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In this paper, a sequence decision framework based on the Bayesian search is proposed to solve the problem of using an
autonomous system to search for the missing target in an unknown environment. In the task, search cost and search efficiency are
two competing requirements because they are closely related to the search task. Especially in the actual search task, the sensor
assembled by the searcher is not perfect, so an effective search strategy is needed to guide the search agent to perform the task.
Meanwhile, the decision-making method is crucial for the search agent. If the search agent fully trusts the feedback information of
the sensor, the search task will end when the target is “detected” for the first time, which means it must take the risk of founding a
wrong target. Conversely, if the search agent does not trust the feedback information of the sensor, it will most likely miss the real
target, which will waste a lot of search resources and time. Based on the existing work, this paper proposes two search strategies
and an improved algorithm. Compared with other search methods, the proposed strategies greatly improve the efficiency of
unmanned search. Finally, the numerical simulations are provided to demonstrate the effectiveness of the search strategies.

1. Introduction

Unmanned search and rescue is a highly autonomous task
and there are many cases of such spatial search problems
[1–3], such as resource exploration, sea fishing, border
patrols, search fugitive, and troubleshooting. Integrated
high-efficiency mobile processor platform, effective sensor,
and data fusion algorithms make possible the imple-
mentation of these highly autonomous tasks [4–6]. In the
above tasks, probabilistic information is often used to de-
scribe the likelihood that the target in a different location.
However, due to the limitation of sensor accuracy and
complex external interference, search agents cannot always
obtain the correct information; although the search agent
can update the status of a target location by collecting and
processing incomplete observations, an appropriate search
strategy is still needed to guide it when and where to detect
[7, 8]. Besides, time is one of the key factors in search tasks,
especially in rescue tasks or disaster management. As time
goes by and the external uncertain interference, the position

of the target will become more and more uncertain, which
greatly increases the difficulty of the task.

/erefore, there is an urgent need for a general
framework which can integrate the probability character-
istics of the search area and deal with erroneous observa-
tions. In order to solve the above problem, this paper
proposes a Bayesian-based search decision framework and
two adaptive strategies to guide the search agents to find a
static target in an unknown place as soon as possible [9, 10].
A brief summary of prior literature: the classical search
theory was introduced by Koopman during World War II
[11], which focuses on using aircraft and warships to find
enemy submarines in the shortest possible time. After that,
the search theory has been extensively generalized by Stone
[12].

In recent years, many researchers have treated search
problems as a decision-making problem rather than an
information collection task [13–18]. In decision theory, the
search problem is considered as a decision between the
current state of knowledge and the hypothesis of the
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decision-maker. Focusing on the problem of how to manage
mobile agent to search and track multiple static targets, a
perception-based decision was developed for the static
objects in [19]; although this method can guarantee tracking
the state of the target in a short time, it still lacks the analysis
of decision evolution. In order to compare the impact of
different strategies on the search process, a Bayesian-based
search framework is proposed in [20], which provides a
platform for comparison of search methods. In addition,
inspired by /run et al., the probabilistic approach [21] has
arisen in the robotics community, the core of probabilistic
robots is the idea of estimating states from sensor data, and
the probability mass function (PMF) is used to represent the
search agent’s understanding of the environment in [22].

Many early studies are based on the assumption that the
sensor has no false positives, including [23]. Although some
scholars are devoted to solving the problems of false posi-
tives and false positives in the search task [24, 25], they all
assume that the cells in the search area are independent; this
assumption leads to the inability to integrate the relevant
information of the search into the search plan in time [26].
Aiming at the scenario of using a drone cluster to find targets
in a hazardous environment, a collaborative search strategy
for drones is proposed in [27], which instructs searchers to
gradually move from one unit to the next to ensure that the
search area is covered. /e influence of the heuristic in-
formation on search agents was studied in [28]; Lanillos et al.
compared the search strategy with heuristic information and
the search strategy without heuristic information./e results
show that the search strategy with the heuristic information
can effectively avoid the search agent falling into the local
optimal position. At the same time, some novel search
strategies (i.e., random jump search, snapshot search, and
drosophila-inspired search) were proposed and discussed in
[22], but there is a lack of motion restrictions on the search
agent when analyzing these strategies. Furthermore, relevant
search strategies were divided into two categories in [29].
One type of search strategy is called the nonadaptive search
strategy; it does not consider reoptimizing the search path
but only consider collecting information. Another type of
search strategy is called the adaptive search strategy, which
updates the search path through the feedback of the current
search information, which greatly improves the search
performance. In order to prevent the collision between
robots in the process of searching, a new distributed cov-
ering method of the mobile deformable convex region is
proposed in [30]. /e concept of the minimum expected
time was proposed in [31], it is used to indicate the time
required to complete the search task.

Although there have been many notable achievements in
search theory [32, 33], there is still room for improvement;
for example, the search plan was optimized using the cu-
mulative detection probability in [23], but the sensor’s false
positive error has not been considered in the search process.
In addition, when the search agent needs to check some
places far away from itself, it needs some path planning
algorithms to guide it; this process can consider using
Dijkstra’s algorithm [34], A∗ algorithm [35], or rapidly
exploring random tree algorithm [36].

Contribution of this paper: based on the previous work, a
sequential decision-making search framework and two
adaptive search strategies are proposed in this paper. /e
main difficulty of this paper is that the search agent can only
move a fixed distance at a time, and the sensor is not perfect.
Compared with other works, the main contributions of this
article are concentrated in the following four aspects:

(i) In the search process, not only the movement ability
of the motion agent but also various errors of the
sensor are considered.

(ii) In this paper, the evolution expression of sequence
decision is derived, and a Bayesian-based search
decision framework is proposed to deal with the
incomplete information detected by the search agent.

(iii) /e evolution of the search decision is analyzed
quantitatively from the mathematical expression, two
key factors affecting the decision are obtained, and two
effective adaptive search strategies are proposed
according to the characteristics of these two factors.

(iv) A repetitive detection mechanism is proposed to
deal with imperfect observations of sensors, which
saves search resources to a certain extent and
prevents search agents from falling into a locally
optimal position.

Organization: the remainder of this paper is organized as
follows. In Section 2, the knowledge of the search problem is
introduced and a Bayesian-based search decision framework
is proposed. /rough the analysis of decision evolution, two
effective adaptive search strategies are proposed and ana-
lyzed in Section 3. /e numerical simulation results are
presented in Section 4. Section 5 concludes the paper with
closing remarks and avenues of future research.

2. Problem Formulation

In this section, the preliminary knowledge of the search
problem and search decision-making framework are pre-
sented. In the search decision-making framework, the un-
certain state of the target is expressed as a PMF, the search
agent combines the new information with the prior infor-
mation in the form of probability and updates the knowledge
state with Bayesian rules to form a new posterior PMF.

2.1. Search Area. Consider an immobile object xT lost in
regionA, the search areaA can be divided into |A| disjoint
grid cells. Figure 1 shows the grid division of a square area. It
is important to note that xT is in the discrete grid and not on
the grid boundary. xT ∈ Ameans the target xT exists in this
area A. Conversely, xT∈A indicates that the target is not in
the area. Hence, we can use a Bernoulli random variableH to
indicate whether the target xT is really in the region A:

H �
0, if xT ∈ A,

1, if xT ∈ A.
􏼨 (1)

Furthermore, use the variable xath
to indicate whether the

target is in the xath
cell. If xath

� 1, it means that the target xT
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is in the xath
cell; on the contrary, xath

� 0 means that the
target is not here:

xath
�

0, if xT ≠xath
,

1, if xT � xath
.

⎧⎨

⎩ (2)

2.2. Search Model. In the search process, the information
detected by the sensor may be incorrect due to the false
positive or false positive errors, and the da(t) ∈ 0, 1{ } is used
to represent the detection result of the search agent in the ath
grid at the time t; for convenience, ath is abbreviated as a.
/erefore, imperfect sensors can be modeled as follows:

Pr da(t)|xT( 􏼁 �

Pr da(t) � 1 | xa(t) � 0( 􏼁 � α,

Pr da(t) � 1 | xa(t) � 1( 􏼁 � β,

Pr da(t) � 1 | xa(t) � 0( 􏼁 � 1 − α,

Pr da(t) � 1 | xa(t) � 0( 􏼁 � 1 − β,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where the error probabilities α and β quantify the charac-
teristics of the imperfect sensing capabilities, which can be
determined by experiment or sensor specifications. Note
that the condition α + β≤ 1 must be set here; otherwise, the
search agent will not be able to get valid information.

2.3. Search AgentMotionModel. Due to the limited speed of
the search agent and the incomplete sensing function, each
cell can only be detected one by one. Figure 2 shows a search
graph where each cell is connected to all adjacent cells, and
the search agent can move between two vertices that are
connected. When the search agent determines that a certain
cell is a possible target location, it will use the Dijkstra al-
gorithm to build the shortest path.

2.4. Bayesian Update of the Belief Map. /e Bayesian ap-
proach provides an effective way to maintain and update all
the quantitative and qualitative information related to search
[23]. In the search task, the search agent marks a corre-
sponding probability value where the target may appear.
/en, the search agent collects a set of observation sequences
D(t) � d1, . . . , dt􏼈 􏼉; through this imperfect detection in-
formation, it can have a deeper understanding of the real
state of the target. At the same time, the B(t) is used to
represent the aggregate belief, which is defined as

B(t) � 􏽘
|A|

a�1Pr xT � 1|D(t)( 􏼁. (4)

When the search task is launched, the search agent will
have an initial aggregate belief (B(0) � δ, 0< δ ≤ 1); the
initial aggregation belief is usually given by experience. In
the belief map, each cell contains a confidence value, which
represents the probability of target xT in it. /e recursive
Bayesian approach provides a simple but effective way for
updating the belief map; after the search agent obtains the
detection result, we use it to update the belief map. /e first
step involves a simple application of the Bayesian rule to the
individual cell belief:

Pr xT � a|D(t)( 􏼁

�
Pr da(t)|xT � a, D(t − 1)( 􏼁 × Pr xT � a|D(t − 1)( 􏼁􏼂 􏼃

Pr da(t)|D(t − 1)( 􏼁
,

(5)

where the numerator term can be regarded as a detector
model and the Pr(xT � a|D(t − 1)) is the belief at the last
moment of the ath cell, which provides a recursive term for
the recursive Bayesian method. By Markov’s assumption of
conditional independence Pr(da(t)|xT � a, D(t − 1)) �

Pr(da(t)|xT � a), we can get

Pr xT � a|D(t)( 􏼁

�
Pr xT � a|D(t − 1)( 􏼁 × Pr da(t)|xT � a( 􏼁􏼂 􏼃

Pr da(t)|D(t − 1)( 􏼁
,

(6)
where Pr(da(t)|D(t − 1)) is the marginal distribution
measured by the sensor; it can be computed by

Pr da(t) | D(t − 1)( 􏼁 � 􏽘

H� 0,1{ }

Pr da(t)|H, D(t − 1)( 􏼁􏼂

× Pr(H|D(t − 1))􏼃.

(7)
After some algebraic manipulations, we can get the final

recursive expression as follows:

Pr xT � a|D(t)( 􏼁 �
A

B + C
,

A � Pr dk(t)

􏼌􏼌􏼌􏼌􏼌􏼌xT � a,D(t −1)􏼒 􏼓Pr xT � a|D(t −1)( 􏼁,

B � Pr dk(t)

􏼌􏼌􏼌􏼌􏼌􏼌xT � k,D(t −1)􏼒 􏼓Pr xT � k|D(t −1)( 􏼁,

C � Pr da(t)

􏼌􏼌􏼌􏼌􏼌􏼌H � 0,D(t −1)􏼒 􏼓 1−Pr xT � k|D(t −1)( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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Figure 1: Search area discretization.
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2.5. Decision-Making Condition. In the framework of search
decision-making, B and B {0≤ B <B≤ 1} define the con-
ditions for ending the search task. Once the aggregate belief
B(t) is not within the threshold ranges, the search agent will
make a decision and terminate the task. More specifically, if
the condition B(t)>B is satisfied, the search agent termi-
nates the task, finds the cell with the highest confidence in
the belief map, and determines that the target is in the cell.
Conversely, if the condition B(t)< B is satisfied, the search
agent determines that the target is not in the area.

3. Search Strategy Analysis

In this section, we study two key factors that affect the
success of the search task and propose two adaptive search
strategies according to the characteristics of the two factors.

3.1. Decision1eory Analysis. First, the search agent collects
a series of incompletely correct observations D(t) after t-
moment; therefore, we can quantify the process of decision
evolution over time as follows:

B(t) � 1 − Pr xT � 1|D(t)( 􏼁. (9)

In order to simplify the expression, some intermediate
functions are defined as follows:

f da(t)( 􏼁 � 1 − da(t)( 􏼁(1 − α) + da(t)α,

g da(t)( 􏼁 � 1 − da(t)( 􏼁β + da(t)(1 − β),

M da(t)( 􏼁 � g da(t)( 􏼁 − f da(t)( 􏼁,

Na da(t)( 􏼁 �
f da(t)( 􏼁, if a(t)≠ a,

g da(t)( 􏼁, if a(t) � a.
􏼨

(10)

/e probability that the search agent detects “1” in the
current cell is represented by f(da(t)); it includes the

situation when the sensor has a false positive error. At the
same time, g(da(t)) represents the searcher agent detects
“0” in the current cell; it also includes the situation when the
sensor has a false negative error.

Hence, equation (8) can be rewritten as

Pr xT � a | D(t)( 􏼁 �
A

D × E + F
, (11)

where

D � Pr da(t)|xa(t) � 1( 􏼁 − Pr da(t)|xa(t) � 0( 􏼁,

E � Pr xa(t) � 1|D(t − 1)( 􏼁,

F � Pr da(t)|xa(t) � 0( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

D(t) � d(1), . . . , d(t){ }, so we can get a new closed ex-
pression to update the individual belief:

Pr xT � a | D(t)( 􏼁 �
G

H + I × J
, (13)

where

G � 􏽙
t

k�1
f da(k)( 􏼁Pr xT � 1|D � 0( 􏼁,

H � 􏽙
t

k�1
f da(k)( 􏼁,

I � 􏽘
t

k�1
􏽙

k−1

l�1
Na(k) da(l)( 􏼁⎛⎝ ⎞⎠M da(k)( 􏼁 􏽙

t

j�k+1
f da(j)( 􏼁⎛⎝ ⎞⎠,

J �Pr xa(k) � 1 |D � 0( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Finally, through equations (11) and (13) to calculate a
one-step change in the belief map, we can find that B(t) is
controlled by the following two factors:

(i) Pr(xa(t) � 1 | D(t − 1)) indicated the search agent
should try to reach the higher belief grid at the next
step

(ii) da(t) indicated the detected result at the next step
should be positive, which also includes the false
positive error

Due to the bounded speed of the robots in practical
applications, the search agent cannot reach the cell with the
highest belief immediately. Not only this, but also the above
two conditions cannot always be compatible. Hence,
according to the characteristics of these two factors, two
different search strategies are proposed here. /e first
search strategy is called “myopic strategy” because the
search agent always selects the cell with the highest con-
fidence value in the single-step reachable cells as the lo-
cation for the next detection. In the second strategy, the
search agent always pays attention to the cell with the
largest belief value in the map, so it needs to scan the belief
distribution of the entire search region, which is called the
“saccadic strategy.”
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Figure 2: An example search graph G.
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3.2. Myopic Search Strategy. Once the search agent adopts
the myopic strategy, it checks the belief values of all the cells
around it that can be reached in one step. In this process, the
searcher ties to maximize B(t) in every step. Figure 3 in-
tuitively reflects the nature of the strategy; for convenience,
the unrelated cells in the belief map set as “0.” When the
search agent is at (7, 4), the belief value around (8, 5) is the
largest, so it will go there in the next step. Furthermore, the
pseudocode when the search agent adopts the myopic
strategy is given in Algorithm 1.

3.3. Saccadic Search Strategy. In the search area, the cell on
the belief map with the largest belief value is critical to the
searcher and should be checked as soon as possible, so the
search agent needs to build the shortest path from the
current location to there. In order to visualize the strategy,
the belief value of the unrelated point on the belief map is
set as “0” in Figure 4. Assuming the search agent at (7, 4)
and the belief value at (9, 10) are the largest, so it will
construct the shortest path to there by the Dijkstra algo-
rithm. But once the peak has changed during the update
process, the search agent will cancel the original plan and
rebuild a new path. Similarly, the pseudocode when the
search agent adopts the saccadic strategy is given in Al-
gorithm 2. Among them, xc represents the current location
of the search agent, xd represents the current destination
that needs to go, and P is an array containing the cells that
need to pass from xc to xd.

3.4. Repeat Detection Mechanism. In addition, in order to
avoid the unreasonable behavior of the search strategy in
the following, we also propose a repeated detection
mechanism. /e mechanism can be divided into the fol-
lowing three steps:

(1) When the search agent initializes the belief map, an
expected detection map is simultaneously initialized;
as shown in Figure 5, the expected value is defined as
“1” only in the position with the highest belief, while
the others are defined as “0.”

(2) Once the detected result detected in the cell is dif-
ferent from the corresponding cell in the expected
detection map, the search agent will check the cell
repeatedly until it is identical.

(3) /e expected detection map is the same as the belief
map, which is always updated in each step. In ad-
dition, the update process for the detection map is
similar to step “1.”

4. Results and Discussion

In this section, the performance parameters of the search
strategy are obtained by Monte Carlo simulation. In addi-
tion, the minimum expected time to detection E[TTD]

(includes the average simulation steps for a search task
completion E[TTD]s, the average CPU time for a search task
completion E[TTD]c) and the accuracy P are used as the
index for evaluating the performance of strategies. In the

simulation of this section, the computer configuration and
software are CPU i5 8250U, 1.6GHz, 8G Ram, MATLAB
2018b.

4.1. Search Environment. Consider that an object without
moving ability is lost in a 10 × 10 block areaA. As shown in
Figure 6, the initial probability distribution is modeled as a
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Figure 3: Myopic strategy.

(1) Initialize the belief map M
(2) Initialization decision threshold B, B and time t� 0
(3) Calculate the aggregate belief B(0)
(4) while B<B(t)<B do
(5) Calculate the cell ath+1 that should be detected at

the next moment according to the myopic strategy
(6) Check the cell ath and get detection result Da(t)
(7) Update M based on Da(t)
(8) Calculate B(t)
(9) t� t+ 1
(10) end while
(11) return Search result

ALGORITHM 1: /e searching process of the myopic strategy.
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Figure 4: Saccadic strategy.
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discrete approximation of Gaussian distribution, and the
initial belief B(0) � 0.5; the search agent starts at (1, 1) and,
equipped with an imperfect sensor, the sensor parameters are
set as false alarm probability α � 0.2, false negative probability
β � 0.2, and search decision threshold set as B � 0.9.

4.2. Performance Comparison. To test the performance of
the search strategies proposed in this paper, three different
strategies (sweeping strategy [27], random jump strategy
[20], and snapshot strategy [37]) are selected and compared.

All the strategies are tested 10,000 times; E[TTD]s,
E[TTD]c, andP are shown in Table 1. Not only is themyopic
strategy simple to calculate, but also it has a relatively short
CPU time; although the saccadic strategy has the highest
accuracy, it needs strong computing power because it in-
volves the shortest path planning in every step. In addition,
Figures 7–11 show the path of the search agent under the five
different search strategies, respectively. /e trajectory of the
random jumping strategy is too complicated, so only a part
of the trajectory is shown in Figure 10.

(1) Initialize the belief map M
(2) Initialization decision threshold B, B and time t� 0
(3) Calculate the aggregate belief B(0)
(4) Initialization parameter i� 1
(5) while B<B(t)<B do
(6) Find the cell (xd, yd) with the largest belief on the belief map M
(7) if t� 0 then
(8) Construct a path P from (xc, yc) to (xd, yd) by the Dijkstra algorithm
(9) ath+1 �P(1)
(10) else
(11) if /e (xd, yd) did not change then
(12) ath+1 �P(i)
(13) else
(14) Rebuild the path P
(15) ath+1 �P(1)
(16) Reset i� 1
(17) end if
(18) end if
(19) i� i+ 1
(20) Check the cell ath+1 and get detection result Da(t)
(21) Update M based on Da(t)
(22) Calculate B(t)
(23) t� t+ 1
(24) end while
(25) return Search result

ALGORITHM 2: /e searching process of the saccadic strategy.
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Figure 5: Mapping between belief map and expected detection map.
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Figure 6: /e initial belief map.

0
0 1 2 3 10

0.5

Be
lie

f v
al

ue

4 95 86 77 6

1

8 59 4310 21

x
y

(a)

0
0 1 2 10

0.5

3

Be
lie

f v
al

ue

94 85 76 6

1

7 548 39 210 1

x
y

(b)

0
0 1 2 10

0.5

3

Be
lie

f v
al

ue

94 85 76 6

1

7 548 39 210 1

x
y

(c)

0
0 1 2 10

0.5

3

Be
lie

f v
al

ue

94 85 76 6

1

7 548 39 210 1

x
y

(d)

Figure 7: Myopic strategy: (a) step� 10, (b) step� 25. (c) step� 35, and (d) step� 66.

Table 1: Performance comparison of search strategies.

Strategy Myopic Saccadic Sweeping Random jump Snapshot
E[TTDs] 65.51 65.58 581.68 453.32 71.90
E[TTDc] 54.03 527.20 23.88 167.98 469.20
P 98.01% 98.34% 87.75% 72.26% 98.21%
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Figure 8: Saccadic strategy: (a) step� 15, (b) step� 25, (c) step� 45, and (d) step� 65.
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Figure 9: Continued.
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In addition, the aggregate belief B(t) evolution of the five
strategies is shown in Figure 12 and the myopic strategy and
the saccadic strategy can quickly reach the decision
threshold (within 100 steps, which are similar to the

snapshot strategy) because they can use the Bayesianmethod
to continuously collect new information to update the belief
map, thus saving a lot of search resources. However, the
sweeping strategy and the random jump strategy cannot use
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Figure 9: Sweeping strategy: (a) step� 10, (b) step� 36, (c) step� 68, and (d) step� 575.
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Figure 10: Random jump strategy: (a) step� 4, (b) step� 7, (c) step� 18, and (d) step� 32.
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the prior information to guide the searcher’s behavior,
resulting in the fact that the search task needs more than 600
steps. Furthermore, the information entropy is used to

quantify the uncertainty of the search area. As can be seen
from Figure 13, the myopic strategy and saccadic strategy
can reduce the uncertainty of an unknown environment
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Figure 11: Snapshot strategy: (a) step� 7, (b) step� 18, (c) step� 32, and (d) step� 70.
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Figure 14: Continued.
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Figure 13: Entropy evolution of the search area.

Scientific Programming 11



more quickly than the random jump strategy and sweeping
strategy too. Due to the characteristics of the sweeping
strategy, once the search agent misses the target, it will only
reach the target position in the next traversal, which also
results in the fact that its entropy is not reduced uniformly.

4.3. Search Strategy Analysis. According to the experimental
data in Table 1, we find E[TTDs] and P of the myopic
strategy and saccadic strategy are very close. Hence, we
further studied how the two strategies influence the search
agent.

4.3.1. Searcher with Imperfect Sensor. /rough field tests, we
find that the saccadic strategy has unreasonable behavior at
some time, but the myopic strategy does not exist. Hence, a
set of representative test data is selected to demonstrate the
irrational behavior. /e unreasonable behavior of the search
agent is shown in Figure 14, where the number in the cell
represents the order of the cells detected by the search agent.

Because of the characteristics of the myopic strategy
itself, it is inherently equipped with the repeat detection
mechanism. After deploying the mechanism on the saccadic
strategy, the performances of the improved saccadic strategy
and saccadic strategy are compared again through 10,000
experiments: E[TTDs]saccadic ≈ 66 steps, whereas the im-
proved saccadic strategy yields E[TTDs]improvedsaccadic ≈ 64
steps. Compared with the saccadic strategy, the improved
saccadic strategy has no significant performance improve-
ment, but the phenomenon is slightly caused by α and β.

/en, we checked the effects of α and β for the decision,
comparing these strategies for each set of parameters (10,000
tests per set of parameters). Relevant experimental statistics
are shown in Tables 2 and 3, from which we can see that with
the increase of α or β, the performance of the improved
saccadic strategy has an obvious advantage.

4.3.2. Multiple Scenarios. /e above experimental data
shows that the myopic strategy performs so well that it can
even compete with the improved saccadic strategy. In order
to test the effect of the prior distribution on strategy, we have
carried out a series of experiments on myopic strategy,
saccadic strategy, and improved saccadic strategy under
different prior belief maps.

First of all, different prior distributions are formed by
varying degrees of disturbance. Figure 15 shows that heu-
ristic information for the myopic strategy provides better
robustness, as evidenced by the search agent which can easily
correct the “bad initial belief map.” Furthermore, the im-
proved saccadic strategy is also robust by introducing the
repeat detection mechanism. For the myopic strategy, the
search agent is not guided to a local peak when it is far from
the global peak; although the saccadic strategy provides a
better precision for the search agent, the downside is that the
performance is heavily dependent on the initial belief
distribution.

/e performance of these three strategies in different
situations is tested, and the relevant statistics are shown in
Table 4. By comparing with other search methods and
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Figure 14: /e irrational behavior in the saccadic strategy. (a) Step� 14: the search agent arrives at the target location. (b) Step� 17: at the
target position, the sensor results in a false negative error. (c) Step� 24: the search agent updates the belief map with the wrong detection
value and then heads to new global peak.
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Table 2: Comparison of search strategies under different false negative detection error.

(α, β) (0.20, 0.10) (0.20, 0.20) (0.20, 0.30) (0.20, 0.40) (0.20, 0.50)
E[TTDs]improved saccadic 42.60 60.52 94.20 140.02 200.42
E[TTDc]improved saccadic 400.23 500.02 782.63 1000.05 1800.52
Pimproved saccadic 98.88% 98.82% 98.50% 97.88% 97.66%
E[TTDs]myopic 43.80 65.51 98.89 146.39 238.01
E[TTDc]myopic 48.28 54.03 65.88 86.89 138.48
Pmyopic 98.10% 98.02% 97.48% 97.10% 96.19%
E[TTDs]saccadic 48.74 65.58 96.17 142.39 228.56
E[TTDc]saccadic 413.33 527.20 808.84 1238.03 2019.07
Psaccadic 98.48% 98.34% 97.74% 97.66% 97.40%
E[TTDs]sweeping 471.53 581.68 645.59 684.54 698.40
E[TTDc]sweeping 21.48 23.88 25.65 26.19 26.60
Psweeping 94.50% 87.75% 75.34% 58.42% 40.53%
E[TTDs]random jump 403.60 453.33 478.12 494.39 499.42
E[TTDc]random jump 150.25 167.98 176.05 179.83 192.50
Prandom jump 84.47% 72.26% 59.69% 44.50% 31.02%
E[TTDs]snapshot 53.03 71.90 105.50 157.42 263.17
E[TTDc]snapshot 357.34 469.20 686.90 1048.95 1979.19
Psnapshot 98.09% 98.21% 98.13% 97.83% 97.59%

Table 3: Comparison of search strategies under different false positive detection error.

(α, β) (0.10, 0.20) (0.20, 0.20) (0.30, 0.20) (0.40, 0.20) (0.50, 0.20)
E[TTDs]improved saccadic 42.60 60.52 94.20 140.02 200.42
E[TTDc]improved saccadic 400.23 500.02 782.63 1000.05 1800.52
Pimproved saccadic 98.88% 98.82% 97.88% 97.69% 97.66%
E[TTDs]myopic 49.65 65.51 88.64 131.45 221.10
E[TTDc]myopic 51.20 54.03 65.59 80.02 132.73
Pmyopic 98.05% 98.02% 97.43% 97.19% 96.65%
E[TTDs]saccadic 50.13 65.58 92.11 130.49 217.11
E[TTDc]saccadic 365.74 527.20 719.66 1085.39 1949.19
Psaccadic 98.52% 98.34% 97.69% 97.53% 97.15%
E[TTDs]sweeping 401.08 581.68 670.16 698.94 699.00
E[TTDc]sweeping 18.53 23.88 26.81 26.72 27.59
Psweeping 95.12% 87.75% 75.93% 55.77% 35.12%
E[TTDs]random jump 362.41 453.33 478.20 498.72 499.99
E[TTDc]random jump 142.69 167.98 185.31 196.06 200.48
Prandom jump 86.23% 72.26% 55.51% 40.09% 27.69%
E[TTDs]snapshot 57.69 71.90 102.86 145.77 230.56
E[TTDc]snapshot 363.62 469.20 709.80 1112.78 1941.73
Psnapshot 98.31% 98.21% 97.69% 97.67% 97.18%
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Figure 15: Robustness comparison.
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testing in different scenarios, the statistical data shows that
the proposed search decision framework and adaptive search
strategies have better performance. It also can be seen from
the data in Tables 2 and 3 that the detection mechanism
proposed in this paper solves the unreasonable behavior
caused by false alarms and false negatives of the sensor to a
certain extent.

5. Conclusion and Future Work

/is work studies the search problem when the sensor is
incomplete and constrained by motion. At the same time, a
Bayesian-based decision search framework, two adaptive
search strategies, and a repeat detection mechanism are
proposed. Compared with other works, the scheme pro-
posed in this paper greatly improves the search time and the
success rate of search tasks.

Future research will consider using distributed heteroge-
neous agents to search dynamic targets or targets with avoidance
ability. In this case, information fusion is very important, such as
how to fuse two or more different initial confidence graphs and
how to update data between heterogeneous search agents. If we
can coordinate the control of heterogeneous search agents and
reasonably allocate search resources, team search will greatly
improve the search efficiency.
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