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The optical images collected by remotely operated vehicles (ROV) contain a lot of information about underwater (such as
distributions of underwater creatures and minerals), which plays an important role in ocean exploration. However, due to the
absorption and scattering characteristics of the water medium, some of the images suffer from serious color distortion. These
distorted color images usually need to be enhanced so that we can analyze them further. However, at present, no image en-
hancement algorithm performs well in any scene. Therefore, in order to monitor image quality in the display module of ROV, a
no-reference image quality predictor (NIPQ) is proposed in this paper. A unique property that differentiates the proposed NIPQ
metric from existing works is the consideration of the viewing behavior of the human visual system and imaging characteristics of
the underwater image in different water types. The experimental results based on the underwater optical image quality database
(UOQ) show that the proposed metric can provide an accurate prediction for the quality of the enhanced image.

1. Introduction

In recent years, there have been a growing number of ocean-
related activities, such as aquaculture, hydrological explo-
ration, and underwater archaeology. The optical images
collected by the observational remotely operated vehicle
(ROV) provide very convenient conditions for these ac-
tivities, and high-quality underwater images play an essential
role in these activities. However, due to the absorption and
scattering effects of water limiting the visibility of the un-
derwater objects, the images captured by an optical sensor of
ROV often suffer from diminished color (color distortion),
which affects our understanding of underwater conditions,
so poor quality underwater images need to be enhanced. It is
worth noting that not all underwater images need to be
enhanced, as shown in Figure 1, because bodies of water
exhibit extreme differences in their optical properties. Some
lakes are as clear as distilled water, and some change colors
several times a year, among white, blue, green, and brown
[1]. In the ocean, coastal harbors are often murky, while
offshore waters are blue and clear. Simply put, whether an

image needs to be enhanced depends on whether the visi-
bility of the underwater objects in the image is good.
However, the existing display module of observational ROV
either displays the captured image directly in the terminal or
integrates an enhancement algorithm in the system to
display the captured image after enhancement. However, the
existing display module of observational ROV either dis-
plays the captured image directly in the terminal or inte-
grates an enhancement algorithm in the system to display
the captured image after enhancement. None of them de-
termines whether the image needs to be enhanced or not.
Also, currently, there is no underwater image enhancement
algorithm suitable for any scene, so we need reliable un-
derwater image quality metrics to help us preassess whether
the captured image needs to be enhanced or not and to
monitor the quality of the enhanced image.

The most accurate methods of image quality estimation
are subjective image quality assessment (IQA). However,
subjective IQA is expensive, time-consuming, and im-
practical for real-time implementation and system inte-
gration. In order to automatically estimate image quality and
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FiGure 1: (a) Images that do not need to be enhanced. (b) Images that need to be enhanced.

save workforce and resources, a reliable underwater ob-
jective image quality metric needs to be designed. In un-
derwater image processing scenarios, an ideal reference
image is usually not available, so no-reference (NR) IQA is
the best choice for evaluating underwater image quality.

Some generic image quality measures, such as histogram
analysis [2], the Variance [3], Image Entropy [4], and color
image quality measure (CIQI) [5], have been developed.
Popular BRISQUE [6] and LPSI [7] have also been proposed,
which summarize the statistical rules of natural images and
calculate the degree of deviation of distorted images.
However, these objective measures are not designed spe-
cifically for underwater images. They fail to consider the
strong absorption and scattering effects of the water, and
they are not applicable to underwater images. There are also
NR IQA based on in-depth learning, such as DIQA [8], Deep
IQA [9], and RankIQA [10], which perform well in air
images. The deep learning method has a strong learning
ability and can automatically extract image features. How-
ever, the method requires a large amount of data (usually
more than 5000 images) for training, and the acquisition of
subjective scores (as the ground truth during training) is
expensive and time-consuming. Currently, there is no rel-
evant dataset available for training in the underwater image
field, so it is temporarily impossible to design NR-IQA based
on deep learning for underwater images.

Some paper [11] pointed out that the overall quality of an
image can be effectively obtained by combinations of image
attribute measures. At present, the most commonly used
underwater image quality measures, UCIQE [12], UIQM
[11], and CCF [13], are designed based on this principle. The
UCIQE [12] proposed by Yang Miao is a linear combination
of the standard deviation of chroma, the contrast of lumi-
nance, and the average of saturation. Karen Panetta’s UIQM
[11] is a linear combination of colorfulness, sharpness, and
contrast. The CCF proposed by Yan Wang et al. [13] starts
from the imaging analysis of underwater absorption and
scattering characteristics, calculates the fog density index,
and evaluates the underwater image quality by combining

the color index, contrast index, and fog density index. They
all determine the weighting coeflicients by multivariate
linear regression from the training image set. However,
regardless of the performance of the training set, the gen-
eralization ability of these methods is largely limited by the
training image samples. At the same time, the attention
mechanism of the human visual system (HVS) [14] has not
been paid enough attention in the underwater image eval-
uation. In underwater scenes, the image quality of the target
object has higher research value and practical significance
than that of the ocean background, which does not belong to
the region of interest (ROI). Moreover, the three commonly
used underwater metrics measure the image quality from the
perspective of image statistics, and the robustness is not
high. This results in an overemphasis on color richness. This
paper holds that, in addition to the color fidelity in the
statistical sense, the color fidelity of objects is also very
important from the perspective of pixels. It is worth noting
that the color fidelity here refers to whether the image color
is reasonable, not to say the difference between the object
color in the image and the real object color. Most of the
underwater natural images are blue-green due to color se-
lective attenuation, and the color is single, and the color
richness is not ideal (as shown in Figures 2(a)-2(c)). After
the enhancement algorithm processing, the underwater
image can generally eliminate the color attenuation from the
vision, and the color richness is greatly improved, as shown
in Figures 2(d)-2(f), but the color fidelity of the enhanced
image is questionable, and the color of the fish in
Figures 2(d) and 2(e) is not reasonable, and the artificial
facilities in Figure 2(f) are obviously different from what we
know. That is, Figures 2(a)-2(c) have high color fidelity
(because they are real natural images, although the color of
objects in them is different from that of real objects, the pixel
color is reasonable), but the color richness is very low;
Figures 2(d)-2(f) have low color fidelity and high color
richness. That is, the underwater absorption and scattering
characteristics cause image color distortion (where the type
of distortion is the large difference between the object color
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FIGURE 2: (a), (b), and (c) are original images. (d), (e), and (f) are images after enhancement algorithm. Although the color attenuation is
eliminated visually, the color is still distorted and it is oversaturated.

in the image and the color of the real object), the image tends
to be blue-green, and the color richness of the image is
reduced. Overemphasis on color richness can also result in
color distortion (in this case, the kind of distortion refers to
the unreasonable color in the image), which affects the
viewing effect of the image and subsequent use of the image.

In view of the shortcomings of existing metrics, this paper
proposes a no-reference image quality predictor NIPQ. NIPQ is
designed with a three-stage framework. The first stage focuses
on the attention mechanism of the human visual system (HVS),
which can also be interpreted as ROIL Because in the IQA field
our ROIs are not fixed, some are task-driven; some are data-
driven; some such as fish, corals, divers, or even artifacts of
unknown shape may be of interest to us. For more applications,
we interpret the foreground area (nonocean background) as
ROL. This paper extracts ROI based on background/foreground
and focuses on the image quality of ROI. The second stage
considers the impact of color richness on image quality. As the
distance between the camera and the object increases (hori-
zontally), the color of the object in the underwater image will
keep approaching blue and green [1]. At the same time, as the
position of the optical sensor gets deeper, the object will be
farther away from the sunlight source, and the color of the
object will be darker, and the contrast will be lower. It can be
understood that if the ROI of a natural underwater image has
good color richness, its image quality will be significantly better
than that of a low color richness image. The third stage

considers the fidelity of the color. As mentioned earlier, if NR
IQA overemphasizes color richness, it will cause the enhanced
underwater image to become oversaturated, which is also a
form of color distortion. Inspired by the underwater image
formation model, we distinguish the water types (yellow water,
green water, and blue water) in the image by the ocean
background area of the image and estimate the reasonable
range of pixel intensity of ROI in the enhanced underwater
image from the perspective of pixels. In this stage, the difference
between the reasonable range of pixel intensity and the ROI
pixel intensity of the actual enhanced image is used to represent
the rationality of the enhanced image, that is, color fidelity.
Finally, in the fourth stage, color richness and color fidelity are
systematically integrated for quality prediction.

In order to measure the performance of NIPQ, a un-
derwater optical image quality database (UOQ) is estab-
lished. The database contains some typical underwater
images and their mean opinion scores (MOS). Based on the
comprehensive analysis of all experimental results, the
contribution of NIPQ proposed in this paper is summarized
as follows:

(a) It is a kind of NR IQA inspired by underwater
imaging characteristics. By considering the color
attenuation of images in different water bodies, the
color fidelity and color richness metrics are
proposed.



(b) By adopting a suitable ROI extraction method for the
underwater IQA field, ROI and IQA are effectively
combined due to the block strategy in the ROI ex-
traction method.

(c) It is superior to many commonly used IQA metrics
and can effectively evaluate the performance of the
image enhancement algorithm and can be used as
quality supervision.

(d) We propose NR IQA-based underwater smart image
display module, which embodies the role of our IQA
in application.

We arrange the reminder of this paper as follows. Section 2
describes the NR IQA-based underwater smart image display
module, which is the application background of NR IQA. Section
3 describes the detail of our NIPQ metric explicitly. Section 4
describes the establishment of our database UOQ for evaluating
IQA performance, which consists of underwater optical images
and their enhanced images. In Section 5, performance com-
parisons of the NIPQ metric with selected existing NR IQA
methods are performed. We conclude this paper in Section 6.

2. NR IQA-Based Underwater Smart Image
Display Module

Most of the underwater images captured by optical sensors
have practical applications. For underwater images with
severe color distortion, image enhancement is often needed
before the terminal display. However, not all underwater
images need to be enhanced. We believe that whether the
image needs to be enhanced or not depends on the visibility
of the underwater objects. Besides, because no image en-
hancement algorithm can achieve good results in all scenes,
NR IQA can be used as a guide for image enhancement, so
that the system can automatically select more appropriate
image enhancement algorithm in real time. From the ap-
plication point of view, the framework of the NR IQA based
display module is shown in Figure 3. The traditional image
display module only provides a single image enhancement
scheme or displays the image directly, which cannot flexibly
cope with the different water environment. The display
module proposed in this paper builds various image en-
hancement algorithms into the Image Enhancement Algo-
rithm Database. The system can choose a more appropriate
enhancement algorithm according to the results of NR IQA.
Firstly, the input underwater image is preassessed, and the
natural image with less color distortion is directly displayed.
And for the natural image with severe color distortion, the
default enhancement algorithm in the Image Enhancement
Algorithm Database is used to enhance the image. The
Selector automatically determines whether to enable the
alternative image enhancement scheme and which alter-
native scheme to choose according to the results of NR IQA.

According to the above analysis of NR IQA-based un-
derwater smart image display module and the consideration
of the characteristics of underwater image in Section 1, this
paper uses the color richness of ROI and color fidelity of ROI
to estimate image quality. In the display module proposed in
our paper, the color richness of ROI is used as the metric of
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pre-NR IQA in the display module, and the NIPQ, which
combines ROI, color richness, and color fidelity, will be used
as the metric of NR IQA in the display module.

The ROI extraction method is based on background/
foreground. The block strategy in the extraction method
helps ROI and IQA better combine. The ROI extraction
method is introduced in Section 3.1 in detail. The color
richness represents the distribution of image color in a
statistical sense, which is described by the spatial charac-
teristics of image in CIE XYZ space and detailed in Section
3.2. The color fidelity is based on the underwater image
formation model in the sense of pixel, which is used to
describe whether the pixel intensity is within a reasonable
range. It is introduced in Section 3.3 in detail.

3. Proposed NIPQ Metric

3.1. ROI Extraction Based on Background/Foreground.
Considering that the final receiver of display module of ROV is
often human, it is particularly important that IQA can reflect
the feeling of human eyes well. The mechanism of human
visual attention is an important feature of HVS. The mecha-
nism of human visual attention enables the brain to quickly
understand the overall information of the image and obtain the
regions that need attention. Then the brain begins to focus on
the target information and suppress other background infor-
mation. Therefore, the human eye is usually sensitive to the
damage of the area of concern. At the same time, compared
with the ocean background, high-quality ROI has better
practical significance and value. Therefore, it is necessary to
introduce ROI into image quality assessment.

Researchers usually get ROI by saliency detection or
object detection [15, 16]. Different from the image in the air,
the contrast of most underwater images is low, and the
traditional significance detection method in the air is not
applicable in the underwater. At present, there is no robust
saliency detection algorithm in underwater image field.
Some researchers combine image enhancement with sa-
liency detection [17]. Some researchers combine fish lo-
calization and saliency detection [18]. In IQA, the purpose of
the metric is to evaluate the enhancement algorithm, and the
ROI of the underwater image is not always one or several
fixed categories of targets with predictable shapes. Therefore,
the above method is not applicable. Considering that,
compared with the target, the underwater background
features are easier to be recognized, this paper extracts ROI
based on background/foreground, and the process is shown
in Figure 4. In order to better combine ROI and IQA in the
next steps, the preprocessed underwater image is divided
into m xn image blocks (we call it the block strategy).

Then, we map the boundary connectivity BndCon (p;)
(definition in [19]) of block i region p; by (1) and obtain the

background region probability wf’g :

BndCon’ (p,
wf’g=1—exp<l—w>> (1)
20 BndCon

where 0%, 4con = 1. The background block, the target block,
and the uncertain block are initially divided by using w;”,
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FIGURE 3: The framework of the NR IQA-based underwater smart display module.

(1) divide the image into blocks
and estimate the background
probability of each block

(3) estimate the background probability
of uncretain blocks by color and
position

(4) the final ROI is obtained by
binarization

I

(2) the image is preliminarily divided into background blocks, target blocks, and uncertain blocks

Background block
| Uncertain block 1{

| Target block I

| Color feature |

| Spatial location feature |

F1cure 4: ROI extraction process.

probability of the uncertain block, which is expressed by a

threshold,;, and threshold,;. Then the color feature and
mathematical formula as shown in the following equation:

spatial position feature of the block are used as the correction
of the uncertain block to help judge the background

1 wfg > threshold,,,

Wha(p) = N , , \ (2)
1= Y dopy (Ps i)W (ps p;)w;?, threshold,; < w;? < thresholdy,y, 0, w;? < threshold,;,
i-1
dypa (P> P1)
Wspa (p’ pz) = exp _¥ > (3)

spa



where d,,, (p, q) is the color similarity between blocks p and
g, which is calculated by the Euclidean distance between the
average colors of blocks p and q. d,, (p, q) is the Euclidean
distance between blocks p and g.w,, (p,q) is obtained after
mapping according to (3), among which ¢*,, = 0.25. Fi-
nally, we use the method of maximum variance between
classes to get the final ROL.

3.2. Color Richness. With the aggravation of the phenom-
enon of color attenuation, the color of the natural under-
water image will become less and less, and the visibility of the
object will become worse. Therefore, the color richness of
ROl is a simple and fast metric to measure whether the color
distortion of natural underwater image is serious, which is
suitable for the evaluation of image quality.
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In this paper, the richness of color is measured by the
spatial characteristics of color in CIE XYZ color space. The
color richness should not only include color diversity but
also consider the lightness distribution, so XYZ color space is
a good choice. CIE XYZ color space can represent all colors,
and the Y parameter is the measurement of color lightness.
According to the XYZ color space distribution of the two
images shown in Figure 5, the wide distribution of image
color, respectively, in the three dimensions of X, Y, and Z
does not mean that the color richness is good. That is be-
cause the three components of X, Y, and Z, have a certain
correlation. So the spatial characteristics of color can better
represent the distribution of color. According to (4), the
image color divergence in XYZ color space is defined to
determine the color richness of the image:

1
C,= Z dis(P,,, min, P, max) x max(dis[P,,,, (i, j), P,,, min, P,,, max]) x > (4)
mn

where dis represents the shortest distance between two
points or between points and lines, and mn belongs to X-Y,
Y-Z, and X-Z sections. P,,,, min and P,,, max represent the
closest and farthest points from the origin, respectively.

3.3. Color Fidelity. As mentioned in Section 1, the enhanced
image may be oversaturated/pseudobright (as shown in
Figure 2). If too much attention is paid to the color richness,
the color of ROI in the image will deviate from the color of
real objects. Therefore, we should not only consider the color
richness of the enhanced underwater image but also con-
sider the color fidelity of ROI, that is, whether the intensity
of pixels is within a reasonable range.

It is necessary to understand the formation and deg-
radation of underwater images if we want to estimate a
reasonable range of intensity of pixels. The formation of the
underwater image is dominated by the following factors
[1, 20, 21]:

I = Joe PP 4 BO(1 - PO™), (5)

where C = R, G, B is the color channel, I. is the underwater
image captured by the camera, and J e /€)% is the direct
signal, recorded as D... B® (1 — e #(B/0>?) is a backscattered
signal, which is recorded as B.. z is the distance between the
camera and the photographed object; B is the obscured
light. J - is the unattenuated scene, that is, the RGB intensity
of the surface captured by the sensor with the spectral re-
sponse S, (1) at the distance z0 =0 (generally z0 is regarded
as 0):

1 [k
o= Ll S. (Vp (WE (d, A)di. 6)

(o

k. is the camera’s scaling constant. f° and B° have a
certain dependence on the spectrum of distance z, reflec-
tivity p (1), ambient light E (d, 1), camera’s spectral response
S. (1), scattering coefficient b()), and beam attenuation
coefficient (1), as shown in (7) and (8). z0 and (20 + z) are
the starting and ending points along the line of sight.

A, Ay
[m(j S.(Mp(WE(d, e FMayy j S.(Mp(ME(d, A)eﬁ“”w*z)dx)] )
D _ A M
ﬁc - 2 >
nf 5. 0B e B V= [ s, )= (haa
[“(L s 0B e Y=y [ 15 0B ) )] ©

B
Be = 1

Zz

So, we can calculate the unattenuated scene J- as
]C _ Dceﬁ(D/C)xz _ [Ic _ B?O(l _ e*ﬁ(B/C)xz)] % eB(D/C)xz.
(9)

We need to estimate the reasonable range of values
range [/, nin Je.max) ©f RGB intensity of each pixel in the
foreground (that is, ROI). The color fidelity metric defined
by (10) is calculated by the out-of-range part of the
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FiguUre 5: Color distribution in CIE XYZ space.

enhanced underwater image .. The process is shown in
Figure 6.

Firstly, the veiling light B of the underwater image I, is
estimated. Backscatter increases exponentially with z and
eventually is saturated [1]. In other words, at infinity,
I, = B®. Referring to [22], we assume an area without
objects is visible in the image, in which the pixels’ color is
determined by the veiling light alone. Such areas are smooth
and have no texture. This assumption often holds in the
application scenarios of our IQA. First, the edge graph of the
image is generated. Then, the threshold value is set, and the
largest connected pixel area is found. The veiling light is the
average color of the pixels in these areas.

Next, we estimate the type of water body in the un-
derwater image I, by veiling light BS°. The reason for es-
timating the type of water is that the common notion that

water attenuates red colors faster than blue/green only holds
for oceanic water types [1]. We simplified Jerlov water types
[23] into blue water (Jerlov I-III), green water (Jerlov 1c-3c),
and yellow water (Jerlov 5¢-9¢) and simulated the average
RGB value of perfect white surface appearance under these
three water types (data from [23], using D65 light source,
Canon camera 5D Mark2, p (1) = 1). We calculate Euclidean
distance between the veiling light BX® and the average RGB
value and estimate water body type based on Euclidean
distance.

Then, we calculate the reasonable intensity range
(¢ min> Je.max] Of each pixel after the enhancement of the
underwater image. 8” varies most strongly with range z [1].
So, the most important thing to calculate the range is to
estimate the distance z in addition to the water body type.
Due to the limitation of real conditions, the distance z of the
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Input enhancement
Input image 2

\

(4) calculate deviation
beyond reasonable range

(3) estimate the reasonable range of pixel intensity of ROI
after underwater image enhancement processing

\A

Color fidelity

FIGURE 6: The estimation process of color fidelity.

object in the image cannot be obtained, so it is necessary to
roughly estimate the possible range of the distance z. For the
foreground, the distance z from the camera is approximately
the same; for the background, the distance z from the camera
tends to be infinite. We assume that the distance z from the
camera is the same at each part of the foreground, and there
may be white objects. Therefore, the distance z, which makes
the Jo of the foreground pixels under the three RGB
channels not greater than 255 and not less than 0, is con-
sidered as the possible distance. In order to simplify the
calculation, the attenuation coefficient /3? of white in three
color channels C = R, G, B is adopted for all colors (using
p(A) in Macbeth ColorChecker).
Finally, the color fidelity defined by (10) is calculated:

Sumoor/255)]2 (10)

crefi

Num,,, x 3

Num,,, represents the number of pixels in ROI block,
and Sum,,, represents the total number of pixel intensity
deviations that are not within a reasonable range.

We make some qualitative analysis on the influence of
simplification on J; i, and J/ .. during the calculation. As
shown in Figure 7(b), (8) is used to calculate the broadband
(RGB) attenuation coefficient ﬁ? (using p(A) of the color
block in Macbeth ColorChecker, depth d=1m, distance
z=1m) of seven common colors of red, orange, yellow,
green, green, blue, and purple (Figure 7(a)) under all Jerlov
water types. It can be seen that the p” difference of each
color is not large in the same scene. Figure 7(c) shows the
influence of different camera types on ” in three types of
water bodies. The influence of camera parameters on the
attenuation coefficient B is not significant. The experi-
mental results in [1] also prove this view.

3.4. NIPQ Metric. Section 3.1, Section 3.2, and Section 3.3
above, respectively, introduce the ROI extraction method,
color richness in statistical sense, and color fidelity in pixel
sense. In this paper, the color richness of ROI and color

fidelity of ROI are combined by the multiplication model to
get our NIPQ. The common underwater image evaluation
models UIQM [11], UCIQE [12], and CCF [13] with mul-
tiparameters use linear weighting to measure the compre-
hensive quality of the image. We consider that if a submetric
points to a very low value (indicating low quality), the
subjective feeling of the whole image will be very poor re-
gardless of other metrics. Therefore, this paper uses the
multiplication model to generate the overall underwater
image quality assessment, as follows:

Cg =|C4(ROI)| x C; (ROI). (11)

represents normalization, Cy represents color quality of
ROI block, Cre (0, 1), and the larger the value is, the higher
the image quality is.

The overall process of NIPQ is shown in Figure 8, which
is divided into four step. Firstly, the ROI of the original
image (not enhanced) is extracted based on background/
foreground. Then, the color richness of ROI of the enhanced
underwater image is estimated. Then the ocean background
information is extracted from the original image, from
which the water body type is estimated, and the reasonable
range of pixel intensity distribution is estimated. According
to the estimated range, the ROI color fidelity of the enhanced
underwater image is estimated. Finally, the two metrics of
color richness and color fidelity are integrated to obtain the
comprehensive NIPQ metric for the whole underwater
image.

4. UOQ Database

In order to better evaluate the performance of NIPQ metric,
we built an underwater optical image quality database UOQ.

Image Selection. In order to fully consider various un-
derwater scenes, we selected 36 typical underwater optical
images with a size of 512 x 512. These images include blue
water, green water, yellow water, dark light, single object,
multiobject, simple texture and complex texture, serious
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Ficure 8: Overall process of NIPQ.

color distortion, and a little color distortion. Considering
that there is no general ROI related dataset in the field of
underwater image, we label their foreground region (ROI)
pixel by pixel to prove the reliability of ROI in this paper.
And, we use five popular image enhancement algorithms
(white balance algorithms [24], Fu’s algorithm [25],
multifusion algorithm [26], histogram equalization [27],
and Retinex [28]) to process these 36 natural images. 180
enhanced images were obtained. Some images and their
enhanced images processed by the white balance algorithm
[24] are shown in Figure 9.

Evaluation Methods and Evaluation Protocols. In this da-
tabase, the single incentive evaluation method is used.
Volunteers only watch one image to be evaluated each time,
and each image only appears once in a round of evaluation.
After each image was displayed, volunteers gave subjective
quality scores to the corresponding images. Underwater
optical images usually have practical applications, so vol-
unteers will not be affected by any aesthetic factors in the
process of subjective quality assessment, and the evaluation
protocols are shown in Table 1.

Choosing Volunteers. In order to avoid the evaluation bias
caused by prior knowledge, none of the volunteers had the
experience of image quality assessment. We consider the
strong application background of underwater images, so all
volunteers selected are graduate students with relevant work
experience in underwater acoustic communication, under-
water detection, and so on.

All the obtained subjective scores are used to calculate
the mean opinion scores (MOS). Note §; ; as the subjective
score of the image j by the i-th volunteer and N; as the
number of subjective scores obtained by imagej. MOS is
calculated as follows:

I
MOS; N Zsif' (12)

We draw a histogram about MOS of all images in the
database, as shown in Figure 10. It can be seen that our image
covers a wide range of quality, which is conducive to the
design of IQA. And there are many images with scores in the
middle score segment because the volunteer will try to avoid
giving extreme scores when scoring images. It also can be
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M

FIGURE 9: Underwater image processed by white balance algorithm [24]. (a)-(f) are the original images. Their MOS are 2.40, 1.70, 3.00, 1.30,
2.55, and 4.05, respectively. (g)-(1) are enhanced images. Their MOS are 1.05, 1.15, 2.05, 2.80, 4.55, and 1.15, respectively.

TaBLE 1: Evaluation protocols.

Score Comprehensive feelings
5 The subjective feeling is excellent, foreground information is recognizable, and no color distortion is felt
4 The subjective feeling is good, the foreground information is visible and recognizable, there is a small amount of perceptual
distortion, but it does not affect the extraction of important information
3 The subjective feeling is general, part of the information in the foreground is damaged, and a small amount of important
information is lost due to distortion
) The subjective perception is poor, and only the general outline of the foreground content can be distinguished; the distortion leads
to the loss of some important information
1 The subjective feeling is very poor, it is difficult to recognize the foreground content, and it is almost impossible to extract any

effective information from the image
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()

200

150
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50
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FiGure 10: (a) Frequency histogram about MOS and (b) MOS of all images.

seen that the lower quality image is slightly more than the
higher quality underwater image. This is because most
underwater images have the characteristics of blue-green
and poor contrast, and sometimes the quality of the en-
hanced image is still not ideal. In the practical applications,
more robust enhancement algorithms will be built into the
underwater image enhancement algorithm database of the
display module mentioned in Section 2.

5. Experiment

In combination with the UOQ database, we mainly evaluate
the performance of IQA through five criteria. The prediction
monotonicity of IQA is measured by the Spearman rank
order correlation coefficient (SROCC) and Kendall’s rank
order correlation coefficient (KROCC). The prediction ac-
curacy of IQA is measured by the Pearson linear correlation
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coefficient (PLCC). Root mean square error (RMSE) is used
to measure the prediction consistency of IQA. The mean
absolute error (MAE) is also used to evaluate the perfor-
mance of IQA. The high values (close to 1) of SROCC, PLCC,
and KROCC and the low values (close to 0) of RMSE and
MAE indicate that IQA has a better correlation with sub-
jective scores.

The selected IQA metrics for performance comparison
include the following:

(1) The popular no-reference metrics underwater:
UIQM [11], UCIQE [12], and CCF [13]

(2) The popular no-reference metrics in the air: BRIS-
QUE [6] and LPSI [7]

(3) Common color metrics for underwater images:
UICM [11] and variance of chromaticity (Var Chr)
[29]

For the BRISQUE, a low score means high quality, and
other metrics are that the higher the score, the better the
quality.

5.1. Effect Analysis of Introducing ROI into IQA. In order to
observe the influence of the introduction of ROI on the
quality evaluation of underwater images, we need to
combine ROI with the popular underwater no-reference
IQA. The block strategy mentioned in Section 3.1 is nec-
essary because it helps us combine ROI with IQA better.
According to the block fusion strategy represented by (13),
we combine image block with IQA and get comprehensive
quality score. We can observe the change of correlation
between objective metrics and MOS before and after
combining with ROL

2 WR() xQ(i)
ROI, = —Z RO

mxn

(13)

WR (i) represents the weight of the i-th image block, and
Q (i) represents the objective quality score under the metric.
WR (i) belongs to 0 or 1. That is to say, the difference be-
tween before and after IQA combined with ROI is that the
original metric calculates the quality of the whole image,
while the metric combined with ROI only calculates the
image quality of ROL The results are shown in the first six
lines of Table 2. The results show that the correlation be-
tween the metric combined with ROI and MOS is higher
than the original metric. This shows that the combination of
ROI and IQA is helpful for IQA.

5.2. Performance Analysis of Proposed NIPQ. We calculated
the correlation between various metrics and MOS in the
database, and the results are shown in Table 2. It can be seen
that the correlation between NIPQ metric and the subjective
is significantly higher than other metrics.

In order to compare various NR IQAs intuitively, the
scatter diagram between MOS and the estimated objective
score is drawn, including six selected NR IQA and the NIPQ

11

TaBLE 2: Correlation between MOS and quality scores of objective
evaluation metric before and after integration with ROIL

PLCC SROCC KROCC MAE RMSE
UIQM -0.173 -0.199 -0.132 0.751 0.903
ROI_UIQM 0.277 0.280 0.196 0.739  0.897
UCIQE 0.294 0.207 0.145 0.707  0.868
ROI_UCIQE 0.374 0.274 0.192 0.683  0.840
CCF 0.069 0.075 0.050 0.791 0.946
ROI_CCF 0.393 0.358 0.254 0.722  0.872
Var_Chr 0.158 0.180 0.125 0.674  0.841
UICM -0.283  -0.338 -0.225 0.714  0.854
BRISQUE -0.309  -0.265 -0.185 0.747  0.902
LPSI 0.323 0.245 0.169 0.734  0.898
C.d 0.481 0.465 0.335 0.635  0.789
C_f 0.478 0.432 0.303 0.658  0.806
Proposed 0.641 0.623 0.452 0.576  0.713

proposed in this paper, as shown in Figure 11. On this basis,
the experimental data were regressed by the least square
method, and the straight line is also drawn. The better the
fitting effect of scatter point is, the better the correlation
between the metric and MOS is. The regression line shows
that the correlation between NIPQ and MOS is obviously
better than other metrics. It validates the results of Table 2. It
can be seen that LPSI and BRISQUE are the metrics designed
for images in the air, which are not applicable to underwater
images. As a whole, UIQM, UCIQE, and CCF are specially
designed for underwater images, and their performance is
better than that for images in the air. Performance of UICM,
as a submetric indicating chromaticity in UIQM, is slightly
worse than that of UIQM. Compared with the scatter plots of
other NR IQA metrics, it can be seen that the performance of
our NIPQ shows the best correlation with MOS. Although
there are still some aberrant data points, generally speaking,
the proposed NIPQ has better robustness to a variety of
typical representative underwater images contained in the
database. Further analysis shows that some of these aberrant
points are caused by the fact that the submetric C_f of the
original image (without enhancement) is directly taken as 1
in our experiment.

As shown in Figures 12 and 13, there are two natural
underwater images and their enhanced images in the UOQ
database. Table 3 shows the corresponding MOS and ob-
jective scores of these images. Figure 14 shows the color
distribution of their ROI. From these images, the ROI of the
original image of (1) is dark and that of (2) is blue. The image
enhanced by the histogram algorithm is reddish, and the
color distribution of ROI is wider, but the color of ROI is
obviously oversaturated/pseudobright. There is no signifi-
cant difference between the image processed by the Retinex
algorithm and the original image. The color of the image
processed by Fu’s algorithm is not vibrant. For Figure 12, the
overall difference between the white balance and the mul-
tifusion algorithm is small. The local graph (Figure 15)
shows that the brightness distribution of the image pro-
cessed by the multifusion algorithm is uneven, slightly
oversaturated, and the image enhanced by the white balance
algorithm has a better visual effect. For Figure 13, the image
processed by the white balance algorithm is too dark and has
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FIGURE 11: Scatter diagram between MOS and estimated objective score. (a) LPSI, (b) BRISQUE, (c) UICM, (d) UIQM, (e) UCIQE, (f) CCF,
(g) Cf£ (h) Cd, and (i) proposed.

FIGURe 12: (a) Ori, (b) multifusion, (c) Fu, (d) white balance, (e) histogram equalization, and (f) Retinex.

(d)
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FIGure 13: (a) Ori, (b) multifusion, (c) Fu, (d) white balance, (e) histogram equalization, and (f) Retinex.
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TaBLE 3: The corresponding MOS and objective scores of Figures 12 and 13.

Ori Multifusion Fu White balance Histogram equalization Retinex
MOS 2.550 4.500 4.100 4.550 3.050 2.500
CCF 13.265 22.292 23.887 16.437 30.794 13.379
ROICCF 20.821 33.389 31.274 29.108 26.409 21.604
UCIQE 0.554 0.664 0.591 0.652 0.684 0.569
ROIUCIQE 0.560 0.647 0.573 0.627 0.580 0.575
Figure 12 UIQM 3.983 4.543 4.850 3.969 4.780 4.085
ROIUIQM 5.585 5.589 5.495 5.672 5.055 5.620
BRISQUE 16.303 26.934 31.708 17.824 36.762 16.744
LPSI 0.926 0.901 0.910 0.923 0.912 0.926
c.d 0.243 0.715 0.578 0.698 0.846 0.324
C_f 1.000 0.802 0.637 0.827 0.464 0.994
Proposed 0.243 0.574 0.368 0.577 0.392 0.322
MOS 3.200 3.800 1.550 2.150 2.700 3.250
CCF 31.443 31.465 37.069 18.688 36.928 29.029
ROICCF 22.582 35.995 32.468 13.265 38.366 23.097
UCIQE 0.519 0.628 0.623 0.476 0.693 0.541
ROIUCIQE 0.541 0.620 0.588 0.447 0.676 0.564
Figure 13 UIQM 1.504 3.337 4.325 3.840 4.100 2.182
ROIUIQM 6.658 5.235 5.249 5.349 4.789 5.160
Brisque 4.330 14.749 17.319 4.153 20.596 4.441
LPSI 0.923 0.887 0.911 0.904 0.906 0.926
C.d 0.475 0.730 0.317 0.029 0.640 0.401
C_f 1.000 0.847 0.632 0.581 0.601 0.972
Proposed 0.475 0.619 0.200 0.017 0.384 0.390

CIEXYZ CIEXYZ CIEXYZ CIEXYZ CIEXYZ CIEXYZ

CIEXYZ

FIGURE 15: Local graph of Figures 12(b) and 12(d).
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a single color. The image processed by the multifusion al-
gorithm has a better visual effect.

Tables 3 shows that the selected IQAs do not perform well
in the quality assessment of images in the UOQ database.
They generally have higher objective scores for images en-
hanced by the histogram equalization algorithm because the
color distribution of the images is wider. This is a disad-
vantage of quality evaluation based on statistics: color fidelity
is not taken into account. It can be seen that if the perfor-
mance of the original metric is not ideal, the metric combined
with ROI will not necessarily improve this situation, because
this is the limitation of the original metric itself.

6. Conclusion

Because of the characteristics of water medium, color has
become one of the important concerns in underwater image
quality assessment. Color contains important information.
Severe color selective attenuation/pseudo-vividness can
make it difficult to identify foreground content and extract
key and effective information from images. In this paper, a
new underwater image evaluation metric, NIPQ, is proposed
based on the underwater environment characteristics and
HVS. The NIPQ is designed in a three-stage framework. The
first stage focuses on the attention mechanism of HVS. The
second stage considers the influence of color richness in a
statistical sense. The third stage is inspired by underwater
image formation models and considers color fidelity from a
pixel perspective. Finally, in the fourth phase, color richness
and color fidelity are systematically integrated for real-time
quality monitoring. At the same time, the relevant under-
water image database UOQ with MOS is built to measure
IQA performance. Experimental results show that, com-
pared with other commonly used underwater metrics, NIPQ
in this paper has better correlation with MOS, which shows
better performance.
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