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Real-time detection of fruits in orchard environments is one of crucial techniques for many precision agriculture applications,
including yield estimation and automatic harvesting. Due to the complex conditions, such as different growth periods and
occlusion among leaves and fruits, detecting fruits in natural environments is a considerable challenge. A rapid citrus recognition
method by improving the state-of-the-art You Only Look Once version 4 (YOLOv4) detector is proposed in this paper. Kinect V2
camera was used to collect RGB images of citrus trees. .e Canopy algorithm and the K-Means++ algorithm were then used to
automatically select the number and size of the prior frames from these RGB images. An improved YOLOv4 network structure
was proposed to better detect smaller citrus under complex backgrounds. Finally, the trained network model was used for sparse
training, pruning unimportant channels or network layers in the network, and fine-tuning the parameters of the pruned model to
restore some of the recognition accuracy. .e experimental results show that the improved YOLOv4 detector works well for
detecting different growth periods of citrus in a natural environment, with an average increase in accuracy of 3.15% (from 92.89%
to 96.04%)..is result is superior to the original YOLOv4, YOLOv3, and Faster R-CNN..e average detection time of this model
is 0.06 s per frame at 1920×1080 resolution. .e proposed method is suitable for the rapid detection of the type and location of
citrus in natural environments and can be applied to the application of citrus picking and yield evaluation in actual orchards.

1. Introduction

Citrus is one of themost important fruits in the world. Citrus
is also the fruit with the largest cultivated area, the highest
yield and the largest consumption in China [1]. However,
China’s citrus production has developed slowly, with dense
human labour, low productivity, and low efficiency. In re-
cent years, with the continuous improvement in information
technology, many innovative techniques for machine vision
and artificial intelligence have been tested and used in ag-
ricultural production and management with an aim of
improving the automation. However, there are still many
challenging bottlenecks in practical applications scenarios,

in which computer vision recognition could be one of the
crucial technologies that affects the actual effects of an ag-
ricultural automation system. .erefore, designing a low-
cost machine vision system with strong operability for the
real-time identification of fruits in different growth stages
under natural orchard environments is of great significance
for mechanization in the fruit industry.

In recent years, because of advances in technology such
as computers, cameras, and image processing, computer
vision technology has been specifically applied in agriculture
and other corresponding fields [2–5]. Since then, people
have developed a series of methods based on fruit image
calculation to judge fruit yield [6]. Image pixels are more
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sensitive to changes in illumination under unstructured
lighting conditions, so using the above method reduces the
accuracy of fruit detection [7]. For fruits of different shapes,
the researchers used a method based on partial shape
matching to detect [8]. .e use of artificial intelligence
methods, especially artificial neural networks (ANNs), helps
with the yield estimation of fruit testing. For example, ar-
tificial neural networks have been used to successfully
identify citrus fruits [2] and tomatoes [9] as well as estimate
their numbers. .ese technologies can assist farmer’s
management and help them work better.

At present, researchers from around the world are
working vigorously to develop automatic picking robots
[10]. Compared with traditional artificial intelligence
methods, deep learning technology is directly driven by data
and its self-learning characteristics used to express that
relationships can solve a series of problems that cannot be
solved by traditional methods [11]. .ere are many methods
for real-time fruit recognition using deep learning, and they
have been successfully used in the agricultural field [12, 13].
Among them, the convolutional neural network framework
represented by Faster-RCNN and YOLO is undoubtedly the
most widely used in recent years. Koirala et al. [14] con-
sidered the impact of light conditions in an orchard on fruit
recognition. Furthermore, they used multifunction vehicles
equipped with RGB digital cameras and lighting equipment
to collect mango fruit images at sufficient light and at night
and redesigned the YOLO model. A new framework,
“MangoYOLO,” can be used to identify mangos well during
the day. For the night environment, Xiong et al. [15] pro-
posed the “ Des-YOLOv3 network,” which is suitable for the
recognition of mature citrus under the more complex night
environment; it has stronger robustness and higher detec-
tion accuracy, with an average accuracy of 90.75% and
detection speed of 53f/s. Under the interference of branches
and leaves, fruit recognition is challenging; in response to
this problem, Hanwen Kang et al. [16] used visual sensors to
detect and segment apples and branches in an orchard
environment in real time. .ey developed a lightweight
backbone network model based on the remaining network
architecture, and the detection accuracy values for apples
and branches were 86.5% and 75.7%, respectively. .e re-
searchers also studied the ability of the equipment to collect
fruit images. For 3D perception and reconstruction, Min-
gyou Chen et al. [17] used adaptive multivision technology
to enhance the three-dimensional perception of banana
central rootstock in orchard.

.e traditional method is not suitable for identifying
citrus in different growth periods in a complex and
changeable environment, and the deep learning method
has a balance between accuracy and real-time. To solve
these problems, the experiments in this paper use an
improved YOLOv4 detector, with comparison to Faster-
RCNN, YOLOv3, and YOLOv4. .e four deep learning
models for the real-time identification of four different
species of citrus at different growth stages are compared
under different experimental conditions, laying the
foundation for the further positioning of citrus three-
dimensional space.

2. Dataset

2.1. Citrus Image Collection. In this study, image acquisition
was conducted using the Kinect V2 depth camera by
Microsoft which was used for image acquisition and has a
shooting distance between 2 metres and 3 metres. .e
camera can obtain RGB and depth image data at the same
time. .e Kinect V2 has a 1920×1080 resolution RGB
camera, a depth sensor (including an infrared CMOS camera
and an infrared emitter), and a microphone array. .e
camera generates images with a 512× 424 resolution depth at
a rate of 30 frames per second, reconstructs the surrounding
environment in real time, and has a shooting distance be-
tween 1metre and 1.5metres. Two varieties of kumquats and
Nanfeng tangerines were selected at the Citrus Experiment
Base of the Guangxi Special Crop Research Institute. Two
varieties of fertile orange and tangerine were selected in the
citrus planting base of Lingui City, Guilin, China. In this
study, we collected images of citrus fruit from
approximately 1.5 cm in diameter (spring) to ripeness
(autumn) in 2019. Images were acquired twice a week at 9 : 00
am, 11 : 00 am, 2 : 00 pm, and 4 : 00 pm, respectively. During
the image acquisition process, the shooting direction of the
Kinect camera and sunlight illumination directions were
parallel to simulate headlights and other backlit situations.
Images were also gathered in cloudy conditions to simulate
scattered lighting. Because the camera’s angle of view would
affect the recognition performance, images were collected
from multiple angles during the image acquisition process.
During the growth and maturity stages of the four sample
groups, there were 500 pictures collected for kumquats, 450
pictures collected for Nanfeng tangerines, 400 pictures col-
lected for fertile orange, and 400 pictures collected for tan-
gerine. Among the citrus fruits collected in this paper, the
shapes of the fruits in the growing period aremostly spherical,
small, and with smooth and green peel surface; the fruits in
the mature period are spherical and flat, with smooth or
rough peel surface, and the colors of the fruits are mostly
yellow and some are still green.

2.2. Image Annotation. .e image annotation process in-
cluded annotating the collected images, selecting the citrus
in the frame, and providing training data sets for subsequent
recognition model training. .e image annotation tool uses
LabelImg. When the citrus fruits were labelled in LabelImg,
not only the location of the citrus but also the classification
of the sample had to be marked. .e degree to which each
fruit was blocked by leaves or branches was also determined
and the degree of overlap between fruits. Two different labels
were used: fruits that were more than 50% blocked and those
not blocked more than 50%; fruits with blocking rate over
80% are not labelled and the effect is shown in Figure 1.

2.3. Image Data Augmentation. Data augmentation can
increase the richness of the experimental data set, process
the collected images in terms of colour, brightness, rotation,
and image definition, and expand the data set [18] to be
more complete. In this study, the Augmentor and imgaug
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image data enhancement libraries were used to amplify the
dataset. At the same time, the “keypoint” and “bounding
box” parameters were transformed accordingly. Based on
the interference factors in the natural environment, the
augmentation techniques used in this experiment included
rotating the original images (Figures 2(a) and 2(b)),
adjusting the image colour (Figure 2(c)), adding noise
(Figure 2(d)), and so on.

2.4. Dataset Production. To compare the performance of
different algorithms, the image format in the training needs
to be adapted to the format requirements of different al-
gorithms. .e directory structure of the dataset used in the
experiment was generated similar to the directory structure
of the PASCAL VOC dataset, and the recognition algorithm
parsed the PASCAL VOC annotation as the required format
type.

To facilitate training, the input image size required
adjustment to a specific resolution. .e Faster-RCNN al-
gorithm adjusts the height or width of the input image to 600
pixels while keeping the image aspect ratio unchanged.
YOLOv3 adjusts the size of the input image to 416× 416
pixels, and YOLOv4 adjusts the size of the input image to
608× 608 pixels. Of course, the network resolution can be
increased to accept larger inputs images, but the conse-
quence may be a computer memory leak or increased
computing requirements.

We divided the processed data set into a training set, a
test set, a verification set, and a training verification set,
which accounted for 80%, 10%, 10%, and 90% of the data
(sum of the training set and verification set), respectively.
Description of citrus dataset is shown in Table 1.

3. Methods

3.1. Faster-RCNN Algorithm. Faster-RCNN is one of the
most commonly used deep learning algorithms in recent
years. Structurally, Faster-RCNN can be regarded as an RPN
area generation network and Fast-RCNN detection of the
combination of networks. When Fast-RCNN is integrated

into the RPN area generation network, it can merge the
target candidate area acquisition, deep feature selection,
target recognition, and detection processes in the deep
learning network [19]. Previous studies have shown that,
compared with R-CNN and Fast-RCNN, Faster-RCNNhas a
shorter detection running time, and, compared to the YOLO
and SSD algorithms, it has better performance in terms of
robustness [20].

3.2. YOLOv3 and YOLOv4 Algorithm. .e YOLOv3 algo-
rithm is evolved from the YOLO and YOLOv2 algorithms.
Compared with the Faster-RCNN network, the YOLO
network transforms the detection problem into a regression
problem. YOLOv3 does not need to suggest regions, and it
directly generates the bounding box coordinates and
probability of each class through regression, which greatly
improves the detection speed.

.e YOLO detection model is shown in Figure 3. .e
model divides each image in the dataset into an S× S grid. If
the centre of the recognition target is in the grid, the grid is
responsible for detecting the target. Each grid predicts the
boundary box and its confidence score, as well as the cat-
egory C conditional probability..e definition of confidence
is as follows:

CIJ � Pr ×(Object) × IOUpredtruth. (1)

Among them, CIJ represents the confidence of the jth
bounding box of the ith grid cell. IOUpredtruth is used to
indicate the coincidence between the reference and the
predicted bounding box..e confidence reflects whether the
grid contains the detected objects and the accuracy when
predicting whether the bounding box contains objects.
When multiple bounding boxes detect the same target,
YOLO uses the nonmaximum suppression (NMS) method
to select the best bounding box [21].

.e YOLOv4 algorithm was proposed by Bochkovskiy
et al. [22], who combined weighted residual connections
(WRC), cross-stage partial connections (CSP), and cross-
small batch connections (Cross mini-Batch Normalization

(a) (b)

Figure 1: Image annotation: (a) occlusion does not exceed 50%; (b) occlusion exceeds 50%.
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(CmBN)), self-adversarial training (SAT), and Mish acti-
vation. In addition, the YOLOv4 algorithm has achieved
amazing detection accuracy and speed on many datasets.

3.3. Improved YOLOv4 Model. .e YOLOv4 network uses
higher resolution than YOLOv3 to detect small targets and
combines with the CSPmodule 5 times to obtain a 19∗ 19 size
feature map, which enhances the learning ability of the
convolutional neural network. In the YOLOv4 network
structure, the target detection output layer contains 6 CBL
units and a 1∗ 1 convolution. Based on the deconvolutional
single shot detector (DSSD) network [23], to avoid the dis-
appearing gradient and enhancement of feature multiplexing
when the network structure is deep, 6 CBL units are changed
into 2 CBL units and 2 Res units, as shown in Figure 4.

In the residual network diagram (Figure 4(c)), x is the
network input, H(x) is the expected output, and Res Net is
only the difference H(x) − x between the learning output

and the input, that is, the residual F(x). When the network is
optimal, the module is set to 0, transferring the character-
istics downward from an identical map while keeping the
network in optimal condition without too many layers.
Residual units can be defined as follows:

yk � f xk + F xk, wk( 􏼁( 􏼁,

f � max(0, x).
(2)

Among them, xk and yk are the input and output of the kth
residual unit, f is the activation function, generally a modified
linear unit (ReLU), and wk is the convolution kernel [24].

In the residual unit, the Mish function [25] is used
instead of the Leaky ReLU function as the activation
function in the network structure. .e expression of Mish
activation function is as follows:

Mish � x × tan h ln 1 + e
x

( 􏼁( 􏼁. (3)

Table 1: Description of citrus dataset.

Dataset Species Image size (pixels) Number of original images Number of images after augmentation

Citrus

Kumquat 1920×1080 500 3500
Nanfeng tangerine 1920×1080 450 3300
Fertile orange 1920×1080 400 3000
Tangerine 1920×1080 400 3000

Bounding boxes

S × S grid on input

Class probabilities

Final orange detections

Figure 3: YOLO detection model.

(a) (b) (c) (d)

Figure 2: Image amplification effect diagram: (a) original image; (b) spin; (c) brighten; (d) adding noise.
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.eMish function has the characteristics of no boundary
(i.e., the positive value can reach any height). When x is
negative, it is not completely truncated but allows a relatively
small negative gradient to flow in to ensure the flow of
information so that the entire loss function remains smooth.

To enable the network to obtain more feature infor-
mation of small targets and improve the detection rate of
small targets, we use a 152∗ 152 feature map obtained by the
second residual module in the original network to detect the
target, because it contains smaller target location informa-
tion. Upsampling is performed twice on the 8 times
downsampling feature map output by YOLOv4 to obtain a
152∗ 152 feature map, and the 2 times upsampling feature
map is connected to the feature map obtained from the
second residual module in the CSPDarknet53 network
structure. A feature fusion target detection layer with an
output of 4 times downsampling is established to detect
small targets. In addition, the 2 residual units of the second
residual module in the CSPDarknet53 network structure are
increased to 4 residual units, and the 4 residual units of the
fifth residual module in the original CSPDarknet53 network
structure are reduced to 2. .e residual unit maintains the
original CSPDarknet53 backbone network layer number.
.e improved YOLOv4 network structure is shown in
Figure 5.

.e mosaic data enhancement method used by
YOLOv4 stitches 4 pictures together, which greatly en-
riches the detection data set and especially adds many small
targets by the random zoom. Taking advantage of this while
drawing on the Stitcher method proposed by Chen Y et al.
[26], the image is adjusted to a smaller component and is
stitched to the same size as the conventional image.
YOLOv4 uses 4 pictures for stitching. In this study, the
code of the mosaic data enhancement method is modified
so that an image can be stitched according to the preset
number of pictures. Four types of citrus pictures in the
citrus dataset are selected as training materials, and the
method of controlling variables is used. In the original
YOLOv4 method, only the modified mosaic data en-
hancement method is used, and the models with different
numbers of pictures are used for training. According to the
calculation formula of accuracy [27], the accuracy of the
model for stitching different numbers of pictures is cal-
culated, and the result is shown in Figure 6. .is article
selects 5 pictures for stitching.

3.4. Canopy Algorithm and K-Means++ Algorithm.
Choosing the anchor box value suitable for the user’s own
dataset in the convolutional neural network as a training
parameter can improve the accuracy of the final model
recognition. In this study, the Canopy algorithm is used to
perform coarse clustering on the dataset to provide the K
value and the initial cluster centre point for the K-means++
algorithm. .at is, the number of cluster centres to be di-
vided into the dataset is selected in advance, and then the
predivided K value is substituted into the K-means++ al-
gorithm for fine clustering to obtain the anchor box value for
the convolutional neural network. .e algorithm flowchart
is shown in Figure 7. .is approach allowed us to more
accurately determine the K value input and improve the
network model recognition accuracy.

In the experiment presented in this paper, the label
information of the dataset and the number of network
feature output layers are input into the algorithm, and the
algorithm automatically calculates and outputs the value and
number of the prior frame. For this paper, several experi-
ments are performed on the citrus dataset, and the clustering
accuracies corresponding to the number of different a priori
boxes are compared; see Table 2. Finally, the number of a
priori boxes is selected as 12.

3.5. Channel-and-Layer Pruning. To ensure the improved
recognition accuracy and speed, we use the layer pruning
and channel pruning methods proposed by Liu et al. [28].
Without the loss of a large amount of recognition accuracy,
the improved YOLOv4 model trained by the algorithm
performs sparse training and pruning operations, so the
model obtained after pruning has faster recognition speed
and takes up less storage space, which is convenient for the
subsequent use of the recognition model. .e flow chart of
pruning is shown in Figure 8.

In this study, using a constant scale parameter sparse
strategy, the model trained by the improved YOLOv4
method is first sparsely trained; then, the CBL layer before
each shortcut layer in the CSPDarknet53 backbone network
is evaluated, and the gamma mean of each layer is sorted.
.e smallest layer is taken for pruning. Finally, by fine-
tuning the model obtained after pruning, the final citrus
recognition model can be obtained; the model size after
pruning is shown in Table 3.

CBL CBL conv

∗5

(a)

CBL Res unit conv

∗2

(b)

Weight
layer

Weight
layer

Relu

F (x) Relu
x

H (x) = F (x) + x

Identity mapping

(c)

Figure 4: YOLOv4 network output structure including (a) YOLOv4 target detection output layer structure and (b) improved YOLOv4
target detection output layer structure. (c) Basic module of residual network.
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4. Experimental Results and Discussion

4.1. Experimental Environment and Parameter Index. .e
above algorithm runs under the following computer con-
figurations: Windows 10 operating system; Intel Core i7-
8550U CPU; the graphics cards are Quadro P4000, NVIDIA
430.26 driver, CUDA 10.1, and CUDNN 7.6.5. .e exper-
iment used the DarkNet53.conv.74, yolov4.conv.137 and
VGG-16 as deep learning models.

In the YOLOv3 algorithm, the batch size and subdivi-
sions were set to 64, and the maximum number of training
was 6000..emomentum, initial learning rate, weight decay
regularization, and other parameters were the original pa-
rameters in the YOLOv3 model. In the YOLOv4 algorithm
and improved YOLOv4 algorithm, the training steps were
similar to those of YOLOv3 model training, but the training
parameters are modified. .e random of each YOLO layer

was set to 1, enabling multiscale training. In the Faster-
RCNN algorithm, the VGG_16 model was used for training.

.e samples in the confusion matrix can be divided into
the following four types: TP, positive sample predicted by
the model; TN, negative sample predicted by the model; FP,
negative sample predicted by the model, and FN, positive
sample predicted by the model [29]. Precision (P), recall
(R), F1 score, mean average precision (mAP), and recog-
nition time per image are used to evaluate the pros and cons
of the model:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

F1 �
2 × P × R

P + R
.

(4)

(i) mAP is mean average accuracy, used to measure the
quality of the learned model in all categories [30].

(ii) Recognition time of each image is used to measure
the speed of model recognition image after learning.

In this study, the experiment is qualitatively and
quantitatively analysed as follows: (1) compared the rec-
ognition performance of the four models at different
growth period and maturity when the occlusion degree
does not exceed 50%, (2) compared the performance of the
four models at different occlusion degrees, and (3)

Inputs (608, 608, 3)

DarknetConv2D_BN_Mish
(608, 608, 32)

Resblock_body( 304, 304, 64)
x1

Resblock_body (152, 152, 128)
x4

Resblock_body (76, 76, 256)x8

Resblock_body (38, 38, 512)x8

Resblock_body( 19, 19, 1024)
x2

Conv x3

5 9 13

Concat + Conv x3

Concat + Conv x3 + Res unit

Concat + Conv x3 + Res unit Concat + Conv x3 + Res unit

Concat + Conv x3 + Res unit

Concat + Conv x3 + Res unit

YOLO head

YOLO head

YOLO head

Conv + UpSampling

Conv + UpSampling

Conv + UpSampling

Conv

Conv

Conv

Downsampling

Downsampling

YOLO head

Concat + Conv x3 + Res unit

Downsampling

Figure 5: Improved YOLOv4 network structure.
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92.3
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92.3

92.4

92.5

92.6

92.7

Number of stitched pictures

Average precision

0 1 2 7 86543

Figure 6: Picture stitching accuracy comparison with different
stitching number.
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compared the performance of the four models in identi-
fying kumquat, Nanfeng tangerine, fertile orange, and
tangerines.

4.2. Citrus Detection at Different Growth Stages. .e purpose
of this experiment is to use kumquat data at different growth
stages with occlusion levels not exceeding 50% to train and
determine which model has better recognition performance
for kumquats at different stages. .e effect of model rec-
ognition is shown in Figures 9 and 10:

It can be seen from the detected pictures and Table 4 that,
for growing kumquats, the improved YOLOv4 method

detects a large number of citrus fruits, while the YOLOv3 and
Faster-RCNN methods detect relatively few fruits and have a
small number of recognition errors. For mature kumquats,
the improved YOLOv4 method is superior to the other three
methods. Kumquats has small fruit size during the growth
period, the green fruits and leaves, and nonobvious colour
characteristics. .e improved detection ability of the im-
proved YOLOv4 method is very prominent, and it will not
affect the recognition accuracy because of colour and indi-
vidual characteristics. Mature fruits havemore obvious colour
characteristics, larger single volume, and less overlap.
.rough multiple comparative experiments, it is proven that
the improved YOLOv4 method is superior and faster than
other three methods.

4.3. Detection of Citrus with Different Degrees of Occlusion.
.e purpose of this experiment is to use mature citrus to
train citrus pictures with different degrees of occlusion and

Start
Read image calibration
information in citrus
calibration data set

Calculate the similarity of any two pieces
of calibration information, the average

similarity of the citrus calibration data set
and the thresholds T1, T2

Select a piece of citrus calibration
information that is most similar to the

center of the citrus calibration data set as
the canopy center, and remove it from the

citrus calibration data set

Calibration data
set is empty

Traverse the calibration
data set and all canopy
centers, calculate the
similarities between

each piece of
calibration of

information and the
canopy center

NWhether S is 
greater than the threshold

T1, T2

N

Use the calibration
information as the new

canopy center and
remove it from the
calibration data set

N

Add the calibration data
to the current canopy and

delete it from the
calibration data set;

update the current canopy
center

Determine
whether S is greater
 than the threshold 

T1, T2

N

Add the calibration data to
the current canopy and

delete it from the
calibration data set; update
the current canopy center

YY

Obtain the K value
and each canopy

center

Y

Calculate the shortest
distance between

each frame selection
data point and the

current cluster center

Calculate the 
probability of each 

sample being selected 
as a cluster center

N

Output clustering
resultsEnd

Y

Canopy clustering

K-Means ++ clustering

Determine
whether the cluster center

has changed or reached the
 maximum number

of iterations

Figure 7: Flow chart of combining the Canopy algorithm and K-means++ algorithm.

Table 2: Comparison of the K-Means and Canopy +K-means++ under different numbers of prior frames.

Number of prior frames K-means (%) Canopy +K-means++
6 65.54 86.14%
9 69.91 88.76%
12 71.21 90.67%

Initial
network

Compact
networkSparse training

Modify the
parameters for

channel pruning

Fine-tune the
pruned network

Figure 8: Pruning flow chart.

Table 3: Comparison of different model sizes.

Model Faster-
RCNN YOLOv3 YOLOv4 Improved

YOLOv4
Size (M) 540 229 250 187

Scientific Programming 7



(a) (b)

(c) (d)

Figure 9: Detection results of four models in growth: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.

(a) (b)

(c) (d)

Figure 10: Detection results of four models at maturity: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.

Table 4: Kumquat training parameters of four methods in different periods.

Model Growth stage F1 score (%) Average time/s Accuracy (%)
Faster-RCNN Growing period 86.24 0.32 0.84
YOLOv3 Growing period 83.97 0.21 0.82
YOLOv4 Growing period 87.51 0.12 0.92
Improved YOLOv4 Growing period 91.95 0.10 0.95
Faster-RCNN Maturity 86.48 0.32 0.86
YOLOv3 Maturity 84.17 0.21 0.82
YOLOv4 Maturity 87.58 0.11 0.92
Improved YOLOv4 Maturity 92.13 0.09 0.96

8 Scientific Programming



(a) (b)

(c) (d)

Figure 11: Effect of the four methods with occlusion over 50%: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.

(a) (b)

(c) (d)

Figure 12: Effect of the four methods with under 50% occlusion: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.

Scientific Programming 9



determine which model has better recognition performance
for citrus with different degrees of occlusion. .e occlusion
degree of the test picture selected in this experiment is more
than 50%, which means that more than half of the citrus in
the picture is blocked by leaves or branches or overlapped
seriously. .e effects of the four models are shown in
Figures 11 and 12:

As shown in the detected pictures and Table 5, when the
degree of occlusion does not exceed 50%, the improved
YOLOv4method detects more citrus; meanwhile, the Faster-
RCNN method detects relatively less fruit. When the degree
of occlusion exceeds 50%, the Faster-RCNN model detected
more fruits than the YOLOv3 model, but second only to
theYOLOv4 and improved YOLOv4 methods. Combined
with the research results of Osco et al. [31], the present
results indicate that when dense small targets appear in
groups, these dense small targets may be citrus fruits blocked
by leaves or trunks; the identification and detection effect of
Faster-RCNN are better than those of YOLOv3, but this
deficiency is remedied in the improved YOLOv4. .e

improved YOLOv4 experimental results show that this
method is superior to Faster-RCNN in the recognition
accuracy of small targets, which provides a new feasible
solution for future fruit recognition research.

4.4. Recognition Experiment of Different Citrus Varieties.
.e purpose of this experiment is to use the images collected
during the ripening period of four citrus for training to
verify the generalization ability of the model. .e recogni-
tion results of the four methods are shown in Figures 13–16:

Figure 17 shows the AP values of the four methods for
four types of citrus. From the figure, it can be seen intuitively
that the recognition accuracy of each method changes for
different types of citrus.

It can be seen from the comparison between the detected
picture and the AP value that the improved YOLOv4
method detects more fruit than the other three methods.
.is is partly due to the fact that the smaller fruit and various
distances from the fruit can be seen from the image after

Table 5: Identification parameters of four methods for different occlusion degrees.

Occlusion condition Model Citrus count
Correctly identified Falsely identified Missed
Amount Rate (%) Amount Rate (%) Amount Rate (%)

Less than 50%

Faster-RCNN 200 162 81.24 19 9.71 31 15.44
YOLOv3 200 156 78.22 23 11.52 38 18.96
YOLOv4 200 173 86.38 14 7.10 22 11.21

Improved YOLOv4 200 187 93.58 12 5.98 16 8.15

More than 50%

Faster-RCNN 200 156 78.24 26 12.81 39 19.34
YOLOv3 200 148 74.22 35 17.52 46 22.96
YOLOv4 200 166 83.18 20 10.05 26 13.07

Improved YOLOv4 200 182 90.82 14 7.18 21 10.36

(a) (b)

(c) (d)

Figure 13: Detection results of tangerine: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.
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being blocked by leaves. .e Faster-RCNN method has a
poorer recognition effect on distant fruits when other fruits
are present. .e experimental results show that the im-
proved YOLOv4 model has a good performance on the
detection accuracy of different citrus varieties and has a good

generalization ability. In a picture, when a large target and a
small target with the same features appear at the same time,
the recognition accuracy of the improved YOLOv4 method
is also very impressive, and the YOLOv3 method may result
in misjudgements.

(a) (b)

(c) (d)

Figure 14: Detection results of fertile orange: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.

(a) (b)

(c) (d)

Figure 15: Detection results of Nanfeng tangerine: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.
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5. Conclusions

Based on four deep learning algorithms, Faster-RCNN,
YOLOv3, YOLOv4, and improved YOLOv4, this paper
presents the results of target recognition of four types of
citrus in different periods. Experiments were conducted on
three different datasets. .e conclusions are as follows.

For citrus fruits with insignificant colour characteristics
during their growth period and smaller individuals, the
improved YOLOv4 method performs best among the four
algorithms, followed by YOLOv4. For citrus with bright
colour characteristics during maturity, larger individuals,
and citrus with relatively dense growth, the improved
YOLOv4 algorithm is also superior to the other three
methods in accuracy and detection speed.

In the recognition of small targets (highly blocked), the
improved YOLOv4 algorithm performs best, followed by
YOLOv4; in the recognition of sparse large targets (partially

blocked), the performance of the improved YOLOv4 algo-
rithm is also the best.

Among the four algorithms, the improved YOLOv4
algorithm has the highest accuracy and generalization
ability. In the detection of multiple varieties of citrus, it has a
good performance and does not affect the detection accuracy
of the algorithm.

In summary, in our experiment, the overall recognition
performance presented by the improved YOLOv4 is optimal.
Although the time and space spent on training the model are
larger than those for the other models, the space and time
can be reduced by pruning later. Finally, it is easy to apply
these algorithms to different scenarios.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 17: AP values of four methods for four types of citrus.

(a) (b)

(c) (d)

Figure 16: Detection results of kumquat: (a) YOLOv3; (b) Faster-RCNN; (c) YOLOv4; (d) improved YOLOv4.
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