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Due to the tastiness of mushroom, this edible fungus often appears in people’s daily meals. Nevertheless, there are still various
mushroom species that have not been identified.)us, the automatic identification of mushroom toxicity is of great value. A number
of methods are commonly employed to recognize mushroom toxicity, such as folk experience, chemical testing, animal experiments,
and fungal classification, all of which cannot produce quick, accurate results and have a complicated cycle. To solve these problems, in
this paper, we proposed an automatic toxicity identification method based on visual features. )e proposed method regards toxicity
identification as a binary classification problem. First, intuitive and easily accessible appearance data, such as the cap shape and color
of mushrooms, were taken as features. Second, the missing data in any of the features were handled in two ways. Finally, three
pattern-recognition methods, including logistic regression, support vector machine, and multigrained cascade forest, were used to
construct 3 different toxicity classifiers formushrooms. Compared with the logistic regression and support vector machine classifiers,
the multigrained cascade forest classifier had better performance with an accuracy of approximately 98%, enhancing the possibility of
preventing food poisoning. )ese classifiers can recognize the toxicity of mushrooms—even that of some unknown spe-
cies—according to their appearance features and important social and application value.

1. Introduction

Mushrooms are the fleshy fruiting bodies of certain fungus,
some of which are edible, but a minority of them are toxic
[1]. Every year, a large number of people die [2, 3] from
eating poisonous mushrooms. It is useful to identify whether
a mushroom is poisonous according to the appearance
features of the mushroom. )e automatic recognition of
mushroom toxicity has important social and application
value in effectively preventing food poisoning [4].

Current methods of recognizing poisonous mushrooms
can be roughly divided into four categories: chemical de-
termination, animal experimentation [5], fungal classifica-
tion, and folk experience [6]. At present, the research of
poisonous mushrooms based on these methods not only has
been imperfect but also has left much to be desired [7].

)e classification of poisonous mushrooms has evolved
from the biological level to themolecular level [2].)erefore,
the application of chemical determination methods to detect
poisonous mushrooms is becoming increasingly popular [8].
However, there are strict requirements for the experimental
conditions, which are often limited to the laboratory. Due to
cumbersome handling and the great number of unstable
toxins, the method of toxic chemical detection cannot be
used to distinguish edible mushrooms from poisonous ones
[9]. )is approach requires professional knowledge and is,
therefore, not suitable for the average person.

Generally, mushrooms with intact cells, bright colors,
and the lack of birds and insects interacting with them are
likely to be poisonous, particularly if they are found in places
where animals are foraging. To investigate the above situ-
ation empirically, the animal acute toxicity test is commonly
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used to classify poisonous mushrooms [10]. Although the
methods involved are simple, they carry some limitations,
such as low efficiency, material and dosage concerns, and the
varying sensitivities of different animals. )erefore, special
institutions or facilities are needed to facilitate the appli-
cation of these methods.

Fungal recognition includes three aspects: identification,
classification, and phylogeny [11]. )e development of
fungal taxonomy has gone through two stages: traditional
taxonomy and molecular biology. )ese methods have
mainly been used to identify the mushrooms’ species. )e
aim of these methods is subjective, however, because fungi
contain many species and complex morphological features.
)ese methods are limited to applications involving the
artificial cultivation of fungi and are only suitable for pro-
fessionals. )erefore, the identification of poisonous
mushrooms is not straightforward.

For a long time, humans have recognized poisonous
mushrooms by observing the shape, color, odor, and se-
cretion features empirically [12]. )is method is more in-
tuitive, but is of low accuracy proven by the annual
poisoning events. )us, it is not a reliable method for
identifying whether mushrooms are poisonous. However,
this method relies on background knowledge acquired by
humans. People get a lot of background knowledge and
experiences so that the recognition accuracy rate is high.
Otherwise, the accuracy rate is low. In this paper, automatic
identification can break through the limitation to determine
whether it is toxic. )e machine learning methods not only
do not require background knowledge but also can identify
unknown species.

)ese mushroom toxicity recognition methods have
some limitations, such as low accuracy, unqualified detec-
tion of unknown toxins, strict requirements for the exper-
imental environments, sufficient professional knowledge,
and complex experimental cycles. To solve these problems,
an automatic model for mushroom recognition based on
appearance features is constructed in this paper. According
to the observed mushroom appearance data, a poisonous
mushroom can be automatically and accurately identified by
the proposed model.

With the advent of the data age, machine learning and
deep learning have become the core of artificial intelligence
[13]. In recent years, machine learning techniques have been
used to identify the toxicity of mushrooms. Chaoqun [14]
used machine learning models to identify poisonous
mushrooms in an application. )e android-based toadstool
identification system can effectively classify toadstool in real
time [15]. Zhifeng [16] proposed decision fusion based on
the stacking algorithm to improve the accuracy of classifi-
cation methods. )e image database of mushroom, obtained
from the Internet by Python Crawler, was constructed by
Shuaichang et al. [17]. )e model-based transfer learning
and the Adam algorithm as the model optimization method
were applied to construct the model structure of mush-
rooms’ image recognition.

Deep neural networks require large-scale data volumes,
making already complex models even more complicated.
Machine learning has unique advantages for small-sample

problems. For the identification of poisonous mushrooms,
three different pattern recognition methods are discussed in
this paper: logistic regression, support vector machine
(SVM) [18], and multigrained cascade forest (gcForest) [19].
Mushroom toxicity recognition is regarded as a problem of
binary classification. By observing the appearance features of
mushrooms, these machine learning methods are used to
determine whether a mushroom is toxic. gcForest has the
following advantages: (1) feature-based learning and itera-
tive classification through gcForest, which has the best
performance; (2) no need for professional knowledge to use
the system; (3) if the unknownmushroom varieties are toxic,
they can be identified quickly; and (4) independence from
the effects of the natural environment unlike other methods,
expanding the scope of its use.

2. Methods

Driven by big data, deep neural networks (DNNs) show
great potential [20]. DNNs have achieved remarkable suc-
cess in various applications. However, deep neural networks
have too many hyperparameters, and their learning per-
formance critically depends on their careful tuning. At the
same time, it has an impact on DNNs that is difficult to rein
in [21].

In response to the above difficulties, Zhou and Feng
proposed a multigrained cascade forest framework [19].
gcForest is a decision tree ensemble method. )e gcForest
method, which consists of multigrained scanning and a
cascade forest, is explained in detail below.

As illustrated in Figure 1, after we had obtained the
dataset, we checked the integrity of dataset. Firstly, we solved
the problem of missing data by Process A and Process B.
Secondly, the complete data was divided into test dataset and
training dataset. )en, the training dataset was input to the
constructed classifier model. After the model judgment, the
result of classification depended on the category with high
probability. )erefore, the experimental process is shown in
Figure 1 in this paper.

In this paper, we use the cascade forest to discriminate
the toxicity of mushrooms, which is regarded as a binary
classification problem. )e 22-dimensional features are
easily obtained and used as data input. After running the
gcForest model, the toxicity identification results of the
corresponding samples can be obtained, as shown in
Figure 1.

)e gcForest classifier model can accurately judge
whether a mushroom is poisonous in a timely manner; thus,
it has strong practicality. )e classifier also has the following
features: (1) ease of trainability; (2) compatibility with
various datasets; and (3) an adaptively adjustable hierarchy
for the cascade structure depending on the desired the
complexity of the model; such a small sample dataset can
achieve good recognition performance.

2.1. Cascade Forest Structure. Feature learning by deep
neural networks (DNNs) depends on the layer-by-layer
processing of the original features [22]. Similar to DNNs,
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gcForest uses a cascade forest structure where the infor-
mation of each layer is processed in an upper layer and the
result is delivered to the next layer.

As illustrated in Figure 2, suppose that the mushrooms
can be divided into two categories: toxic and nontoxic. )e
leaf node of each forest will output a two-dimensional class
as a vector, which is concatenated for the re-representation
of the original input. )erefore, the next level of the cascade
will receive 8 � 2 × 4 augmented features, and the vector
dimension of the input feature will be 2 × 4 + length(x).
Namely, the feature dimension is equal to the number of
enhanced features + the number of original (or transformed)
features. Each forest will output two-dimensional class
vectors, which are connected to the input features to produce
the next original input. Additionally, each level contains
several classifiers capable of ensemble learning [23].

For simplicity, we suppose that each layer of the cascade
forest structure consists of two random forests and two
completely random forests (CForests) [24]. Each forest is an
aggregation of decision trees [25].

A completely random forest contains a number of
completely random trees, generated by randomly selecting a
feature for splitting at each node of the tree, and the tree is
grown until each leaf node contains only the same class in
Figure 3. Similarly, each random forest contains a number of
trees, by randomly selecting
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candidates (d is the number of input features) and choosing
the one with the best Gini index (which refers to the index of
optimal features when CART is used for classification
problems) for splitting. )e tree is grown tree until each leaf
node contains only the same class of instances [26].

As illustrated in Figure 3, suppose that there are two
classes, each forest will generate a two-dimensional class
vector. Different symbols in the leaf nodes imply different
classes. First, the red color highlights the paths along which
the instance traverses to the leaf nodes, and each forest will

generate the class distribution by counting the percentage of
different classes of training examples at the leaf node where
the concerned instance falls [19]. )en, the estimated class
distribution forms a class vector. )is vector is concatenated
with the original feature vector as the input to the next level
of the cascade. Finally, the cascade result vectors are aver-
aged to two-dimensional vectors. )e class of the maximum
value is used to determine whether the mushroom is
poisonous.

To reduce the occurrence of overfitting produced by each
forest, k-fold cross-validation is used in this algorithm [27].
Each instance will be used as training data for k − 1 times to
generate k − 1 vectors, which are finally averaged to produce
the final class vector that represents the augmented features
for the next level of the cascade. In other words, these
augmented features are partially input in the new cascade
layer, and the performance of the entire cascade on the
validation set is evaluated. And if there is no significant
performance improvement, the training process will auto-
matically terminate. For that reason, the number of cascade
layers can be adjusted automatically. Contrary to complex
and fixed depth neural networks, gcForest can adaptively
stop training to determine the number of cascade layers
required.

2.2. Multigrained Scanning. )e deep neural network has a
powerful advantage in dealing with spatiotemporal and
sequence features. Similarly, gcForest takes into account
multigrained scanning prior to the cascade structure to
enhance the feature learning ability of the overall structure.
As shown in Figure 4, gcForest scans the original features
using a multigrained sliding window. )ere are 22 raw
features for the sample mushroom, and a window size of 8
features is used; this results in the production of 15 feature
vectors. Assuming that there are two classes of mushroom
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Figure 1: Flowchart of the classifier model. It consists of four main steps. (1) )e missing values in the mushroom dataset are solved in two
ways. (2) Seventy-five percent of the dataset is used as the training data. (3) )e gcForest classifier is built on the mushroom dataset. (4) )e
maximum probability of whether the mushroom is toxic is determined according to the mushroom features.
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toxicity, the original 22-dimensional feature vector corre-
sponds to 60 transformed dimensions.

Deep neural networks are effective in handling feature
relationships. Inspired by this recognition, we enhance
cascade forest with a procedure of multigrained scanning.

As illustrated in Figure 4, firstly, the complete appear-
ance feature in the dataset is i(i � 22) dimensions. A sliding
sampling window with length w(w � 8) is used to obtain
o(o � 15) subsample vectors with the size of v-dimensional
feature. )e process is similar to the sliding convolutional
core (o � 􏼄((i − w + 2∗p)/s)􏼅 + 1 � 15), with the stride (s)

is 1 and the padding (p) is 0. Secondly, each of the instances
extracted is used to train a completely random tree forest
and a random forest (f � 1∗2). )irdly, each forest gen-
erates a length (c) probability vector, where c is the number
of categories, here equal to two (corresponding to whether
the mushroom is poisonous). Finally, the results of forests at
each level are joined together to generate the output samples.
A representation vector is generated in each forest, and these
vectors can be concatenated together to obtain the final
sample output in Figure 4. )erefore, there is output feature
F-dimensions (F � o∗f∗ c � 60) [28].
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Suppose the sliding windows with sizes of 8 and 12
features will generate 60-dimensional and 44-dimensional
feature vector for each original training example, respectively.
)e transformed feature vectors, which contain augmented
features by the previous grade, can be used to train the 2nd
grade and 3rd grade of cascade forests, respectively. )e
procedure, in every three levels, will iterate until the boost of
accuracy rate is less than the threshold, as illustrated in
Figure 5. )e repetition process of the training is completed.

Feature vectors of dataset will enter into the cascade
forest structure in batches and connect with the upper
output data to increase the disturbance of mushroom
samples. )e input feature vector of the cascaded forest
structure will be connected with the output data of the first
layer to form the input data of the second layer. )erefore,
we have obtained the transforming features from the pro-
cess. )e final model is actually a cascade of cascade forests
[19]. Each level in the cascade consists of multiple grades
(cascade forests), and each corresponds to a grain of
scanning, as shown in Figure 5.

)e last layer classifies the upper-layer input data.
Counting the percentage of different classes of training
examples at the leaf node where the concerned instance falls,
we then compute the average value in all forests to generate
the maximum value of the class distribution to determine
whether the mushroom is poisonous in Figure 5.

3. Results

3.1.MushroomDataset. )emushroom dataset provided by
the University of California, Irvine was used to classify the
toxicity of poisonous mushrooms [29]. )e input features of
the mushroom include class, cap shape, cap surface, cap
color, bruises, odor, gill appendages, gill spacing, gill size, gill
color, stalk shape, stalk root, stem-surface-above-ring, stem-
surface-below-ring, stem-color-above-ring, stem-color-be-
low-ring, veil type, veil color, ring number, ring type, spore
print color, population, and habitat, for a total of 23 features
(see Table 1). )ese features, which can be observed directly,
are classified with the feature calculation. )ere are 8,124
recordings of mushroom data, which can be divided into two
nearly balanced classes: poisonous (48%) and nonpoisonous
(52%). We have created a new table (see Table 1) based on
data attributes.

Each recording of mushroom has 22 features and one
class label; however, part of the recording in the mushrooms’
dataset is missed in the stalk-root feature.)ere are two ways
to solve the missing data problem in Table 2:

(1) Using a KNN to complete the missing data, which is
called Process A in this paper.)e value of parameter
K is set to 12.

(2) Treating missing attribute values as special values
[30]. A special value (“m”) is used to fill in the
missing values of the stalk-root, which is called
Process B.

)e first row shows an example of complete data. )e
second row shows that the original data of the stalk-root is
missing. In Process A, the KNN algorithm predicts the value

of stalk-root (“c”). In Process B, a special value (“m”) is used
as the new label for all of the missing data. And the range of
the stalk-root S R ∈ b, c, u, e, z, r, ?{ } is changed to
S R ∈ b, c, u, e, z, r, m{ }.

)e two processes were specifically verified and com-
pared in the experiment to determine the feature’s effect in
identifying mushroom toxicity.

)e missing values of the original data are processed to
obtain a complete list of character data. In the experiment,
the error in the numerical data is small relative to the result,
and the data can be converted to the target type data by
LabelEncoder [31].

When the support vector machine classifier is used, a
toxicity category value of −1 or +1 is generally assigned.
)erefore, the range of the feature data toxicity y is changed
to y ∈ −1, +1{ }, which is advantageous for obtaining the
hyperplane of toxicity.

)ree models were run in this paper: logistic regression,
SVM, and gcForest.

3.2. Evaluation Standard. To evaluate the classification
models, we adopt two measures.

)e index for evaluating the performance of the classifier
is the accuracy of classification generally. For the test dataset,
it is the ratio of the correctly labeled samples to the whole
pool of samples in (1).

Assuming that the model of classification is Y � 􏽢f(X),
given by

accuracy � rtest �
1
N

􏽘

N

i�1
I yi � 􏽢f xi( 􏼁􏼐 􏼑, (1)

where N is the test sample size and I is the indicator
function.

)e second is a standard evaluation performance of the
binary classification used, namely, recall and precision [32].
In addition, there are F1-score and ROC curve.

)e mushroom class has two possible predicted classes:
edible (e) and poisonous (p). And there are four situations in
confusion matrix (see Table 3): true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).

)e precision and recall are given by the following
relation:

precision �
TP

TP + FP
. (2)

Precision is defined as the number of true positives TP
over the number of true positives plus the number of false
positives FP [32].

recall �
TP

TP + FN
. (3)

Recall is defined as the number of true positives TP over
the number of true positives plus the number of false
negatives FN [32].

)ese quantities are also related to the F1-score, which is
defined as the harmonic mean of precision and recall [32].
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F1 − score �
2

(1/precision) +(1/recall)

� 2∗
precision∗ recall
precision + recall

�
2TP

2TP + FP + FN
.

(4)

)e ROC curve describes the change process of
classifier performance changing with the change of
thresholds settings, where the x-axis represents false
positive rate and the y-axis represents true positive rate
[33].

FPR �
FP

(TP + TN)
,

TPR �
TP

(TP + FN)
.

(5)

Ideally, we want the fraction of correct positive class
predictions to be 1 (top of the plot) and the score of incorrect
negative class prediction to be 0 (left of the plot) [33].

3.3. Experimental Analysis Using Logistic Regression.
Assume that x0, x1, . . . , x22 is the feature set for mushrooms
containing features such as cap shape, cap surface, cap color,
swelling, and odor. According to the features, we calculate
the probability of this mushroom as toxic, which is called a
score.)is score is used as the input of the sigmoid function:

s � 􏽘
21

i�0
ωixi + α. (6)

At the same time, a sigmoid function is used to convert
the scores into values within the interval of [0,1].

In the logistic regression function, the maximum like-
lihood function is applied to obtain the parameters of the
model. )en, a logistic regression model is constructed,
which is turned into an optimization problem using the log-
likelihood function [34]. During the period of learning the
logistic regression model, the gradient descent method or
other improved scores is usually used [35].

Analysis of the cleaned features may result in excessively
long training time ormemory overflow, due to an excessively
large feature matrix. Consequently, rescreening is the most
direct and effective method to screen effective features with a
random logistic regression model [36]. )ere are differences
between the data obtained from Processes A and B, and so
different effective features will be obtained.

As shown in Table 4, the effective feature stalk-color-
below-ring is different across the different processes. )e
only variable is stalk-surface-above-ring. )ere may be a

Table 1: Attribute information.

Attribute Range of value(s)
Class {edible (e), poisonous (p)}
Cap-shape {bell (b), conical (c), convex (x), flat (f ), knobbed (k), sunken (s)}
Cap-surface {fibrous (f ), grooves (g), scaly (y), smooth (s)}
Cap-color {brown (n), buff (b), cinnamon (c), gray (g), green (r), pink (p), purple (u), red (e), white (w), yellow (y)}
Bruises {bruises (t), no (f)}
Odor {almond (a), anise (l), creosote (c), fishy (y), foul (f), musty (m), none (n), pungent (p), spicy (s)}
Gill-attachment {attached (a), descending (d), free (f ), notched (n)}
Gill-spacing {close (c), crowded (w), distant (d)}
Gill-size {broad (b), narrow (n)}

Gill-color {black (k), brown (n), buff (b), chocolate (h), gray (g), green (r), orange (o), pink (p), purple (u), red (e), white (w),
yellow (y)}

Stalk-shape {enlarging (e), tapering (t)}
Stalk-root {bulbous (b), club (c), cup (u), equal (e), rhizomorphs (z), rooted (r), missing (?)}
Stalk-surface-above-
ring {fibrous (f ), scaly (y), silky (k), smooth (s)}

Stalk-surface-below-
ring {fibrous (f ), scaly (y), silky (k), smooth (s)}

Stalk-color-above-
ring {brown (n), buff (b), cinnamon (c), gray (g), orange (o), pink (p), red (e), white (w), yellow (y)}

Stalk-color-below-
ring {brown (n), buff (b), cinnamon (c), gray (g), orange (o), pink (p), red (e), white (w), yellow (y)}

Veil-type {partial (p), universal (u)}
Veil-color {brown (n), orange (o), white (w), yellow (y)}
Ring-number {none (n), one (o), two (t)}
Ring-type {cobwebby (c), evanescent (e), flaring (f ), large (l), none (n), pendant (p), sheathing (s), zone (z)}
Spore-print-color {black (k), brown (n), buff (b), chocolate (h), green (r), orange (o), purple (u), white (w), yellow (y)}
Population {abundant (a), clustered (c), numerous (n), scattered (s), several (v), solitary (y)}
Habitat {grasses (g), leaves (l), meadows (m), paths (p), urban (u), waste (w), woods (d)}

Table 2: Two ways to generate the missing data.

Class
Stalk-root

)e original data Process A Process B
Edible (e) Bulbous (b) Bulbous (b) Bulbous (b)
Poisonous (p) ? Club (c) Missing (m)
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correlation functional relationship between stalk-surface-
above-ring and stalk-color-below-ring. Although the values
of stalk-surface-above-ring are different processes, this
feature is one of the reasons that affect accuracy.

First, the dataset is divided into 4 even parts; 3 of the
parts are selected as the training set, while the remaining 3
are used as the testing set. Second, we establish a model for
discriminant poisonous mushrooms on the basis of the
training dataset and then judge whether the testing data
indicate poisonousness. )en, statistics on the accuracy of
prediction are calculated. Finally, the statistics for the ef-
fective feature analysis are compared with the statistics for
the analysis using all the input features, and the results are
described in Table 5.

It is easy to observe that, following Process A, the ac-
curacy obtained with effective features and with all features
differs by approximately 0.01% with maximum and mini-
mum accuracy values of 0.955 and 0.940, respectively.
Following Process B, the effects of the effective feature set
and of the overall feature set on the accuracy vary greatly,
with a minimum accuracy of 0.940 and amaximum accuracy
of 0.955 (see Table 5). )e effective feature set is an im-
portant factor in judging accuracy, but an incorrectly judged
feature could reduce the accuracy of estimating mushroom
toxicity.

3.4. Experimental Analysis Using SVM. )e labels for the
toxicity category are set to −1, +1{ } indicating whether a
mushroom is toxic. )e other features are converted to
0, 1, 2..., n using LabelEncoder to represent the samples. )e
dataset is divided into a training set with 75% of the data and
a testing set with the remaining 25% by random selection.

Support vector machine (SVM) is essentially a binary
classificationmodel [37].)e basic idea is to find the optimal
classification line (surface) from the feature space. )e
optimal demarcation line maximizes the distance in the
binary classification of data.

)e minimum accuracy under Process A is approxi-
mately 0.02% higher than that under Process B (see Table 6)
on the test dataset. Further experiments with KNN con-
straints on the original data will produce partially correct
data. )erefore, increasing the correct proportion of
mushroom features can improve the accuracy of mushroom
toxicity classification.

3.5. Experimental Analysis on gcForest. To reduce the con-
trast error between the three experiments, 25% of the dataset
is used as the testing data. In this paper, the gcForest model
requires two stages: multigrained scanning and the cascade
forest [19]. Multigrained scanning generates the features,
and the cascade forests use multiple forest cascades to derive
prediction probability results [38].)e criterion for selecting
each parameter is that the accuracy should be the lowest; this
process is then iterated. Due to the inconsistent magnitude
of the parameters, the weight assignment will cause analysis
errors. )e influencing factors of the parameters on the
experiment will not be commented upon in detail (e.g., the
number of trees in a random forest, the size of the sliding
window, the sliding step, the number of cascading random
forest, and the number of trees in a single cascade random
forest). )e maximum fluctuation in the experimental re-
sults is less than 8%.

)e maximum average denotes the average of the sum of
the maximum values of each parameter in the interval range.
In the experimental results, when the original data are
further tested under the KNN constraint, the processing will
produce erroneous data with a higher error than the new
category (Process B). Incorrectly judged features will reduce
the accuracy of discriminating mushroom toxicity. )us, the
effect of predicting incorrect data in the experiment is
greater than that from filling in special values. Table 7 shows
that the average accuracy of the multigrained cascade forest
classifier fluctuates between a maximum of 0.9835 and a
minimum of 0.9260 on the test dataset.

3.6. Analysis of the Results. )ree classifiers were built on a
mushroom dataset to determine whether themushrooms are
poisonous according to their features.

In the logistic regression experiment, the accuracy of
each feature in determining mushroom toxicity is calculated
following steps such as dimension reduction and computing
accuracy. At the same time, the results from the SVM and
gcForest models are analyzed separately.

Table 3: Confusion matrix.

Predicted class
P N

Actual class P TP FN
N TP TN

Table 4: Effective features under different treatments.

Features Effective features by
Process A

Effective features by Process
B

1 Cap-surface Cap-surface
2 Bruises Bruises
3 Odor Odor
4 Gill-spacing Gill-spacing
5 Gill-size Gill-size
6 Gill-color Gill-color
7 Stalk-shape Stalk-shape
8 Stalk-root Stalk-root
9 Stalk-surface-above-ring Stalk-surface-above-ring
10 Stalk-surface-below-ring Stalk-surface-below-ring
11 Stalk-color-above-ring Stalk-color-above-ring
12 Veil-color Stalk-color-below-ring
13 Population Veil-color
14 Habitat Population
15 Habitat
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Based on the mushroom dataset, SVM has a slightly
higher effect with Process A than that with Process B.
Predicting erroneous data in the logistic regression and
gcForest models will produce more errors than will adding a
new class (Process B) from a certain feature; the data re-
quirements are stricter, and incorrectly judged features will
reduce the accuracy of determining mushroom toxicity.
Table 8 shows that, among the three classifiers, the average
accuracy of gcForest is 0.9835 and fluctuates less than 8%.
)e implementation of gcForest obviously improves the
accuracy of the classification, but this improvement is not
stable. )us, it is necessary to improve the experiment to
further improve the effect of the gcForest classification.

In addition, we used four indexes (precision, recall, F1-
score, and ROC curve) to compare the performance of the
three classification algorithms in this paper (see Table 9 and
Figure 6). AUC stands for the area under the ROC curve.

From Table 9 and Figure 6, it is verified that Process B is
better than Process A, and more features are beneficial to
classification. In other words, the effective feature set is an
important factor in judging accuracy, but an incorrectly
judged feature could reduce the accuracy of estimating
mushroom toxicity.

According to Table 10 and Figures 7 and 8 can be described
as follows. It is verified that the result of partially correct data
by KNN constraint is better than that by Process B.

)e gcForest classifier obtains the higher precision rate
and the lower recall rate than other classifiers on the bal-
anced dataset. In addition, we intuitively get the information
that ACU and ROC have reached the highest value on the
gcForest classifier from Figures 7 and 8 and Table 10. )e
results further prove the outstanding classifier in the three
classifiers and the applicability of gcForest classifier on this
dataset.

4. Discussion

In this paper, we proposed an automatic mushroom toxicity
identification method. )e gcForest method proposed by
Zhou has a recognition accuracy of more than 98% [19].
Based on the high accuracy requirements, we analyzed three
pattern classification models. Logistic regression yielded
classification results by analyzing the effective features
necessary to identify toxicity. )e accuracy of the SVM
method is better than that of logistic regression. Compared
to SVM and logistic regression, gcForest achieved better
results in terms of identification accuracy. )erefore,
gcForest is a good method for automatically identifying
whether a mushroom is poisonous.

A number of common mushroom toxicity recognition
methods are currently in use. )ese methods use different
contributions for determining toxicity, but they have a
number of limitations, such as low accuracy, unsatisfactory
detection of unknown toxins, the need for a strict experi-
mental environment, and sufficient professional knowledge
and complex experimental testing techniques. To circum-
vent the limitations of these methods and apply them to
small-sample data analysis, we used machine learning. In
contrast to deep neural networks, which require great effort
in hyperparameter tuning, gcForest is much easier to train
and can be applied to different kinds of data in different
domains. )e gcForest algorithm has the following advan-
tages: (1) it has a simple structure; (2) it can be applied to
datasets of different sizes; (3) the testing techniques and
handling are simple; and (4) for our experiments, mushroom
toxicity is recognized quickly. Feature-based learning and
iterative classifiers in the gcForest method have the best
performance among the three methods of machine learning
used proposed in this paper. )is automatic identification

Table 6: SVM results with different treatments.

Model results Accuracy of the results by Process A Accuracy of the results by Process B
Maximum value 0.963873 0.962088
Minimum value 0.949419 0.937708
Average value 0.960022 0.959802

Table 7: gcForest results with different treatments.

Model results Accuracy of the results by Process A Accuracy of the results by Process B Average value
Average of the maximum 0.981905 0.983506 0.982706
Average of the minimum 0.926004 0.931912 0.928958
Average value 0.953955 0.957709 0.955832

Table 5: Logistic regression results by different treatments.

Model results
Accuracy of results by Process A Accuracy of results by Process B

Effective features Overall features Effective features Overall features
Maximum value 0.9547021 0.953594 0.953964 0.954585
Minimum value 0.9401772 0.940423 0.945593 0.940431
Average value 0.9507167 0.950822 0.951318 0.950717
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ROC curve of logistic regression
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Figure 6: ROC curve of logistic regression.

Table 8: Accuracy of the three classifiers with different treatments.

Model results
Accuracy of the results by Process A Accuracy of the results by Process B

Logistic regression
SVM gcForest Logistic regression

SVM gcForest
Effective features Overall features Average value Effective features Overall features Average value

Maximum value 0.9547 0.9536 0.9638 0.9819 0.9540 0.9560 0.9621 0.9835
Minimum value 0.9402 0.9404 0.9494 0.9260 0.9456 0.9404 0.9377 0.9319
Average value 0.9507 0.9508 0.9600 0.9540 0.9513 0.9507 0.9598 0.9577

Table 9: Indexes of precision, recall, F1-score, and AUC.

)e dataset by Process A )e dataset by Process B
Model results Effective features Overall features Effective features Overall features
Precision 0.9623 0.9933 0.9644 0.9932
Recall 0.9596 0.9095 0.9595 0.9163
F1-score 0.9596 0.9534 0.9596 0.9573
AUC 0.9832 0.9943 0.9811 0.9964

Table 10: )e second evaluation standard on the classifiers of SVM and gcForest.

)e dataset by Process A )e dataset by Process B
Model results SVM gcForest SVM gcForest
Precision 0.9623 0.9846 0.9644 0.9816
Recall 0.9596 0.9189 0.9595 0.9292
F1-score 0.9596 0.95397 0.9596 0.9575
AUC 0.9832 0.9913 0.9811 0.9938

10 Scientific Programming



method is suitable for nonprofessional identification and for
unknown mushroom varieties.

Among the three machine learning methods, gcForest
yielded the best accuracy. However, the stability of the
classifier, as shown in Table 8, needs to be improved. A
reason for this error may come from the absence of features,
the feature labeled stem-surface-above-ring, or it may come
from the algorithm itself. )erefore, improving stability is a
top priority when trying to improve the accuracy of the
classifier. Since gcForest can be used for different types of
datasets and recognition based on image features is more
convenient than with the other classifiers [39], this method

of identifying whether a mushroom is toxic can be extended
to image recognition. Nonetheless, there is currently no
dataset of mushroom images.

In this paper, we studied whether mushrooms were
toxic, by comparing, analyzing, and summarizing four
classic and traditional identification methods. According to
their shortcomings, we adopted automatic identification
methods to conduct the analysis based on machine learning.
Based on the mushroom dataset, three pattern recognition
analyses were performed. In contrast, gcForest has higher
accuracy, but its stability needs to be improved. )e used
method identifies whether the unspecified mushroom
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Figure 7: ROC curve of SVM.
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Figure 8: ROC curve of gcForest.
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species is toxic in a timely manner. Because this automated
identification method is not affected by the natural envi-
ronment, it has important social and application value in
effectively preventing food poisoning. Meanwhile, people
also need to improve their safety awareness of mushrooms.

5. Conclusions

In this paper, multigrained cascade forest was used to de-
termine whether a mushroom was poisonous based on its
appearance features. LabelEncoder was used to encode the
processed data to form numerical data for the mushroom
dataset. According to the analysis of the dataset features, the
accuracy of gcForest in data classification was approximately
98%. )e maximum fluctuation of its accuracy was less than
8%, however, so the stability of the classifier needs to be
improved. )e gcForest structure can be used not only for
large data but also for small-sized samples, and the adaptive
selection of cascade layers can achieve the same accuracy as
fixed patterns of deep neural networks in other datasets.

At present, research on toxins in poisonous mushrooms
is still underway [40], and cases of mushroom poisoning still
occur. )erefore, it is necessary to establish an automatic
model for the appearance feature recognition of mush-
rooms’ toxicity. Compared with other mushroom identifi-
cation methods, the method proposed in this paper uses
short cycles, is highly efficient, has low requirements in
terms of the natural environment, and results in the timely
identification of the toxicity of unknown species. Conse-
quently, this method has important social and application
value.
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