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Single image super-resolution (SISR) is a traditional image restoration problem. Given an image with low resolution (LR), the task
of SISR is to find the homologous high-resolution (HR) image. As an ill-posed problem, there are works for SISR problem from
different points of view. Recently, deep learning has shown its amazing performance in different image processing tasks. There are
works for image super-resolution based on convolutional neural network (CNN). In this paper, we propose an adaptive residual
channel attention network for image super-resolution. We first analyze the limitation of residual connection structure and
propose an adaptive design for suitable feature fusion. Besides the adaptive connection, channel attention is proposed to adjust the
importance distribution among different channels. A novel adaptive residual channel attention block (ARCB) is proposed in this
paper with channel attention and adaptive connection. Then, a simple but effective upscale block design is proposed for different
scales. We build our adaptive residual channel attention network (ARCN) with proposed ARCBs and upscale block. Experimental
results show that our network could not only achieve better PSNR/SSIM performances on several testing benchmarks but also

recover structural textures more effectively.

1. Introduction

Super-resolution (SR) is an important issue in the image
restoration area. The task of single image super-resolution
(SISR) is to find high-resolution (HR) images from the low-
resolution (LR) images. Since it is an ill-posed problem, there
are potential high-resolution images corresponding to an
identical image with low resolution. There are practical ap-
plications with SISR methods, such as video quality en-
hancement, remote sensing image processing, and MRI
analysis. To find the most suitable HR images, there are various
methods for SISR problem and other image restoration tasks.

Deep learning has shown its amazing performance in
various tasks [1-5]. Nowadays, there are convolutional
neural network- (CNN-) based works focusing on SISR
problem. As far as we know, SRCNN [6] is the first work
using a three-layer CNN for image super-resolution. After
SRCNN, Dong et al. proposed FSRCNN [7] with a deeper
but narrower network and achieved better performance with

less time cost. Usually, when the network is deeper, the
performance will be better. VDSR [8] proposed by Kim et al.
used a very deep network design with global residual
learning. Inspired by VDSR and residual connections, EDSR
[9] proposed by Lim et al. applied an enhanced deep network
for SISR problem with residual blocks. Besides EDSR, MDSR
[9] designs an upscale module for different scaling factors
jointly. Motivated by the structure of Laplacian pyramid, Lai
et al. proposed LapSRN [10] with a progressive structure.
Similar to MDSR, the progressive LapSRN could upscale
images with different scaling factors concurrently. Recursive
structures could effectively enlarge the receptive fields and
make full use of sharing parameters. DRCN [11] proposed by
Ghifary et al. used shared convolution layers to increase the
receptive fields. DRRN [12] proposed by Tai et al. combined
residual and recursive structures and achieved good
performances.

ResNet [13] proposed by He et al. has been proved to be a
success for network design. In ResNet, a residual block was
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proposed for image classification and beyond with effective
gradient flow. There are works for super-resolution with
residual blocks. EDSR stacked residual blocks with a global
shortcut to build a very deep network. RDN [14] proposed
by Zhang et al. introduced a residual dense block (RDB)
with feature fusion, achieving good performance. Besides
RDN, RCAN [15] proposed by Zhang et al. designed a
residual-in-residual structure to build the network deeper.
There is a shortcut in residual block: the addition of feature
maps before and after processing is regarded as the final
result. In fact, the above methods apply a fixed ratio bal-
ancing the two parts, which does not distinguish the dif-
ferent importance.

Attention is used for human brain simulation. When
watching pictures, human’s brain usually focuses on more
important area. There are attention methods for image
processing tasks. SENet [16] proposed by Hu et al. intro-
duced a channel attention method for importance distri-
bution among channels. SENet requires few parameters,
which is flexible for different network designs. To the best of
our knowledge, RCAN [15] is the first image super-reso-
lution work with channel attention mechanism. After
RCAN, IMDN [17] proposed by Hui et al. modified the
vanilla channel attention layers and achieved good perfor-
mances with few parameters. SAN [18] proposed by Dai et al.
introduced a second-order attention mechanism with
channel and nonlocal attentions.

In this paper, we propose a novel adaptive residual
channel attention block (ARCB) for image super-resolu-
tion. Different from vanilla residual blocks, an adaptive
weight is learned from paired data for combining infor-
mation of main path and shortcut. Considering the dif-
ferent importance of channels in residual blocks, channel
attention is introduced in ARCB for weight distribution on
channels. Besides block designs, recent works design
special upscale modules for different scaling factors. In this
paper, we introduce a simple but effective general upscale
block design for different factors. The adaptive residual
channel attention network (ARCN) is designed based on
ARCBs and proposed upscale block. Experiments are
performed on several testing benchmarks. The results show
that our ARCN could not only achieve better performance
on PSNR/SSIM comparison but also recover complex
structural textures more effectively.

The contributions of this paper could be demonstrated as
follows:

(1) We propose a novel block named ARCB with
channel attention mechanism. In ARCB, we propose
an adaptive residual connection with learned
weights. The weight factors could find suitable ratios
for combination information from different paths.
Channel attention mechanism in ARCB distributes
different weights on channels for concentrating more
on important information.

(2) We propose a tiny but effective upscale block design
method. With the proposed design, our network
could be flexibly analogized for different scaling
factors.
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(3) Experimental results show that our proposed ARCN
achieves better PSNR/SSIM results on several testing
benchmarks and recovers more complex structural
textures than other methods.

2. Related Works

2.1. Single Image Super-Resolution. Let I'® and I'R denote
LR and HR images separately; the observation model of
degradation step could be described as

M =1" +n (1)

where ()| denotes the degradation and #n denotes the noise.
Usually the degradation models are chosen as bicubic-down
with different scaling factors. Given I'®, the task of single
image super-resolution (SISR) is to find corresponding I''®.
However, there are several potential HR images degraded to
a same LR image. Since SISR is an ill-posed problem, it is
challenging to find the solution.

Convolutional neural network (CNN) has been proved
as an effective tool for image restoration [1-5]. Recently,
there are CNN-based works for SISR problem [19, 20]. To
the best of our knowledge, SRCNN [6] proposed by Dong
et al. is the first deep learning work for SISR. There are three
convolution layers in SRCNN, corresponding to the three
steps of sparse coding method: feature extraction, nonlinear
mapping, and restoration. After SRCNN, FSRCNN [7]
proposed by Dong et al. applied a deeper network for SISR
problem. Different from SRCNN, FSRCNN used a decon-
volution layer to upscale the feature map. By using shrinking
and expanding modules, FSRCNN decreased the number of
parameters and built the network deeper and faster. ESPCN
[21] proposed by Shi et al. introduced a pixel shuffle layer to
substitute the deconvolution layer for upscaling. Similar to
FSRCNN, there are several convolution layers processing the
LR feature maps. At the end of ESPCN, a convolution layer
changed the channel number of feature maps, and the pixel
shuffle layer performed the spatial transformation. From the
practical experience, a deeper network usually results in
better performance. VDSR [8] proposed by Kim et al. ap-
plied a very deep network with twenty convolution layers
and global residual connection. Besides, batch normalization
(BN) was used in VDSR to improve the performance. To
preserve the resolution of feature maps, zero padding
strategy was applied in VDSR. RED [22] proposed by Mao
et al. introduced a symmetrical encoder-decoder structure
with convolution and deconvolution layers. To transmit
information to the bottom layer, residual connections were
designed between blocks.

A deeper network will cause a large amount of pa-
rameters. Recursive design with sharing parameters is one of
the choices to build lightweight networks. There are re-
cursive networks for SISR problem. DRCN [11] proposed by
Ghifary et al. applied sharing convolution layers to enlarge
the receptive field with limited parameters. Similar to
SRCNN, there are three modules in DRCN. Embedding
network extracted the feature maps from input images. After
feature extraction, the inference network with sharing
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parameters performed the nonlinear mapping. Finally, re-
construction network restored the HR images from feature
maps. To increase the network performance, there is a skip
connection in DRCN to learn the residual information.
DRRN [12] proposed by Tai et al. designed a recursive re-
sidual connection with sharing parameters to prevent gra-
dient disappearance. By using recursive design and sharing
parameters, DRRN built a 52-layer network with few pa-
rameters and performed better than VDSR.

Recently, there are works with good performances fo-
cusing on different block designs and network pipelines
[23-27]. Dense connection has been proved effective for
image super-resolution [23, 25, 26]. SRDenseNet [28] pro-
posed by Tong et al. introduced dense connection to SISR
problem and concatenated all feature maps as the final output.
There are four components in SRDenseNet. Firstly, one
convolution layer was used to extract low-level features. After
extraction, several dense blocks were used to extract high-
level features. Deconvolution layers were used to upscale the
feature maps. Finally, a convolution layer was applied to HR
image production. SRResNet [29] used residual blocks with
skip connection to build a deep network for better perfor-
mance. EDSR [9] proposed by Lim et al. removed redundant
batch normalization layers from SRResNet, building a deeper
network. Residual connection has been proved as an effective
design for better network performance. RDN [14] proposed
by Zhang et al. introduced a residual dense block named RDB
combining two kinds of structures. By stacking RDBs with
global feature fusion, the deep network RDN achieved good
performance. MSRN [30] proposed by Li et al. introduced a
multiscale residual block combining residual and inception
blocks. Global fusion structure was applied in MSRN for
feature extraction. To build a deeper network, a novel re-
sidual-in-residual structure was proposed in RCAN [15],
which turned out to be a success.

2.2. Attention Mechanism. Attention mechanism was firstly
proposed by human brain simulation. When watching an
image or reading a sentence, the important areas will be paid
more attention. There are different attention methods used
in image processing. There are four kinds of attention
mechanisms: item-wise soft attention, item-wise hard at-
tention, location-wise soft attention, and location-wise hard
attention. The difference between item-wise attention and
location-wise attention is input form. Special sequential
items are required for item-wise attention, while location-
wise attention needs a single feature map. From another
point of view, attentions could be separated as soft and hard
attention. Soft attention focuses more on different areas and
channels. After training, soft attentions will be generated by
networks. Besides soft attention, hard attention concentrates
more on different pixels. Hard attention is a random pre-
diction procedure, which is usually implemented by rein-
forcement learning.

Spatial transformer network (STN) [31] is an attention
method in spatial domain. In STN, information from origin
images was transformed into another space with keypoints.
The authors proposed a spatial transformer module for the

transformation. There are also works for channel domain
attention. SENet [16] proposed by Hu et al. introduced a
channel attention method for concentrating more on im-
portant channels. In SENet, a squeeze-and-excitation (SE)
module is proposed to automatically learn the importance of
different channels. In SE module, squeeze operation is firstly
introduced to get the global channel features. After
squeezing, excitation module is used to learn the relations
among channels. There are two full connection layers with a
ReLU activation in excitation module. Finally, scale module
was applied after excitation for reweighting the feature maps.
SENet focuses on the importation of channels, regarding
different areas of feature maps equally. To consider the
global information of feature maps, nonlocal neural net-
works [32] introduced a long-range dependencies attention
block for better performance. However, the proposed
nonlocal blocks required more memory cost and high
computation complexity.

3. Method

In this section, we will describe the proposed ARCN. In
ARCN, an adaptive residual channel attention block named
ARCB is proposed to compose the network. Adaptive factors
in ARCB for different information importance are learned
while training. After adaptive residual connection, channel
attention mechanism distributes the weights on channels,
which considers the importance from another point of view.
The main body of ARCN is composed of several ARCBs and
a padding structure. A global skip connection is introduced
to ARCN for residual learning. After the main body, an
effective and tiny upscale module is designed for changing
the scaling factors flexibly. We will introduce proposed
ARCN in the following manner: Firstly, the network design
will be described in general. After description, the details of
ARCB will be discussed with channel attention. Detailed
introduction of flexible upscale block will follow the de-
scription of ARCB. Finally, some comparisons will be done
with other SISR works.

3.1. Network Design. The entire network structure is shown
in Figure 1.

There are three modules in the proposed ARCN. Firstly,
feature extraction module extracts feature maps from input
LR images. After feature extraction, nonlinear mapping
module processes the feature maps from LR space into HR
space. A skip connection is applied to nonlinear mapping
module for global residual learning. Finally, restoration
module with a flexible upscale block restores the HR images
from proposed feature maps.

There is one convolution layer in feature extraction
module. The layer extracts low-level features from LR image
and builds the feature maps. Let ffEM(.) be the feature
extraction module; then the operation could be demon-
strated as

H, = fFEM(ILR)) (2)

where I'} denotes the input LR images.



Scientific Programming

Global residual learning

FIGURE 1: The architecture of our proposed adaptive residual channel attention network (ARCN).

After feature extraction, several ARCBs are applied in
nonlinear mapping modules for mapping feature maps from
LR space to HR space. Let us denote H;. as the output of k-th
ARCB; then there is

Hio = fi (Hy), 3

where f28<(.) denotes the operation of k-th ARCB.

After K blocks, there is a padding structure composed of
two convolution layers with ReLU activation. The padding
structure is used to increase the network depth and weight
the information from main path for global residual learning.
The operation of padding structure and global residual
learning could be demonstrated as

Hy = fPP(Hg) + H,, (4)

where fpap () denotes the padding structure and HR de-
notes the feature maps after padding.

Finally, an effective upscale block is applied in resto-
ration module. In restoration module, the final HR image I}
is restored from processed feature maps. The operation of
restoration module could be demonstrated as

ISR - fUP (HR): (5)

where fUP(.) denotes the upscale block.

3.2. Adaptive Residual Connection Block. ARCB is intro-
duced to the network with adaptive residual connection and
channel attention. An illustration of proposed ARCB is
shown in Figure 2(b).

There are two convolution layers with ReLU activation in
ARCB. Different from ResBlock, which is used in most of SISR
works, a channel attention layer is designed after the con-
volution layers. The attention layer weights information from
different channels. After that, learned adaptive factor W, is
used to scale the processed feature maps.

Let fRES(.) and fA(-) denote the main processing path
and attention layer, respectively; then the operation of k-th
ARCB could be demonstrated as

Hy,, = szfCA(fRES (Hk)) + Hy, (6)

where W, denotes the adaptive factor learned while training.

The adaptive factor W, is one of the main differences
between ResBlock and ARCB. In vanilla ResBlock, the ratio of
information mixture from two paths is fixed. However, it does
not distinguish the importance of different information. In the
proposed ARCB, weight factor W, is a learnable parameter. In

other words, the ratio will be adjusted due to the training data,
which is more suitable for information fusion.

Another main difference between vanilla ResBlock and
ARCB is the channel attention. Convolution layers treat in-
formation from different channels equally. To concentrate more
on important channels, channel attention is introduced to
ARCB. The structure of channel attention is shown in Figure 3.

From Figure 3, global average pooling is firstly applied to
information estimation. There is a hypothesis that when the
feature maps are more complex, the information will be more
important. From this point of view, the global average pooling
operation could extract the information fast and effectively.
After the feature extraction, a squeeze-and-excitation design is
introduced for nonlinear mapping. In squeezing step, the
channel number shrinks for information distillation. The most
important information will be weighted after squeezing. Then,
the excitation module preserves the channel number the same
as the origin feature maps. Finally, a Sigmoid activation and a
dot multiplication are adopted to distribute different impor-
tance among channels.

Let us denote by x;, and x,,, the input and output of
channel attention. The operation of channel attention
mechanism could be demonstrated as

Xou = 0(FE(ReLU (FS(AvgPool (x;,))))) * X (7)

where o(-) denotes the Sigmoid activation; FE () and FS(-)
denote the squeeze and excitation modules. There is a ReLU
activation between squeeze and excitation modules. The two
modules are made of full connection layers.

There is a Sigmoid activation between the excitation
and multiplication. On one hand, it will be helpful for
nonlinearity. On the other hand, Sigmoid activation will
convert weights to be negative. Since there is no negative
for human vision system, it is designed to fit the biological
process.

3.3. Flexible Upscale Block. Upscale block is widely used in
various works for SISR problem, which increases the res-
olution of feature maps and restores the final HR image.
There are different upscale block designs for different scaling
factors without a unified pattern. In this paper, we proposed
a flexible upscale block design pattern. With the proposed
design, the structure could be easily modified for different
scaling factors. The structure of our proposed flexible up-
scale blocks is shown in Figure 4.

As shown in Figure 4, there are three traditional upscale
block designs: A, B, and C [30]. In A, a nonlinear upscale
design is introduced with ReLU activation. Design B
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FIGURE 2: Structure of different blocks. (a) Res blocks. (b) Proposed ARCB.

FiGure 3: Structure of channel attention.

removes the ReLU activations but keeps the convolution and
pixel-shuffle layers. Besides, design C uses deconvolution to
substitute the pixel-shuffle layers. Different form other
works, there is only one convolution layer with a pixel-
shuffle layer in the proposed upscale block.

There are two benefits of using the flexible upscale block
design. On one hand, there is only one convolution layer in the
block, which saves the parameters and decreases the compu-
tation complexity. On the other hand, when the scaling factor is
changed, the only modification of the block is the channel
number of convolution layers. After changing, the main body of
the network could be find-tuned for a new factor with few
iterations.

There is a main difference between the proposed block
and others. In other designs, there is a convolution layer
after the last pixel-shuftle or deconvolution layer. Usu-
ally, it is used to restore the HR images with 3 channels
from feature maps. However, in our proposed block, the
restoration is proposed by the only convolution layer. On
one hand, it is corresponding to the feature extraction
module, which is also composed of only one convolution
layer.

To introduce the design in detail, there are examples of
different scaling factors. The special configurations are
shown in Table 1. Notice that when the scaling factor is
changed, the only modification is the channel number. From
this point of view, the proposed upscale block is flexible for
different factors.

4., Discussion

(1) Difference from DRDN [33]: In DRDN, there are dense
block (DB) structures for feature exploitation. The
entire DRDN holds a global residual dense connection
design to efficiently process the features. In ARCN,
global and local residual connections are utilized to
process the features. There is no dense connection in
ARCN, which is for shrinking the channel numbers.

WM -¥-
T
L

FIGURE 4: Structure of proposed flexible upscale block with scaling
factor x4.

ReLU
DeConv

mm Conv
Pixelshuffle

TaBLE 1: Upscale block configurations for different scaling factors.

Scale Layers Input channels Output channels Kernel size

%2 Conv 64 64x2x2 3x3
PS 64x2x2 64 —

%3 Conv 64 64x3x3 3x3
PS 64x3x3 64 —

" Conv 64 64x4x4 3x3
PS 64 x4x4 64 —

%8 Conv 64 64 x8x8 3x3
PS 64x8x8 64 —

There is no channel attention and there are no adaptive
weights in DRDN. In ARCN, the two components are
utilized to exploit the features more effectively.

(2) Motivation on global and local residual learning: In
ARCN, global and local residual learning strategies are
jointly applied for feature exploration. The residual
connections can effectively solve the gradient vanishing
problem, which make the network deeper. The local
residual connection in ARCB ensures the gradient flow,
while the global residual learning in ARCN guarantees
the identical information transmission, which im-
proves the network capacity and representation.

4.1. Experiment

4.1.1. Implementation Details. In proposed ARCN, there are
K=16 ARCBs stacked as the main path of the nonlinear
mapping module. The squeeze step in channel attention
shrinks the channel number as n=16. For all convolution
layers expect for upscale block, there are ¢ =64 filters.
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TaBLE 2: Quantitative PSNR/SSIM comparison for scaling factors x2, x3, and x4, on testing benchmarks Set5, Set14, B100, Urban100, and

Mangal09. Our performance is shown in bold.

Set5 [35] PSNR/  Setl4 [36] PSNR/

B100 [37] PSNR/

Urban100 [38] PSNR/ Mangal09 [39] PSNR/

Scale  Method SSIM SSIM SSIM SSIM SSIM
Bicubic 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [6] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9750
VDSR [8] 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
FSRCNN [7] 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710
DRCN [11] 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732
LapSRN [10] 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
DRRN [12] 37.74/0.9591 33.23/0.9542 32.05/0.8973 31.23/0.9188 37.88/0.9749
x2  MemNet [40]  37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9542
IDN [41] 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9740
EDSR (B) [9] 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.92/0.9272 38.54/0.9749
SRMDNF [42]  37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9769
CARN [43] 37.72/0.9590 33.52/0.9166 36.66/0.8978 31.92/0.9256 38.36/0.9761
MS‘?ZE]SRN 37.62/0.9600 33.13/0.9130 31.93/0.8970 30.82/0.0150 37.38/0.9765
Ours 38.006/0.9605 33.54/0.9173 32.15/0.8992 32.13/0.9276 38.70/0.9750
Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [6] 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN [7] 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [8] 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN [11] 33.82/0.9226 29.96/0.8311 28.80/0.7963 27.53/0.8276 32.66/0.9343
LapSRN [10] 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275 32.21/0.9350
DRRN [12] 34.03/0.9244 29.99/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379
x3  MemNet [40]  34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
IDN [41] 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
EDSR (B) [9] 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
SRMDNF [42]  34.12/0.9542 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403
CARN [43] 34.29/0.9542 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440
MS'E‘E]SRN 33.88/0.9230 29.89/0.8340 28.87/0.8000 27.23/0.8310 32.28/0.9360
Ours 34.36/0.9542 30.30/0.8412 29.07/0.8045 28.14/0.8514 33.50/0.9439
Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [6] 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [7] 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [8] 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
DRCN [11] 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854
LapSRN [10] 31.54/0.8842 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
DRRN [12] 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
x4  MemNet [40] 31.74/0.8893 38.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
IDN [41] 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
EDSR (B) [9] 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
SRMDNF [42]  31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024
CARN [43] 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
MS'?:}I’]SRN 31.62/0.8870 28.16/0.7720 27.36/0.7290 25.32/0.7600 29.18/0.8920
Ours 32.13/0.8941 28.58/0.7816 27.56/0.7356 26.09/0.7859 30.42/0.9074

Our ARCN is trained on DIV2K [34] dataset. DIV2K
dataset is a novel dataset for SISR problem. There are 1000
images with up to 2K resolution from real world. In DIV2K,
there are 800 images for training, 100 images for validation,
and 100 images for testing. In this paper, we train our ARCN
with 800 training images and validate the model with 5
images. The paired training data are cropped with resolution
of 48 * 48 for LR patches. The batch size for training is set as
20. The model is updated for 1000 epochs by Adam opti-
mizer. The learning rate of Adam optimizer is set as Ir = 10~
and halved for every 200 iterations.

Five testing benchmarks are used to evaluate the network
performance. They are Set5 [35], Setl4 [36], B100 [37],
Urban100 [38], and Mangal09 [39]. The evaluation indexes
are chosen as Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM).

4.1.2. Experiment Results. We compare our ARCN with
some SISR works: SRCNN [6] and FSRCNN [7]. The
quantitative PSNR/SSIM comparisons are shown in
Table 2.
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Image_004 from Bicubic

Urban 100 (PSNR/SSIM)  (19.91/0.7459)  (21.11/0. 8337)

Image_004 from HR Bicubic

Urban 100 (PSNR/SSIM) ~ (22.91/0.7638)  (25.10/0. 8340)

=

LapSRN [10] CARN [33] Ours
(21.11/0.8398) (22.21/0.8728) (22.65/0.8777)

LapSRN CARN [33] QOurs
(25.01/0.8319)  (25.94/0.8630) (26.16/0.8708)

SN gy —
Image_067 from HR Bicubic LapSRN [10] CARN [33] Ours
Urban 100 (15.80/0.7491)  (17.31/0. 8475) (17.34/0.8578) (18.12/0.8883) (18.30/0.8902)

Image 067 from
Urban 100

(20.32/0.7072)

VDSR[8]  LapSRN [10]
(20.86/0.7577)  (20.71/0.7574)

CARN ([33]
(21.28/0.7786)

Ours
(21.62/0.7916)

FIGURE 5: Visual quality comparisons of different methods with B1 x 4 degradation. The images are chosen from Urban100 dataset. From the

results, ARCN could recover the structural information more effectively.

TaBLE 3: Quantitative comparison on parameters and performance for scaling factor x4. Our results are shown in bold.

Model Param Set5 Setl4 B100 Urban100 Mangal09

CARN [43] 1.592 M 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084
EDSR (B) [9] 1.518 M 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
SRMDNF [42] 1.552 M 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024
DRCN [11] 1.774 M 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854
Ours 1.294M 32.13/0.8941 28.58/0.7816 27.56/0.7356 26.09/0.7859 30.42/0.9074

From Table 2, our model has achieved competitive or
better performance on five benchmarks compared to other
works. For Urban100 and Mangal09, our ARCN achieves
better performance than the others. There are high-reso-
lution images from real world in Urban100, and Mangal09
is composed of the comic book covers. From this point of
view, our ARCN could recover the complex structural
textures more effectively.

Visualization comparisons are shown in Figure 5. There
are four images chosen from Urban100 testing benchmark to
compare the performance. From the visualization, our ARCN
performs better than the others on structure texture recovery.

4.2. Model Analysis

(1) Study on parameters: From the design, our proposed
flexible upscale block could save the parameters. To
show the comparison on parameter and performance,

we test the model on five benchmarks. The quantitative
results are shown in Table 3. We compare our ARCN
with several recent lightweight works for SISR prob-
lem: CARN [43], EDSR-baseline [9], SRMDNF [42],
and DRCN [11]. The results show that our ARCN
could achieve competitive or better performance with
fewer parameters. There are around 18.7% parameters
off in our ARCN with similar performance.

(2) Study on adaptive factors: To demonstrate the effect

of adaptive factors, we illustrate the learned features
from two different parts of ARCB. As shown in
Figure 6, (a) denotes the features processed from
main path; (b) denotes the input feature from
shortcut. The shortcut contains the origin infor-
mation of input features, while the processed feature
concentrates on the high-frequency information on
features. After the adaptive fusion, the high-fre-
quency information will be enhanced by aggregation.
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FiGure 6: Illustration of different features from ARCB. (a) Processed feature. (b) Shortcut.
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FIGURre 7: Illustration of learned W, of different ARCBs.

TaBLE 4: Quantitative PSNR/SSIM comparison on adaptive weights for scaling factor x4. Our results are shown in bold.

Weight Set5 Set14 B100 Urban100 Mangal09
w/o 32.13/0.8941 28.58/0.7816 27.56/0.7356 26.09/0.7859 30.42/0.9074
w 32.09/0.8931 28.48/0.7794 27.50/0.7337 25.88/0.7801 30.20/0.9044

TaBLE 5: Comparisons on parameters of two upscale blocks with different scaling factors.

Scaling factor X2 x3 x4 x5 X6 x7 x8
Cascading 119443 334083 297115 924931 481795 1811203 44867
Proposed 6924 11579 27696 43275 62316 84819 110784

Furthermore, to demonstrate the learned weights of
different ARCBs, we show W, in Figure 7. The x-axis
denotes the depth of ARCBs. The y-axis denotes the
learned weights. From the figures, with the increase
of network depth, the exploited high-frequency in-
formation will be more important with larger W,,.
This demonstrates the capacity of adaptive residual

learning, which learns a flexible weight for different
level of information. A quantitative comparison of
PSNR/SSIM with and without W, is shown in Ta-
ble 4. From the results, W, acts as an important role
for performance improvement.

(3) Study on upscale block: In this paper, we propose an

efficient upscale block for arbitrary upscaling factors.
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As a substitution, the vanilla cascading design and
proposed efficient one hold competitive perfor-
mance. However, the proposed upscale block holds a
much smaller number of parameters. A comparison
of two upscale blocks with different scaling factors is
shown in Table 5. From the table, proposed blocks
have much fewer parameters with less computation
cost for upscaling the images.

5. Conclusion

In this paper, we proposed a novel adaptive residual channel
attention network named ARCN for single image super-
resolution (SISR) problem. In the proposed ARCN, adaptive
residual channel attention block (ARCB) was designed for
better performance. Mixture factors in ARCB were learned
while training, which weighted the information from two
paths in blocks adaptively. Channel attention mechanism
was introduced to ARCB for distributing the importance
among different channels. Besides ARCB, a tiny but flexible
upscale block design was proposed for different scaling
factors. Experimental results showed that our proposed
ARCN could not only achieve competitive or better per-
formance with fewer parameters than other lightweight
works but also recover the complex structural textures more
effectively.

In the future, more reference-free perceptual assess-
ments will be performed to demonstrate the network per-
formance. Furthermore, more experiments will be
conducted on real-world datasets.
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