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In the design of hydrostatic thrust bearings, power loss that occurs during operation is an important parameter that affects the
design, and due to such features, it falls within the interest of design optimisation studies. (e fact that the decimal places of the
constraints and design variables used for minimum power loss optimisation of hydrostatic thrust bearings are highly effective on
the result is a challenge for the design optimisation studies carried out on the problem and has yet made it rather attractive for the
researchers. In this study, it is this feature of the problem that makes it the most important motivator in researching the
performance of different metaheuristic optimisers in solving the minimum power loss problem. To this end, 7 different optimisers,
four of them for the first time, were applied under equal conditions with various pop sizes and a number of iterations, and their
performances were addressed under this challenging benchmark problem. (e performances of these methods were compared to
each other. In addition to the success of optimisers in reaching a solution, their performance in different populations and
iterations is also discussed in the study. Considering the results, it is seen that MVO is the most effective optimiser in solving the
problem and is followed by the WOA, PSO, and GWO. (e application of WOA, MVO, CS, and SSA, for the first time, on the
problem has exhibited that these methods could be used in optimisation of such delicate engineering problems.

1. Introduction

Plain bearings are the machine components of choice by
virtue of their vibration, impact, and noise damping
properties where high speed and load are required, and it is a
fact that they have long operating lives. Plain bearings are
classified as journal, linear, and thrust bearing, depending on
the direction of the load they carry. (rust bearings can be
examined in three groups as hydrostatic, hydrodynamic, and
hydrostatic-hydrodynamic bearings [1].

In hydrostatic thrust bearings, pressure is applied to
balance the external force and separate the surfaces [2]. With
the pressure generated by an external pump, oil is conveyed
on the bearings and the bearing surfaces are separated by the
oil film. As there is no contact between moving parts, it
allows hydrostatic thrust bearings to have lower friction,
wear, and vibration [3]. Due to their advantages such as
higher accuracy, higher load capacity, incomparable
smoothness, higher hardness, and lower friction values that

may be achieved in motion and positioning, hydrostatic
thrust bearings are widely used in the industry [4–6]. (e
power loss that occurs during operation and the increase in
oil temperature are considered performance measures in
optimum hydrostatic thrust bearing design [7]. For this
reason, minimisation of power loss during operation has
been a core issue in the studies aimed at the optimisation of
hydrostatic thrust bearings.

In the studies carried out for optimum design of hy-
drostatic thrust bearings, metaheuristic methods are heavily
used [1, 2, 8–13]. Studies conducted on this subject are
recently focused on swarm intelligence methods. Swarm
intelligence algorithms mimic the intelligence of swarms,
herds, or flocks of creatures in nature [14].

In this study, the power loss minimisation problem of
hydrostatic thrust bearings defined by Siddall [12] was
attempted to be solved through 7 different optimisation
methods. (e performances of the swarm intelligence ap-
proaches used in the study for the minimisation problem of
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power loss during operation of hydrostatic thrust bearings
were comprehensively discussed. (e problem is interesting,
compelling, and yet utterly attractive by reason of the fact
that the decimal places of the active constraints and design
variables are highly sensitive on the results. (is has made it
a rather good benchmark problem [11]. (is structure of the
problem makes it difficult to achieve feasible results. In the
study, more delicate search was carried out in the search
space to overcome this difficulty. (e challenging structure
of the problem was an important motivator in the research
of the performance of different metaheuristic optimisers to
produce optimum solutions. With this motivation, the
problem was solved through popular swarm intelligence
optimisers such as particle swarm optimisation (PSO),
multiverse optimiser (MVO), grey wolf optimiser (GWO),
cuckoo search (CS), whale optimisation algorithm (WOA),
salp swarm algorithm (SSA), and artificial bee colony (ABC).
Out of these, MVO, CS, SSA, and WOA methods have been
applied to the problem for the first time. (e performances
of these methods were compared with each other. Another
important goal of the study is to investigate the impact of
population size and number of iterations on the solution.
For this reason, the population size was selected as 100, 400,
and 800 and the number of iterations was selected as 100,
1000, and 5000.

(e remainder of this article is organised as follows: in
Section 2, a literature search in which the studies on the
subject are examined is presented; in Section 3, the problem
is thrust bearing; in Section 4, optimisation methods used in
experimental studies are introduced; in Section 5, com-
parisons of experimental results obtained with optimisers
are explained; and Section 6 includes the conclusion and
suggestions for future studies.

2. Related Works

(e advantages of hydrostatic thrust bearings date back to
1940s. Automatic fluid pressure balancing system of Hoffer
is considered the pioneer of hydrostatic thrust bearings [15].
Over the next half-century, a series of patent and research
studies carried out covering topics such as the structure of
hydrostatic thrust bearings, oil flow, balance problems, and
infinite stiffness and have formed the basis of modern hy-
drostatic thrust bearing designs [16–21]. (e hydrostatic
system developed by Slochum et al. for use in high-pressure
press benches was the first hydrostatic bearing [20]. In this
new system, the support equipment used for the shaft’s
bearing had high strength and friction resistance.

In the subsequent studies, it was observed that oil film
thickness, recess pressure, pressure distribution, and oil flow
rate were effective on the performance of hydrostatic bearings
[22].(ese characteristics affect high wear resistance, which is
the most important feature expected from thrust bearings
[23]. Bearing materials are expected, in their selection, to have
features such as lower friction coefficient, higher wear re-
sistance, higher loading capacity, better erosion resistance,
better thermal conductivity, and lower thermal expansion.
However, oil viscosity, oil film thickness, oil flow rate, and
pressure amount also have significant effects on the

performance of the system. In addition to experimental and
analytical studies aimed at achieving the optimum values of
these features, computer aided studies date back to early
1980s. Siddall’s study, in which the problem of minimising
power loss during operation of hydrostatic thrust bearings is
described, is one of the pioneering studies in this respect [12].
Siddall reduced the power loss in existing bearings by 2,288.0
ft-lb/s (4.14 hp) through the Hooke and Jeeves (HJ) method.

Siddall’s problem has become a benchmark problem used
for testing intelligent optimisation approaches today. Among
them, population-based approaches stand out. (ese studies
used the minimisation of the power loss of hydrostatic thrust
bearings extensively, inspired by Siddall’s identified problem,
in testing the metaheuristic methods they developed. Deb and
Goyal’s genetic adaptive search (GeneAS) method is the first
of these [9]. Deb and Goyal demonstrated that the thrust
bearing they designed could withstand more weight with
smaller film thickness and would exhibit lesser power loss as
per the algorithm of Siddall. Afterwards, Coello achieved
faster and better results using a multipurpose optimisation
technique in place of the penalty functions used in GA [8].
Another study focused on inconsistencies in previous studies
with regard to unit and design criteria, using the particle
swarm optimisationmethod [10]. Improved PSO algorithm of
He et al. reduced power loss by around 30% compared to
Siddal’s study. Rao et al. achieved good results through the
teaching-learning-based optimisation (TLBO) method they
developed, compared to the studies in the literature [11].
Kentli and Sahbaz have solved the problem through se-
quential quadratic programming (SQP) method and com-
pared the results with Siddall’s study [1]. Sahin et al. [2] have
developed a mathematical model of GWO, a highly popular
population-based approach in recent years, and solved the
problem through a new model (enhanced GWO) that in-
creases the diversity of the valid solutions by keeping the
search area wider [2]. In the study, all the studies in the
literature were examined together, and a comprehensive
comparison was made and very successful results were ob-
tained through E-GWO. Talatahari and Azizi solved the
problem through chaos game optimiser in an up-to-date
study [13]. Best fitness results and design variable values
obtained in studies that address the minimum power loss
problem are presented in Table 1.

(e optimisation of features such as maximum load-
carrying capacity of bearings [24–26], stiffness [26], film
thickness [7], and optimal recess shape [4, 27] is among
other important research topics in hydrostatic thrust
bearings.

3. Hydrostatic Thrust Bearing Design for
Minimum Power Loss

(e hydrostatic thrust bearing design problem discussed as
part of this study was defined by Siddall [12]. (e purpose
function of the problem in whichminimisation of power loss
is targeted during the operation of a thrust bearing exposed
to the axial load seen in Figure 1 is formulated in the fol-
lowing equation [12]:
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minimise: f(x) �
QP0

0.7
+ Ef. (1)

Four design variables were used in the problem [12]: flow
rate (Q), recess radius (R0), bearing step radius (R), and
viscosity (µ) (equation (2)).

Design vector:

X � Q, R0, R, μ( 􏼁. (2)

(e value ranges of the design variables of the problem
are as follows:

1, 000 ≤ R ≤ 16, 000,

1.000 ≤ R0 ≤ 16, 000,

1.0 × 10− 6 ≤ μ ≤ 16 × 10− 6
,

1.000 ≤ Q ≤ 16, 000.

(3)

Seven nonlinear constraints were identified in the
problem (equations (4)–(10)). (ese are minimum load-
carrying capacity, weight capacity, inlet oil pressure, oil

temperature rise, oil film thickness, step radius, exit loss, and
contact pressure [2, 10, 12]. Out of 7 constraints, 6 are active
constraints considering an accuracy of 3 decimal places, and
all the design variables are highly sensitive in the optimi-
sation problem subject to

g1(x) � W − Ws ≥ 0, (4)

g2(x) � Pmax − P0 ≥ 0, (5)

g3(x) � ΔTmax − T0 ≥ 0, (6)

g4(x) � h − hmin ≥ 0, (7)

g5(x) � R − R0 ≥ 0, (8)

g6(x) � 0.001 −
c

gP0

Q

2πRh
􏼒 􏼓≥ 0, (9)

g7(x) � 5000 −
W

π R
2

− R
2
0􏼐 􏼑
≥ 0, (10)

where g1(x) is for weight capacity, which must be greater
than weight of generator, g2(x) is for inlet oil pressure,
g3(x) is for oil temperature rise, g4(x) is for oil film
thickness, g5(x) is for step radius and must be greater than
recess radius, g6(x) is for limits on significance off exit loss
and must be greater than 0001, and g7(x) is the limit for
contact pressure and must be greater than 5000.

(e parameters given in the constraints are calculated by
the following equations:

W �
πP0

2
􏼒 􏼓 R

2
− R

2
0􏼐 􏼑 ln

R

R0
􏼠 􏼡􏼢 􏼣,

P0 �
6μQ

πh
3 ln

R

R0
,

Ef � 9336QcCΔT,

ΔT � 2 10p
− 560( 􏼁,

P �
log10log10(8.122e6μ + 0.8) − C1

n
,

(11)

Table 1: Algorithms and its optimal solutions for minimum power loss problem in the literature.

Variables Best fitness
R R0 μ (×10−6) Q f(x)

Siddall [12], HJ 7.1550805 6.688682 8.320765 9.168461 29221.321
Deb and Goyal [9], GeneAS 6.778 6.234 6.096 3.809 25937.058
Deb and Goyal [9], BGA 7.7077 6.549 6.619 4.849 27554.5428
Coello [8], GASO 6.271 12.901 5.605 2.938 23403.432
He et al. [10], PSO 5.956868685 5.389175 5.402133 2.301546 19586.5788
Rao et al. [11], TLBO 5.9557805 5.389013 5.358697 2.269655 19505.3131
Kentli and Sahbaz [1], SQP 5.95580 5.38904 8.63332 8.00001 26114.545
Şahin et al. [2], GWO 5.9576206 5.390681 0.000005 2.278085 19530.6552
Şahin et al. [2], E-GWO 5.9557805 5.389013 5.358697 2.269656 19505.3134
Talatahari and Azizi [13], CGO 5.963440023 5.395587861 5.36 2.264822 19454.9541

Thrust load
W

R

R0

P1
Lubricant

out
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in
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Figure 1: Hydrostatic thrust bearing.
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where W is the load-carrying capacity,P0 is the inlet
pressure, Ef is the friction loss, ΔT is the temperature, c is
the weight density of oil (0.0307 lb/in3), C is the specific heat
of oil (0.5 Btu/lb°F), n and C1 are the oil constants, and h is
the film thickness. C1 � 10.04 and n� −3.55 were chosen for
SAE 20 grade oil (see Table 2).

Other specifications of the design problem are as follows:
Ws (weight of generator)� 101000 lb (45804.99 kg); Pmax
(maximum pressure available)� 1000 psi (6.89655×106 Pa);
ΔTmax (maximum temperature rise)� 50°F (10°C); hmin
(minimum oil thickness)� 0.001 in. (0.00254 cm);
g � 32.3×12� 386.4 in./seg2 (981.465 cm/seg2), and N (an-
gular speed of shaft)� 750 RPM.

4. Optimisation Methods Applied to
the Problem

In this study, seven population-based optimisation methods
were applied to the problem. (ese are PSO, ABC, GWO,
MVO, CS, WOA, and SSA. MVO, CS, WOA, and SSA opti-
misationmethodswere applied to the problem for the first time.

4.1. Salp SwarmAlgorithm (SSA). (e salp swarm algorithm
(SSA) is an optimisation algorithm developed, inspired by
the swarming mechanism of salps resembling jelly fish [14].
(e inspiration for the method is the swarming behaviour
that salp chains exhibit while searching and collecting in the
ocean. In the SSA swarm model, the leading salp moving
towards the food source is followed by the follower salps. If
the food source is replaced with a global optimum, the salp
chain automatically moves towards it. (e results in
mathematical functions exhibit that the SSA algorithm can
effectively develop the initial random solutions and zoom
closer to the optimum level [28].

4.2. Cuckoo Search (CS). CS is a metaintuitive search al-
gorithm inspired by the reproductive strategy of cuckoo birds
developed by Yang and Deb [29]. (e method is based on
some cuckoo species placing their eggs in the nests of other
cuckoos or different species. In this method called the brood
parasitism method, the cuckoo that desires to increase the
chances of its own eggsmay destroy other eggs, engage directly
with other birds, or leave the nest [30]. Yang and Deb have set
three rules to use this to solve optimisation problems [29]:

(i) Each cuckoo bird leaves one egg at a time in a
randomly selected nest.

(ii) (e best nests with high quality eggs are conveyed
onto future generations.

(iii) (e number of host nests is constant. Likelihood of
the landlord finding, a foreign egg is pa ∈ [0, 1]. In
this case, the host bird can throw the egg or leave the
nest to build a new nest.

4.3. Multiverse Optimiser (MVO). Developed by Mirjalili
and his colleagues, MVO is inspired by the theory of
multiverse and big bang theory in physics [31]. In the

method in which the mathematical model of white hole,
black hole, and worm hole concepts in cosmology is created,
the search process is a two-step process, as in other pop-
ulation-based methods. But here, white hole and black hole
concepts are used in the discovery of search spaces. Worm
hole supports MVO in exploiting the search spaces. In
MVO, each solution is assumed to resemble a universe, and
every variable in the solution is an object in this universe.
Another difference of MVO compared to other algorithms is
the use of the concept of time, which is a common term in
multiverse theory and cosmology [31].

4.4. Artificial Bee Colony (ABC). ABC is a swarm intelli-
gence-based algorithm developed by Karaboga [32]. (e
algorithm was inspired by the behaviour of honey bees that
collect nectars. Bees are divided into three groups: scout,
onlooker, and employed bees. Worker bees seek food in
nature with a special dance (the waggle dance) and com-
municate with each other. (e onlookers watch the dance to
make a choice and follow the bee to the food source [33].
Scooters discover abandoned food sources and replace them
with new resources. In this method, the location of food
refers to the possible solution to the optimisation problem
and the amount of nectar in food refers to the suitability of
the solution [34].

4.5. Particle Swarm Optimisation (PSO). PSO, one of the
most popular approaches to swarm intelligence, was de-
veloped by Kennedy and Eberhart [35]. (e algorithm is
inspired by the foraging and navigation capabilities of bird
flocks. (e algorithm consists of particles that are placed in
a search space and move around by combining their own
previous location and the current global optimal solution.
Potential solutions are encoded as randomly initiated
particles and directed to move within the search space to
find the most appropriate solution [36]. In PSO, the global
optimum solution is searched taking into account
the speed and location of each particle that makes up the
flock [34].

4.6. Whale Optimisation Algorithm (WOA). WOA, which is
based on the modelling of the hunting behaviour of
humpback whales, was developed by Mirjalili and Lewis
[33]. Humpback whales exhibit a three-stage behaviour,
namely, search for prey, encircling prey, and bubble-net
foraging, as they hunt. InWOA, this behaviour is mimicked.

Table 2: Values of n and C1 for various grades of oil.

Oil C1 N
SAE 5 10.85 −3.91
SAE 10 10.45 −3.72
SAE 20 10.04 −3.55
SAE 30 9.88 −3.48
SAE 40 9.83 −3.46
SAE 50 9.82 −3.44
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(e method uses updating whales (individuals) their posi-
tion based on the position of the prey as base as in GWO.

4.7. Grey Wolf Optimiser (GWO). GWO was developed by
Mirjalili and Lewis [37], inspired by the hunting method of
grey wolves in nature and the social hierarchy within the
pack. In GWO, each solution in the population corresponds
to a wolf in the pack. (ere are four different hierarchical
levels in the pack, which are called alpha, beta, delta, and
omega. Mathematical model of GWO is constituted by this
hierarchical structure and hunting method [38].

5. Results and Discussion

(is study presented is aimed at minimising the power loss
during operation of hydrostatic thrust bearings formulated
by Siddall [12]. Siddall’s ADRANS algorithm was based on
the Hooke and Jeeves (HJ) pattern search method for the
solution. In the study, the achievements of SSA, MVO, CS,
GWO, ABC, WOA, and PSOmethods were tested in solving
the problem using the purpose function, design constraints,
design vector, and parameters defined by Siddall.

In the first phase of experimental studies, statistical
achievements of the algorithms were evaluated. Algorithms
were run on a computer with an Intel® Core™ i7, 2.6GHz
CPU, and 8GB RAM, running on the Windows 10× 64
operating system using Python 3.7 software. In order to
investigate the impact of population size and the number of
iterations on the solution, the population was selected as 100,
400, and 800 in all algorithms and the number of iterations,
defined as the stop criteria, was set to 100, 1000, and 5000.
(e algorithms were run 20 times for each pairwise of
population size and number of iterations.

Siddall used the inches-pounds per second as unit of
fitness value in his study. However, some studies were
confirmed to use feet-pounds per second [9, 11, 13]. In this
study, calculations were made in the units used by Siddall,
sticking to the original state of the problem.

Each algorithm was run 20 times, and best, worst, av-
erage, and success percentage (SP) values of the results were
calculated. SP takes the results obtained after running of the
algorithm in different numbers and demonstrates the sta-
bility of the algorithm. In this context, the difference be-
tween the best value (F) achieved and the global optimum
value achieved must be less than 0.1% of the global optimum
(F∗) value (equation (12)), in order for the result to be
considered successful:

F
∗

− F

F
∗

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1E − 3. (12)

5.1. Statistical Comparison of the Algorithms. (e study aims
to observe the impact of different population sizes and
number of iterations on the achievement of the optimisers.
(erefore, the performance of the algorithms is with 100,
400, and 800 population sizes and numbers of iterations is
100, 1000, and 5000 (Table 3). As seen in Table 3, the lowest
objective function value in the study was achieved by the

MVO with a population of 800 and in 5000 iterations, as
f(x) � 19508, 39014. (e results obtained by other algo-
rithms, except for the ABC, are also quite successful. After
MVO, the lowest objective function value was achieved by
WOA, PSO, and GWO. (e power loss value obtained with
WOA is only 0.003% behind of MVO. SSA, another algo-
rithm that is applied on the problem, has, however, achieved
worse values than that of MVO by as much as 0.88%. (is
demonstrates that MVO, WOA, and SSA are rather suc-
cessful in solving the power loss minimisation problem.
Worst objective function values were materialised in ABC
and CS as f(x) � 22830,65571 and f(x) �19950,96346,
respectively. With PSO, the third lowest objective function
value was achieved following MVO and WOA. (is result
obtained is better than results of previous PSO study [10].

(e performance of algorithms in solving the problem
with different population sizes and in iterations differs. PSO,
for example, performed poorly in low numbers of iteration.
As can be seen from the table, performance of PSO in lower
population sizes (100 and 400) and lower iteration numbers
(100 and 1000) is worse compared to the population size and
number of iterations where it achieved the best fitness. MVO
has achieved the best objective function results in all pop-
ulations and iterations except 100 populations and 5000
iterations. MVO has generated the best results at 5000 it-
erations for the whole population. (is exhibits that MVO
performs decisively. Algorithms other than ABC and CS
exhibited closer performance at best fitness values at 400 and
800 populations and 1000 iterations. All algorithms except
SSA and CS yielded the most successful fitness values during
the experiments conducted with a population size of 800 and
5000 iterations.

As the number of iterations increased, success also in-
creased in algorithms. It is not, however, possible to come up
with the same conclusion for the results related to increase in
population size. For instance, SSA, which acquired the
lowest power loss in population size of 400, did not attain the
same performance as the population size increased. (e
solution CS achieved with a population size of 800 is worse
than what it achieved with a population size of 400. (is
may, consequently, indicate that the number of iterations is
more effective on the solution than the population size.

In Table 4, the statistical results of algorithms were
compared with each other. (ese values are the values
obtained in a population size of 800 in 5000 iterations, where
the best fitness value is achieved. In Table 4, the best optimal
power loss value is seen to be achieved by MVO. In parallel
with this, it can be seen that MVO is more successful,
compared to other studies in terms of SP, mean, and worst
values. MVO exhibited a steady achievement in terms of
success percentage. MVO, with an SP rate of 1, is followed by
PSO, GWO, and WOA with an achievement rate of 0.85,
0.40, and 0.15, respectively. However, WOA has the second-
best fitness value, and the SP rate occurs to be 0.15. SP rates
of SSA, ABC, and CS were 0.00.

In Table 5, the values of design variable used for solutions
that occur in 800 populations and 5000 iterations, where the
best objective function value is achieved, are given com-
paratively. When the table is analysed, it will be seen that the
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MVO with the lowest objective function value also has the
optimum variable values. Looking at the variable values of
MVO and WOA, it can be seen that there is little difference
between them, which is compatible with best fitness results.
When the results of design variables are considered, it can be
said that PSO, MVO, and WOA are very competitive ap-
proaches in obtainingminimum power loss and are followed
by GWO.

If a comment is to be made, in terms of the algorithms
that are applied on the problem for the first time, it can be
concluded that MVO and WOA produce high-quality so-
lutions both in objective function values as well as in variable
values.

5.2. Convergence Performances of Optimisers. In this section,
the convergence graphs with population sizes of 100, 400,
and 800 in 100, 1000, and 5000 iterations are presented in
order to comparatively see the convergence ratios of the
algorithms in all population sizes and number of iterations.
A general interpretation of the convergence speeds and
solution performance of algorithms in different population
sizes and number of iterations is thus made.

In Figure 2, convergence rates of algorithms with
population of 800 and 5000 iterations where the best result is
obtained across all populations and iterations are presented.
As can be clearly seen from the figure, although MVO had a
slower convergence in comparison with PSO and WOA in
the beginning, it reached the best fitness value by surpassing
PSO and WOA in the last iterations. WOA reached the best
fitness value after the 1764th and PSO after the 4670th it-
erations. GWO, which exhibited a similar convergence
performance to MVO, reached the best fitness value in the
last iterations. ABC and CS demonstrated the worst con-
vergence performances, respectively. Considering the

change in the convergence curves, the performance
exhibited by WOA and PSO towards solution is assessed to
bemore stable.(ere are gradual changes in the convergence
curves of MVO, GWO, and SSA. Among these algorithms,
MVO and GWO achieved the best fitness values in the last
iterations. SSA reached its best fitness value after the 4120th
iteration.

(e fastest convergence and best quality solutions in a
population size of 100 and 100 iterations are seen in WOA
and MVO (Figure 3). (ey are followed by GWO, SSA, and
PSO. Although SSA is seen to be converging faster than
GWO after the 48th iteration, GWO exhibits a better con-
vergence after the 85th iteration.WOA reaches its best values
at iteration #81 and MVO at iteration #100. Although MVO
has a slower convergence rate than that of WOA, it is the
algorithm that reaches the best solution. CS and ABC are the
algorithms with the worst performance in convergence.

As shown in Figure 4, the convergence of WOA, MVO,
and SSA in population of 100 and 1000 iterations is better
than that of GWO and PSO. CS and ABC exhibits the worst
convergence performances. Although WOA reaches its best
value (616th iteration) before MVO, MVO reaches the best
solution by exhibiting the best convergence performance
after the 890th iteration (fx� 19605.42531). MVO and WOA
are followed by SSA and PSO.

With a population of 100 and 5000 iterations, WOA, CS,
and PSO are seen to converge faster initially and they are
followed by SSA, MVO, and GWO (Figure 5). As can be seen
in the convergence graph in Figure 5, SSA exhibits better
convergence performance in the last 1500 iterations and
reached the best solution. Exhibiting rather slow conver-
gence in the beginning, MVO reached the 2nd best solution
after demonstrating a faster convergence in the last 500
iterations. ABC has the worst convergence performance. It is
therefore observed that there is analogy between the

Table 4: Statistical comparison of best fitness value of the algorithms.

Algorithm Best (f(X)) Worst (f(X)) Mean (f(X)) SP
ABC 22830,65571 26339,46279 24666,75976 0
CS 19950,96346 20466,14966 20297,33609 0
GWO 19516,83771 19556,18396 19533,09898 0.4
MVO 19508,39014 19517,78342 19511,16351 1
PSO 19511,3608 19529,52256 19522,63534 0.85
SSA 19671,90412 26034,91429 22685,63005 0
WOA 19509,09474 21765,56684 20590,50532 0.15

Table 5: Design variables for the best solutions.

Variables
Algorithms R0 R μ (10−6) Q
ABC 6,42110644 5,87339441 6,03021956 3,27847435
CS 5,99669606 5,42618025 5,47140755 2,39732714
GWO 5,95622341 5,38916513 5,36189828 2,27293937
MVO 5,95590533 5,38909289 5,35983982 2,27070608
PSO 5,95635114 5,38953695 5,36015715 2,27129760
SSA 5,95578188 5,38901445 5,48694850 2,36847888
WOA 5,95584921 5,38908429 5,36133333 2,27169540
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optimum solutions achieved by the algorithms and the
convergence speeds.

As seen in Figure 6, having a higher initial convergence
speed with population of 400 and 100 iterations, CS is the
algorithm with the highest initial convergence speed and it
is followed by GWO, WOA, and SSA. While MVO,
reaching the best solution (f(x) � 20299,44124), with a
population of 400 and 100 iterations, has a slower initial
convergence, it is seen that it exhibits a faster convergence

after the 30th iteration and reaches the solution. GWO
exhibits a faster convergence after iteration #70 and reaches
the second-best objective function value of f(x)�

21571,10275. PSO and ABC exhibit the worst convergence
performances.

In the experiments conducted with a population of 400
and 1000 iterations, as number of iterations of ABC, GWO,
PSO, and CS algorithms, excluding PSO, increased, the
convergence speed got slower (Figure 7). As can be seen
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from the convergence graph, having a slower initial con-
vergence speed, WOA exhibits a faster convergence speed
after the 80th iteration and SSA after the 570th iteration and
they reach the optimal values. MVO, yielding the best so-
lution (f(x)� 19537,59644), converges to its optimum value
after the iteration #960, and GWO, yielding the second-best
solution (f(x)� 19629.68579), after iteration #930.

It is seen in Figure 8 that initial convergence rates ofWOA,
PSO, and GWO are faster than that of ABC, CS, MVO, and
SSA in the experiments conductedwith a population size of 400

and 5000 iterations. MVO, with a slower initial convergence
speed, exhibits a better convergence after the iteration #4550
and generates the best quality solution. PSO exhibits its per-
formance in convergence speed and quality solution, here
again, with iteration number of 5000, and generates the second-
best objective function value of f(x)� 19520,64307. As can be
seen from Figure 8, WOA, which converged to the best fitness
value in early iterations by showing a rapid convergence in the
beginning, was able to produce the third best solution.Having a
good initial convergence performance, GWO generates the
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third-worst solution and ABC generates the worst solutions by
exhibiting the worst convergence performance.

Figure 9 shows the convergence graphs of optimisers to
their best values with a population size of 800 and 100 it-
erations. It can be seen here that the convergence rates of
WOA, MVO, and GWO are better than that of ABC, PSO,
SSA, and CS. While PSO exhibits a faster initial convergence,
it exhibits a slower convergence in advancing iterations. In
this series, MVO, WOA and GWO present quality solutions
both in convergence speed and in best fitness values.

In the experiments carried out with a population size of
800 and 1000 iterations, it can be seen that the convergence
speeds of WOA, GWO, and MVO are faster than PSO, SSA,

ABC, and CS (Figure 10). It is seen that MVO, WOA, and
GWO generate quality solutions in both convergence speed
and best fitness values with this population size and number
of iterations. Although the initial convergence of theMVO is
slower compared to that of GWO and WOA, it reaches the
best objective function value of f(x)� 19517,10515.

5.3. Results of Execution Time Analysis. Execution time
analysis is an important parameter used for evaluating the
performance of optimisers. In the study, the speeds were
compared with each other based on the time optimisers took
for the solution of the problem where the best fitness value was

1 9 17 25 33 41 49
Iterations

57 65 73 81 89 97

ABC
CS
GWO

MVO
PSO

SSA
WOA

120000

100000

80000

60000

40000

20000

Be
st 

fit
ne

ss
25000
24500
24000
23500
23000
22500
22000
21500
21000
20500
20000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Figure 6: Convergence graph for a population size of 400 and number of iterations of 100.

1 71 14
1

21
1

28
1

35
1

42
1

Iterations

49
1

56
1

63
1

77
1

70
1

84
1

91
1

98
1

ABC
CS
GWO

MVO
PSO

SSA
WOA

135000

115000

95000

75000

55000

35000

15000

Be
st 

fit
ne

ss

27000
26000
25000
24000
23000
22000
21000
20000
19000

1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

69
1

73
7

78
3

82
9

87
5

92
1

96
7

Figure 7: Convergence graph for a population size of 400 and number of iterations of 1000.

10 Scientific Programming



reached with a population size of 800 and iteration number of
5000 and 20 studies (Figure 11). With this comparison, it is
possible to construct the time complexity of algorithms. As
seen in the graph shown in Figure 11, the longest calculation
time for solving the problem is seen in ABC. It is followed by
SSA and WOA. Having the best fitness value, PSO achieved
this success by solving the problem at an average of
19.51 seconds. PSO, GWO, and MVO, which are most suc-
cessful ones in solving the problem, are also more successful
than other algorithms in terms of average calculation time.(e

average running times of algorithms are close to each other.
Although algorithms differ in terms of running time, it can be
said that, with a general assessment, all algorithms solve the
problem in a reasonable running time.

6. Conclusion

In this study, the hydrostatic thrust bearing design problem
defined by Siddall [12] is discussed through 7 different
swarm intelligence approaches.(e purpose of the problem
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Figure 8: Convergence graph for a population size of 400 and number of iterations of 5000.
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is to minimize the power loss that occurs during operation
of hydrostatic thrust bearings. In addition to the successes
of 7 different optimisers in achieving an optimum solution,
their performances in different population sizes and
numbers of iterations are also discussed as the research
subject. For this reason, optimisers were run with pop-
ulation sizes of 100, 400, and 800 in 100, 1000, and 5000
iterations. According to the results obtained, the lowest
objective function value in the study was obtained by MVO
with a population size of 800 and 5000 iterations. Following
MVO, the best solution was reached through WOA, PSO,
and GWO.(e performances of WOA, MVO, CS, and SSA,
which were applied for the first time to solve the minimum
power loss problem, are particularly successful in higher
iteration numbers.

(e successful performance of MVO and WOA in the
populations and iterations where the best fitness value is
reached is remarkable. (e results obtained with the other
two algorithms (SSA and CS) applied for the first time to the
solution of the problem are also very close to the best fitness
value. (is reveals the competitive aspects of algorithms that
have not been applied to the problem earlier. (e results of
objective functions obtained with PSO [10] and GWO [2],
which were earlier applied to the solution of the problem, are
better than that of the studies in the literature.

When the performances of algorithms in different
population sizes and iterations are analysed, is it seen that, as
the number of iterations increased, the algorithms reached
the solutions more easily. (e increase in the number of
iterations increased the precision of the solution.
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Figure 10: Convergence graph for a population size of 800 and number of iterations of 1000.
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Contribution of the increase in population size into quality
solutions was not as much as that of the number of itera-
tions.(e outcomes of ABC and CS with a population size of
800 support this remark. Another remarkable outcome of
the study is the speed of the algorithms. (e best solution
was reached in 19.51 seconds and the worst solution in 25.19
seconds with a population size of 800 and 5000 iteration
numbers where the best fitness value was reached.

Quality solutions produced by swarm optimisers used
for the first time in the study demonstrate that these
methods can be used in delicate engineering design prob-
lems, such as the problem discussed in this article. However,
the obligation for going up to higher numbers of iterations to
reach the ideal solution is a significant issue here. In the
upcoming studies, the focus will be on solving benchmark
problems with hybrid models, such as the problem discussed
in this study.
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