in the detection
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process; especially when the threshold of elephant flow is
low, the discrimination between elephant flow and
mouse flow is low.

5. Conclusion

Based on the SDN framework and OpenFlow technology,
this paper proposes a new ADU elephant flow detection
method for elephant flow in the data center network. ADU
detection relies on the Packet_in mechanism of the
OpenFlow protocol. ,e switches can send information to
the controller directly through the Packet_in message. Ex-
periments show that the self-reported ADU detection
mechanism implemented at the terminal can detect elephant
flows with low consumption and high efficiency, thereby
reducing network delay, improving network link utilization,
and improving network performance.
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