
Research Article
Moving Window Differential Evolution Independent Component
Analysis-Based Operational Modal Analysis for Slow Linear
Time-Varying Structures

Yongshuo Zong ,1,2 Jinling Chen,1 Siyi Tao,1 Cheng Wang ,3 and Jianbing Xiahou 1

1School of Informatics, Xiamen University, Xiamen 361005, China
2Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
3College of Computer Science and Technology, Huaqiao University, Xiamen, 361021, China

Correspondence should be addressed to Cheng Wang; wangcheng@hqu.edu.cn and Jianbing Xiahou; jbxiahou@xmu.edu.cn

Received 20 April 2020; Revised 8 October 2020; Accepted 19 October 2020; Published 23 November 2020

Academic Editor: Chenxi Huang

Copyright © 2020 Yongshuo Zong et al. -is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In order to identify time-varying transient modal parameters only from nonstationary vibration response measurement signals for
slow linear time-varying (SLTV) structures which are weakly damped, a moving window differential evolution (DE) independent
component analysis- (ICA-) based operational modal analysis (OMA) method is proposed in this paper. Firstly, in order to
overcome the problems in traditional ICA-based OMA, such as easy to go into local optima and difficult-to-identify high-order
modal parameters, we combine DE with ICA and propose a differential evolution independent component analysis- (DEICA-)
based OMA method for linear time invariant (LTI) structures. Secondly, we combine the moving widow technique with DEICA
and propose a moving window differential evolution independent component analysis- (MWDEICA-) based OMA method for
SLTV structures. -e MWDEICA-based OMA method has high global searching ability, robustness, and complexity of time and
space. -e modal identification results in a three-degree-of-freedom structure with slow time-varying mass show that this
MWDEICA-based OMA method can identify transient time-varying modal parameters effectively only from nonstationary
vibration response measurement signals and has better performances than moving window traditional ICA-based OMA.

1. Introduction

It is hoped that the engineering structure will have a high
degree of self-adaptive or self-control ability, and it can
automatically change its shape and performance to adapt to
changes in environmental disturbances and new usage re-
quirements as the environment or use functions change.
Operational Modal Analysis (OMA) can estimate modal
parameters without input data, which is not easy to obtain in
large-scale engineering structures [1]. -emodal parameters
of a linear time-varying structure can reflect the overall
dynamics of the structure [2].

Blind Source Separation (BSS) is a technique that re-
covers source signals from mixed signals without prior
knowledge [3]. To cite a few, independent component
analysis (ICA) [4, 5], second-order blind identification

(SOBI) [6], complexity pursuit (CP) [7, 8], and sparse
component analysis (SCA) [9] are typical BSS methods. -e
ICA method requires that the source signals be independent
of each other and the number of sensors is not less than the
number of source signals [10]. Kerschen [11] is the first to
recognize the mapping between the modal shapes and the
columns of the mixing matrix in BSS and, then, apply the
ICAmethod to OMA. Some methods have been proposed to
improve the ICA’s restrictions [12, 13]. However, because its
optimization method is easy to go into local optima, tra-
ditional ICA-based OMA has low robustness, and it is
difficult to identify high-order modal parameters using that
[14]. Proposed by Strorn and Price [15, 16] firstly, differential
evolution (DE) has much higher robustness and stronger
global searching ability compared to the classical optimi-
zation method, such as the Gradient descent [17], stochastic
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gradient descent [18], and quasi-Newton iteration method
[19].

However, because the mixing matrix of BSS is a constant
matrix, BSS-based algorithms can only be used for time
invariant structures. In reality, most of the structural pa-
rameters change with time and are time-varying structures.
-e main research on the time-vary structure is based on the
frozen-in coefficient method which is considering the time-
varying system as time invariant over a short time. Ramnath
defines the slow linearly time-varying (SLTV) structures as
the change of the system coefficient is much slower than the
change of the system solution [20]. -e three main ap-
proaches of SLTV structures are time-frequency analysis
[21], forgetting factor [22], and moving window [23, 24].
However, the time-frequency analysis method is not suitable
for online identification. -e performance of forgetting
factor methods is closely related to prior knowledge, which is
very troublesome.

Based on the moving window [24] and independent
component analysis [15], this paper presents a moving
window differential evolution independent component
analysis- (MWDEICA-) based OMA method for weakly
damped SLTV structures.

-e primary contributions of this paper can be sum-
marized as follows:

(1) In this paper, we propose a new DEICA-based OMA
method to identify modal parameters only from
stationary random response signals for LTI struc-
tures. Using DE algorithm to replace the traditional
linear regression optimization algorithm to search
the separation matrix, the DEICA-based OMA
method has high global searching ability, robustness,
and complexity of time and space. Compared with
the traditional ICA method based on gradient op-
timization algorithm, OMA based on DEICA can
identify higher-ordermodal parameters and has high
recognition accuracy.

(2) A sliding window algorithm based on differential
evolution independent analysis of sliding window is
proposed by combining sliding window with the
DEICA method. -e instantaneous modal natural
frequency and mode shape of the linear time-varying
structure are identified by using the linear tracking
characteristics of sliding window. -is method can
effectively identify the transient time-varying modal
parameters only from the nonstationary random
response measurement signals, which is better than
the traditional moving window method. -e modal
identification method has better performance.

(3) We design a three-degree-of-freedom structure with
slowly time-varying mass simulation to verify the
validity and recognition accuracy of theMWDEICA-
based OMA algorithm.

-e remainder of this paper is organized as follows. In
section 2, we describe MWDEICA in detail. -e simulation
verification is demonstrated in section 3. Finally, we con-
clude this paper in section 4.

2. Theoretical Inference of Algorithm

2.1. Differential Evolution Independent Component Analysis-
Based OMA for the LTI Structure. -e gradient-based op-
timization algorithm used by the traditional ICA is easy to
fall into the local optimum. -erefore, there are problems
such as low robustness and inability to recognize high-order
modes when performing modal analysis on a continuum
structure. Differential evolution algorithm has the ability to
solve global optimization problems. -e DEICA-based
OMA method uses DE as an optimization algorithm which
replaces the traditional linear regression method, and the
core is to optimize the separation matrix W. -erefore,
DEICA-based OMA can identify high-order modes and has
higher precision. -e specific steps are as follows:

(1) -e number of modesm to be extracted, the number
of structural finite element nodes N, the number of
response data collection points T, and the response
matrix of the structure X(t) ∈ RN×T are determined,
and then, Y(t) � WX(t). Y(t) ∈ Rm×T and
W ∈ Rm×N.

(2) -e steps of the differential evolution algorithm are
adjusted. Since w

→
r (r � 1, 2, . . . , m) needs to be

extracted one by one, each individual p
→

i in the
population is a 1 × N vector, which is stored in the
population matrix P. P� ( p

→
1, p

→
2, . . . , p

→
i, . . . , p

→
NP)T

∈RNP×N and p
→

i � (pi(1),pi(2), . . . ,pi(j), . . . ,pi

(N))T, j � 1,2, . . . ,N; i � 1,2, . . . ,NP.

(3) p
→

i is zero-centered by p
→

i � p
→

i − PPT p
→

i,

p
→

i � ( p
→

i/| p
→

i|) and starts loop.-e kurtosis is used
as a function, which is kurt( y

→
i) � E ( y

→
i)
4

􏽮 􏽯 − 3(E

( y
→

i)
2

􏽮 􏽯)2, y
→

i � p
→

iX(t). Each offspring of results is
also zero-centered. Convergence condition of the
algorithm: the maximum number of iterations
(4000 times) is exceeded or | p

→(g)T

best · p
→(g+1)

best − 1|<
10− 9. -e optimal solution is p

→
best, and let w

→
r �

p
→

best.
(4) r � r + 1; return to step (2) until r>m.

-e flow diagram is shown in Figure 1.

2.2. Nonstationary Response Signals Decomposition in the
Modal Coordinate and MWDEICA-Based OMA for SLTV.
Based on the “time-freezing” theory [24], the frozen-in
coefficient method, the “short time invariant,” and “qua-
sistationary” assumptions, the nonstationary random re-
sponse signals of the SLTV structures can be approximated
as the stationary random response time series of LTI
structures in short time interval. Figure 2 shows the length
selection of moving window.

-e choice of moving window length is fixed (the length
is L), and the displacement responses X(i)

L ∈ R
N×L can be

decomposed by the modal expansion:

X(i)
L ≈ Φ

(i)
L Q(i)

L , i � 1, 2, . . . , T + 1 − L, (1)
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whereΦ(i)
L � [ ϕ

→(i)

1 , . . . , ϕ
→(i)

k′ , . . . , ϕ
→(i)

N ] ∈ RN×N is the modal
shapes matrix and Q(i)

L � [ q
→(i)

1 , . . . , q
→(i)

k′ , . . . , q
→(i)

N ] ∈ RN×L

is the modal coordinate response matrix. When the order of
modal natural frequencies fi

k′ is not equal, the modal co-

ordinate response vectors q
→(i)

k′ are independent of each
other.

From equation (1), we can see that Φ(i)
L and Q(i)

L rep-
resent, respectively, the LTV structure’s statistical average
modal shapes and modal response over the window time L.
When time reaches ti+(L−1)/2, the predicted modal shape

vector ϕ
→

k′(i + (L − 1)/2) approximates to ϕ
→(i)

k′ . Similarly,
after using the single-degree-of-freedom (DOF) technique,
the nature frequency fk′(i + (L − 1)/2) of k′th order at time
ti+(L−1)/2 can also be replaced by f

(i)

k′ .
In view of equation (1), there is a one-to-one relationship

between the modal response matrix Φ(i)
L of weakly damped

structures and the linear transformational matrix W(i)
L in

MWICA and a one-to-one mapping between the inde-
pendent components Y(i)

L of MWICA and the modal re-
sponse matrix Q(i)

L in equation (1). -rough ICA
decomposition, the uniqueness, certainty, and existence of
the MWDEICA-based OMA method can be proved and
shown in Figure 3.

2.3.5eoretical Analysis andComparison betweenTraditional
ICA and DEICA. As an optimization solution method, DE
has much higher robustness and stronger global searching
ability compared to the classical optimization method such
as gradient descent, random gradient descent, and Newton
iteration. Table 1 shows the characteristics of ICA and
DEICA.

2.4. Application Scopes of the Proposed Method. -e appli-
cation scope of the OMA method based on moving window
and DEICA is as follows:

Start

Zero-centered and whitening

Vibration response data X (t)

Set r = 1 and the extracted
number m 

Variation: hi (j) = pα (j) + F · (pb(j) – pc (j))

Crossover:

end

Number of iterations g = 1, select the 
maximum number of iterations gmax and 

randomly initialize the population.

Selection:

Modal shape r

IDOF technology

Natural frequency

r < m?

Y

Y

The ith independent
component yr

 

g = g + 1
hi (j), rand (0, 1) ≤ Cr or j = r and (0, N)
pi (j), elsevi (j) =

vi, f (vi) > f (xi)
pi, else

pi =

g > gmax or
|p(g)T · p(g+1) – 1| < δ?best best

wr = pbest

r = r + 1

Figure 1: -e flow diagram of DEICA-based OMA for the LTI structure.
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Figure 2: -e description of fixed length moving window.
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(1) -e system should be a slow linear time-varying
(SLTV) structure which is weakly damped.

(2) Because of the limitation of blind source separation
and independent component analysis, the number of
vibration response sensors should be greater than or
equal to the identification order of identifiable op-
erational modal parameters.

(3) Because of the limitation of sampling theorem, the
sampling frequency of the vibration response signal
should be greater than or equal to 2 times of the
natural frequency of the identifiable modal natural
frequency.

(4) Every order of modal shape is with different am-
plitude. In case of the ICA method, the energy of
separation matrix is not unique, and independent
component also loses amplitude information. Unlike
the principal component analysis method [25], the
ICA method cannot get the contribution ratio in-
formation of each modal. Modal shape is a relative
quantity rather than an absolute value. So, in order to
compare the modal shape with the real modal shape,
the separation matrix and modal shape identified by
the ICA method should be normalized.

(5) -e order of modal parameter identified by ICA is
uncertain. -e modal identified by the ICA method
is not in accordance with the order from small to
large. In fact, the first separated output source and
vector are the ones whose independence is the
strongest rather than the first-order modal param-
eter. -erefore, in order to compare the natural
frequencies with the real natural frequencies, the
modal parameters identified by ICA need to be
reordered by the modal frequencies.

3. Simulation Identification

3.1. Simulation Dataset of a 5ree-Degree-of-Freedom
Structure with Slow Time-Varying Mass. To confirm
MWICA’s availability and identification accuracy, we have
designed a simulation of an LTV three-DOF spring oscillator
system in MATLAB/Simulink. -is model is shown in
Figure 4. -e initial conditions for the three modal dis-
placements and velocities are zero. -e stiffness matrix is set
to k1 � 1000 (N/m), k2 � 1000 (N/m), and k3 �

1000 (N/m), and the damping matrix is set to c1 �

0.01 (N · s/m), c2 � 0.01 (N · s/m), and c3 � 0.01 (N · s/m).
-e external force F(t) � F1(t) 0 0􏼂 􏼃

T is white noise
excitation with zero mean and unit variance. -e mass
matrix is set to m2 � 1 kg and m3 � 1 kg, and m1 is a time-
varying parameter as follows:

m1(t) �
1, 0≤ t≤ 50,

e
− 0.0005(t− 50)

, 50< t≤ 2000.
􏼨 (2)

-is kinetic equation becomes

N

Y

end

FFT

Time-varying structure modal 
paramemts

Use DEICA method to identify
operation modal parameters

start

Vibration response data XL
(i)

Set moving window length L, i = 1, ti = tbegin

i = i + 1

i = L ? T

Modal shape f k¢(ti+(L–1)/2) 
r

natural frequency f k¢(ti+(L–1)/2) 

Modal response qk¢
r(i)

Figure 3: Process of MWDEICA-based OMA algorithm for SLTV structures.

Table 1: -eoretical analysis and comparison between traditional
ICA and DEICA.

Traditional ICA DEICA
Fall into local optimum Easy Not easy
Global searching ability Low High
Robustness Low High
Complexity of time and space Low High
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x2(t)

x3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

f(t)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

In the Simulink model, we use the Runge–Kutta algo-
rithm to obtain responses of 40Hz sampling frequency and
2000 s recorded time [23]. In the time domain, 2.0% level
Gauss measurement noise disturbances are added to dis-
placement response signals.

3.2. Simulation Parameters Setting. According to the third
theoretical frequency 12.2951 Hz at time1987.225 s in
Table 2, the sampling frequency f is set to 40 Hz in
simulation of the SLTV structure.-e window length is set
to L � 1024 in this simulation, and then, the frequency
resolution of FFT Δf � 0.04Hz.

ΔfL(1)≜
L

f
×

fend(1) − fbegin(1)

tend − tbegin
�
1024
40

×
2.31 − 2.24
2000 − 50

≈ 9.25 × 10−4 Hz, (4)

ΔfL(2)≜
L

f
×

fend(2) − fbegin(2)

tend − tbegin
�
1024
40

×
7.28 − 6.28
2000 − 50

≈ 0.0131Hz, (5)

ΔfL(3)≜
L

f
×

fend(3) − fbegin(3)

tend − tbegin
�
1024
40

×
12.33 − 9.07
2000 − 50

≈ 0.0428Hz. (6)

-is objective function of ICA algorithm in this paper is
the measurement of maximization non-Gaussian (kurtosis).
-e optimized method of class ICA algorithm is the quasi-
Newton iteration method. -e ICA method is used multiple
times simultaneously, and the maximum iterations time is
4000. -e modal parameters can be identified most of the
time in the case of 60 runs.

-e parameter setting of DE: the individual number is
80; maximum iterations time is 4000; and proportionality
factor F and cross probability Cr are random transformation
each loop repeats.

3.3. Modal Assurance Criterion. To determine the accuracy
of the modal shapes, the modal assurance criterion (MAC) is
introduced to verify the operational modal identification
results. -e MAC is given by [26]

MACφ→
i
, φ→

j

�
φ→T

i φ
→

j􏼒 􏼓
2

φ→T

i φ
→

j􏼒 􏼓 φ→T

i φ
→

j􏼒 􏼓

, (7)

where φ→i is the ith identified modal shape, φ→j is the jth

theoretical modal shape, and φ→T

i and φ→T

j are the

transpositions of φ→i and φ→j, respectively. -e MAC values
range between 0 (no coincidence) and 1 (complete coinci-
dence). However, MAC only reveals information about the
direction and shape of the modal results and does not
contain any information about the modal amplitudes. -e
MAC value is always 1 if the two vectors are proportional.

3.4. Transient Operational Modal Parameters Identification
Results. -e two ICA algorithms were repeated 60 times,
respectively. For the modal natural frequency, Figure 5
shows the theoretical transient natural frequencies and
the identified natural frequencies by class MWICA and
MWDEICA for the SLTV structure.

Figure 5 shows that certain modal parameters are not
identified by class MWICA and MWDEICA at any time. In
MWICA, the percentage of modal parameters of uniden-
tified windows is more than 0.2% in the average of 60 trials.

We choose two moments t� 50.25 s and t� 1350.00 s
to compare the theoretical modal shapes with the
identifiedmodal shapes.-e recognition value of the frequency
is similar in each simulation, while the modal shape recog-
nition result fluctuates. We select the best value in 60 times.

F1 (t)
x1 (t) x2 (t) x3 (t)

c1

k1

c2

k2

c3

k3
m1 m2 m3

Figure 4: Linear time-varying three-degree-of-freedom spring vibrator model.
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3.5. Results Analysis

(1) Figures 5 and 6 and Tables 3 and 4 show that
using only nonstationary random response
signals, the MWICA-based and MWDEICA-
based OMA method can well identify the transient
natural frequency and modal shape of the SLTV
structure.

(2) Figures 5, and 6 show that, in the case of adding 2.0%
level Gauss measurement noise disturbances to
displacement response signals, compared with the
MWDEICA-based OMA method, the MVDEICA

method can identify more modal parameters of
windows, and the class MWICA-based OMA
method has low robustness and it is difficult to
identify modal parameters at some moment because
its optimization method is easy to go into local
optima [16]. For MWDEICA-based OMA, the rec-
ognition results are unstable.

(3) Table 5 shows that the MWDEICA-based OMA
method has much higher time and space re-
quirements than the MWICA-based OMA
method.
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Figure 5: Comparison between the identified frequencies and theoretical frequencies. (a) Comparison of first-order modal fre-
quencies, (b) Comparison of second-order modal frequencies, (c) Comparison of third-order modal frequencies.

Table 2: -e comparison of transient natural frequencies at moments 50.025 s and 1987.225 s.

Modal order 50.025 s (Hz) 1987.225 s (Hz) Change of transient frequency (%)
1 2.24 2.31 3.173
2 6.28 7.27 13.73
3 9.07 12.30 26.24
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Figure 6: Comparison of the modal shape identified by MWICA and MWDEICA to the real modal shape at two moments. (a) When
t� 50.25 s, the 1st modal shape, (b) when t� 50.25 s, the 2nd modal shape, (c) when t� 50.25 s, the 3rd modal shape, (d) when t� 1350 s the 1st

modal shape, (e) when t� 1350 s the 2nd modal shape, and (f) when t� 1350 s the 3rd modal shape.

Table 3: -e MAC values comparison at time 50.25 s.

-eory modal shape no. MWICA
identification order

MWDEICA
identification order

MAC identified
by MWICA

MAC identified by
MWDEICA

1 2 1 1.0000 0.9998
3 1 3 0.9922 0.9981
2 3 2 0.9999 0.9979

Table 4: -e MAC values comparison at time 1350 s.

-eory modal shape no. MWICA
identification order

MWDEICA
identification order

MAC identified
by MWICA

MAC identified by
MWDEICA

1 1 1 1.0000 0.9998
2 3 2 0.9419 0.9734
3 2 3 0.9076 0.9326
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4. Conclusions

In order to solve the problem that the traditional ICA
method is easy to fall into local optimum and difficult to
identify high-order modal parameters, combining moving
window technology and differential evolution independent
component analysis, this paper proposes a transient oper-
ational modal parameters identification method only from
nonstationary vibration response measurement signal s for
slow linear time-varying structures which is weakly damped.
-eoretical comparison and simulation identification results
show that MWDEICA-based OMA can effectively identify
time-varying modal parameters, while the parameters of
some sample points are not recognized in MWICA.

Due to moving window technology and differential
evolution algorithm, we are still unable to identify modal
parameters in some time points. How to reduce the com-
plexity of the algorithm and use MVDEICA to identify
higher-order modals is the future work. It is also the future
work to solve the problem and experimentally verify on
more complex three-dimensional engineering structures.
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