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Emerging evidence demonstrates that post-translational modification plays an important role in several human complex diseases.
Nevertheless, considering the inherent high cost and time consumption of classical and typical in vitro experiments, an increasing
attention has been paid to the development of efficient and available computational tools to identify the potential modification
sites in the level of protein. In this work, we propose a machine learning-based model called CirBiTree for identification the
potential citrullination sites. More specifically, we initially utilize the biprofile Bayesian to extract peptide sequence information.
,en, a flexible neural tree and fuzzy neural network are employed as the classification model. Finally, the most available length of
identified peptides has been selected in this model. To evaluate the performance of the proposed methods, some state-of-the-art
methods have been employed for comparison. ,e experimental results demonstrate that the proposed method is better than
other methods. CirBiTree can achieve 83.07% in sn%, 80.50% in sp, 0.8201 in F1, and 0.6359 in MCC, respectively.

1. Introduction

Human genome project has been successfully completed in
the end of the twentieth century. More than 20,000 protein-
coding genes have been reported. ,ese coding genes
construct the intact proteins in the biological processions.
Nevertheless, this information can hardly cover the rela-
tionships among the proteins and the human biological
processions [1, 2]. With the development of the proteomics,
several types of post-translational modification (PTM) have
been reported in the level of protein. ,ese modifications
have the ability to construct protein structure and maintain
proteins’ stability. According to the foundational protein
composition, PTMs make contributions to translating
peptides [3, 4]. A great number of PTMS can alter physi-
ological activity. Meanwhile, several PTMs have reversible
biological functions. It was noted that PTMs take part in
several diseases. For instances, PTM enzymes are involved in
neurodegeneration diseases, especially in patients with AD
and Parkinson’s disease [5–7]. So, having a good knowledge
of PTMs is critical for achieving basic biology functions, the

human diseases’ detection, and drug target [8, 9]. It was
pointed that an increasing number of modification sites can
be identified with the methods of machine learning. Nev-
ertheless, the majority of machine learning approaches and
experimental ones are inherently expensive and time con-
suming. ,erefore, constructing an accurate and effective
identification algorithm seems to be an urgent issue in the
field of computational biology.

Citrullination, which can be treated as a special type of
deamination, is one of the most universal type in the level
of post-translational modification [10, 11]. Citrullination
has been reported in several biological processions, in-
cluding cytoplasmic, nucleic, and membrane [12]. In order
to have a good knowledge of the mechanisms of citrulli-
nation, one of the most significant steps can be regarded as
the effective and accurately classification on the modifi-
cation sites and nonmodification ones. It was pointed that
several proteomics approaches, which include immune
detection [13], colorimetric detection [14], and mass
spectrometry [15, 16], should be utilized in this field.
Nevertheless, these abovementioned methods’
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experimental approaches can be regarded to be time
consuming to some degree [17, 18].

With the development of machine learning and artificial
intelligence, some methods in silicon have been widely
utilized in the area of bioinformatics. It was pointed that
computational tools, including phosphorylation [19],
methylation [20], acetylation [21], ubiquitination [22],
carbonylation [23–25], succinylation [26], malonylation,
S-sulfenylation [27], and S-nitrosylation sites [28], have been
proposed. Currently, Zhang et al. [29] initially proposed a
computational approach to identification of such modifi-
cation residues. Meanwhile, such work has the ability to
remove some noise and redundant features [30, 31].
However, these subtle performances of such algorithms
cannot be neglected. In order to design an effective and
accurate algorithm to classify the citrullination sites in this
work, we noted that the available features and the classifi-
cation model can be regarded as basic elements in this
classification problem.

,e CirBiTree, whose full name is citrullination site
identification with a fuzzy neural network and flexible neural
tree, has been proposed in this work. First of all, we utilize
the biprofile Bayesian to extract peptide sequence infor-
mation. A flexible neural tree and fuzzy neural network are
employed as the classification model in the second step. ,e
most available length of identified peptides has been selected
in the final step. To evaluate the performance of the proposed
methods, some state-of-the-art methods have been used for
comparison. CirBiTree can achieve 83.07% in sn%, 80.50% in
sp, 0.8201 in F1, and 0.6359 in MCC, respectively, and the
outlines are shown in Figure 1.

2. Materials and Methods

2.1. Dataset. In the work, we take advantage of the training
dataset [29], established by Zhang et al., to train and test the
proposed algorithm. ,e dataset contains 116 modification
sites and 332 nonmodification ones in the level of citrulli-
nation. Meanwhile, each sample has been demonstrated as
the style of peptide, whose center amino acid residue is the
potential modification site. ,erefore, the length of the
peptide should be discussed in this experiment. According to
such a situation, length ranges from 15 to 21 in the predicted
peptide segments are chosen. So as to easily understand the
length, we give an example in this section. A sample can be
demonstrated as a peptide segment of length 21 in the
employed dataset. In order to ensure the same length of each
sample, some added residues ‘X’ can be filled in the
positions.

2.2. Biprofile Bayesian. ,e biprofile Bayesian feature set is
an original type of an encoding approach in the field of
bioinformatics [32]. ,e encoding approach is based on the
statistical theories. For instance, an employed sample, which
includes n length peptide segments, makes a predicted
center modification residue, upstream side and downstream
side. ,e potential predicted samples can be defined as two
groups.,ese two groups include one negative sample group

and one positive sample group. ,erefore, we can give the
definition that the sample in the positive group can be
treated as the Cp and the sample in the negative group can be
treated as the Cn.,e Cp is the citrullination center site in the
predicted sample, and the Cn is the noncitrullination center
site in the predicted dataset. With statistical theories, each
amino acid residue can be defined mutually independent,
and the posterior’s probability of the peptide for the two
types can be shown as the following equations:
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,en, we may update equations (1) to (2) into the index
form as follows:
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,e prior distribution can follow the uniform distri-
bution. ,erefore, both the probability of negative samples
and positive ones can be defined as equal. ,e distinguished
function can be demonstrated as follows:

f(P) � sgn log P Cp|P􏼐 􏼑􏼐 􏼑 − log P Cn|P( 􏼁( 􏼁􏼐 􏼑,
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With Shao’s approach, equation (5) can be redefined as
follows:

f(P) � sgn(W
�→

· P
→

). (6)

2.3. Flexible Neural Tree. ,e flexible neural tree (FNT),
considered as a special neural network, has been proposed by
Bao et al. [18, 33]. Such model has the ability to regulate the
neural network with special strategies. FNT has been widely
utilized in the field of machine learning. ,e main steps of
FNT are shown in the following section.

First of all, the flexible neural tree utilizes instruction set
to generate population with the following equations:
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Instructor Set � Operation Set∪Variable Set, (7)

Operation Set � +1, +2, · · · , +m􏼈 􏼉, (8)

Variable Set � x1, x2, · · · , xn􏼈 􏼉, (9)

where the instruction group consists of two operating
subgroups, including the operation subgroup and the var-
iable subgroup. ,e operation set +i includes several op-
eration processions, and the variable set xi includes several
values. ,en, the employed flexible activation function is
described in the following equation:

f mi, ni, x( 􏼁 � e
− x− mi( )/ni( )

2

. (10)

In the next step, the output can be computed by the
method of recursion in each neural node. For each operation
set element +i, the total excitation can be calculated as
follows:

networki � 􏽘
i

j�1
ωj × yj, (11)

where yj · (j � 1, 2, . . . , i) is the input to node +i.,e output
of the node +i is computed in as follows:

outi � f mi, ni, networki( 􏼁 � e
− networki− mi( )/ni( )

2

. (12)

2.4. Fuzzy Neural Network. In this section, we introduce a
special type of fuzzy neural network, whose name is rein-
forced hybrid interval fuzzy neural networks (RHIFNNs).
Such model can be employed as a classification model in the
field of machine learning. In the proposed classification
model, the membership intervals are obtained on a basis of
the membership grades produced by the two methods being
realized for different values of the fuzzy parameters.
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where u1
ik is the membership grade formed by the Fuzzy C

means when being run for the fuzzy parameterm1, while u1
ik

is the membership grade produced by the Fuzzy C means
with the value of the fuzzy parameter set to m2.
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where i � 1, 2, . . . , c and p � 1, 2, . . . , q are the indexes of
fuzzy class in this model.,emodel output can be calculated
as

gp(x) �
y

p

l + y
p
r

2
. (15)

3. Results and Discussions

3.1. Performance Measurements. In this classification
problem, samples can be defined as two types, including the
positive samples and the negative samples. Defined positive
samples mean the peptide segments, whose center lysine
residues have the acetylation modification. On the contrary,
the defined negative samples mean the peptide segments,
whose center lysine residues do not have the acetylation
modification. According to the definition of the classified
samples, they can cause the four results in the common
situation. We can easily obtain these formulations, including
sensitivity, specificity, accuracy, F1 scores, and MCC. Also,
the detailed information is given as follows:

Sn �
TP

TP + FN
, (16)

Sp �
TN

TN + FP
, (17)

F1 �
2TP

2TP + FN + FP
, (18)
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Figure 1: Outlines of CirBiTree.
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where P is the scale of positive samples and N is the scale of
negative ones. T is a set of the true predicted result, and F is a
set of the false predicted result.

Table 1 summarizes that several different types of fea-
tures have been employed to be compared with the proposed
method. All the abovementioned features, namely, binary
encoding, AA composition, grouping AA composition,
physicochemical properties, KNN Features, Secondary
Tendency Structure, PSSM, and BPB, have been tested in the
proposed method. Our approach can get the performances
that the proposed method can achieve: 78.19% in sn%,
79.28% in sp, 0.7862 in F1, and 0.5747 in MCC, respectively.

Table 2 demonstrates several art-of-the-state tools and
approaches that have been employed to be compared to the
proposed algorithm. Meanwhile, the length is 15.

Table 3 shows several art-of-the-state methods’ results. In
particular, our proposed algorithm can achieve 80.09% in sn
%, 78.86% in sp, 0.7960 in F1, and 0.5896 in MCC, respec-
tively. Meanwhile, we find that some features have different
functions in this type modification site classification.

From Table 4, several art-of-the-state tools and ap-
proaches have been employed to be compared the proposed
algorithm, while the length is equal to 17.

From Table 5, it can be seen that the proposed method
can achieve 81.01% in sn%, 80.09% in sp, 0.8064 in F1, and
0.6111 in MCC, respectively. Meanwhile, we find that some
features have different functions in this type modification
site classification.

From Table 6, several art-of-the-state tools and ap-
proaches have been employed to be compared the proposed
algorithm, while the length is equal to 19.

FromTable 7, the proposedmethod can achieve 83.07% in
sn%, 80.50% in sp, 0.8201 in F1, and 0.6359 in MCC, re-
spectively. Meanwhile, we find that some features have dif-
ferent functions in this type modification site classification.

From Table 8, it can be seen that several art-of-the-state
tools and approaches have been employed to be compared
the proposed algorithm, while the length is equal to 21. ,e
ROC curves of the art-of-the-state methods have been
demonstrated in Figure 2.

It was pointed that the compared features and art-of-the-
state approaches have some good performances in this
classification issue. ,e proposed method has the ability,
which is more accurate, in these candidate lengths. Mean-
while, we can easily find out that the different lengths of the
amino acid residue have the different performances. We can
get the conclusion that the most available length among the
employed candidate ones is 21. ,e distances of upstream
and downstream are equal to 10.

In order to demonstrate the performances of the
CiBiTree, some art-of-the-state machine learning methods,
including random forest, neural network, support vector
machine (SVM), and k nearest neighbor (KNN), have been
employed to be compared with it. ,e ROC curves of the
different machine learning methods have been demon-
strated in Figure 3.

From Table 9, we can easily find out that the proposed
method has better performance than other machine learning
methods in this field.

Table 1: ,e performances of different features in length 15.

Features Sn (%) Sp (%) F1 MCC
Binary encoding 55.36 75.25 0.6147 0.3123
AA composition 62.87 60.53 0.6214 0.2341
Grouping AA composition 68.33 71.94 0.6959 0.4030
Physicochemical properties 72.06 73.04 0.7241 0.4510
KNN features 74.37 65.70 0.7128 0.4023
Secondary tendency structure 66.47 77.09 0.7019 0.4380
PSSM 67.75 76.75 0.7095 0.4469
BPB 71.06 76.29 0.7297 0.4741
Proposed algorithm 78.19 79.28 0.7862 0.5747

Table 2: ,e performances of different methods in length 15.

Method Sn (%) Sp (%) F1 MCC
DNABIND [34] 69.27 67.93 0.6881 0.3720
DNAbinder [34] 68.37 73.68 0.7024 0.4211
DBD-,reader [35] 54.49 93.31 0.6761 0.5187
DNA-Prot [35] 64.96 79.49 0.7005 0.4492
iDNA-Prot [36] 73.26 73.07 0.7319 0.4633
DBPPred [37] 77.01 72.28 0.7523 0.4934
PLMLA [38] 65.67 69.11 0.6682 0.3480
Phosida [39] 75.55 83.34 0.7862 0.5908
LysAcet [40] 74.14 73.71 0.7398 0.4785
EnsemblePail [41] 74.87 70.17 0.7315 0.4509
PSKAcePred [42] 68.47 67.60 0.6817 0.3607
BRABSB [43] 78.41 69.87 0.7520 0.4846
SSPKA [44] 74.40 78.69 0.7603 0.5313
Proposed algorithm 78.19 79.28 0.7862 0.5747

Table 3: ,e performances of different features in length 17.

Features Sn (%) Sp (%) F1 MCC
Binary encoding 55.51 74.89 0.6146 0.3099
AA composition 64.63 62.28 0.6388 0.2691
Grouping AA composition 71.63 71.39 0.7154 0.4301
Physicochemical properties 74.88 72.33 0.7394 0.4723
KNN features 73.69 64.62 0.7049 0.3847
Secondary tendency structure 69.52 76.49 0.7203 0.4612
PSSM 70.44 77.23 0.7291 0.4778
BPB 72.52 76.99 0.7418 0.4956
Proposed algorithm 80.09 78.86 0.7960 0.5896

Table 4: ,e performances of different methods in length 17.

Method Sn (%) Sp (%) F1 MCC
DNABIND [34] 69.45 68.59 0.6915 0.3804
DNAbinder [34] 69.23 73.05 0.7058 0.4231
DBD-,reader [35] 56.88 92.74 0.6931 0.5316
DNA-Prot [35] 66.65 78.75 0.7094 0.4574
iDNA-Prot [36] 75.46 74.53 0.7511 0.5000
DBPPred [37] 78.66 73.34 0.7662 0.5208
PLMLA [38] 65.62 69.51 0.6692 0.3516
Phosida [39] 78.42 84.77 0.8099 0.6331
LysAcet [40] 77.17 73.76 0.7587 0.5095
EnsemblePail [41] 76.22 70.21 0.7400 0.4652
PSKAcePred [42] 70.87 67.44 0.6968 0.3833
BRABSB [43] 80.03 71.94 0.7692 0.5214
SSPKA [44] 75.49 78.09 0.7649 0.5360
Proposed algorithm 80.09 78.86 0.7960 0.5896
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Table 7: ,e performances of different features in length 21.

Features Sn (%) Sp (%) F1 MCC
Binary encoding 57.25 77.00 0.6352 0.3493
AA composition 65.01 63.51 0.6452 0.2852
Grouping AA composition 72.31 72.11 0.7224 0.4443
Physicochemical properties 75.80 74.22 0.7521 0.5003
KNN features 75.35 66.29 0.7208 0.4181
Secondary tendency structure 70.49 78.43 0.7340 0.4907
PSSM 72.12 79.41 0.7485 0.5167
BPB 72.92 78.56 0.7504 0.5157
Proposed algorithm 83.07 80.50 0.8201 0.6359

Table 5: ,e performances of different features in length 19.

Features Sn (%) Sp (%) F1 MCC
Binary encoding 56.36 75.56 0.6234 0.3252
AA composition 64.77 62.79 0.6413 0.2756
Grouping AA composition 71.75 71.85 0.7178 0.4359
Physicochemical properties 75.36 73.73 0.7475 0.4910
KNN features 74.87 65.63 0.7157 0.4068
Secondary tendency structure 69.85 77.38 0.7258 0.4736
PSSM 71.17 79.29 0.7418 0.5062
BPB 72.68 78.45 0.7484 0.5121
Proposed algorithm 81.01 80.09 0.8064 0.6111

Table 6: ,e performances of different methods in length 19.

Method Sn (%) Sp (%) F1 MCC
DNABIND [34] 69.64 70.86 0.7007 0.4051
DNAbinder [34] 69.75 73.56 0.7110 0.4334
DBD-,reader [35] 57.63 94.66 0.7073 0.5630
DNA-Prot [35] 67.72 80.64 0.7240 0.4877
iDNA-Prot [36] 76.69 75.48 0.7623 0.5218
DBPPred [37] 79.32 74.79 0.7756 0.5416
PLMLA [38] 65.61 69.49 0.6691 0.3513
Phosida [39] 78.58 84.77 0.8109 0.6346
LysAcet [40] 77.33 75.00 0.7644 0.5234
EnsemblePail [41] 77.20 72.20 0.7532 0.4946
PSKAcePred [42] 70.99 69.66 0.7052 0.4065
BRABSB [43] 81.07 72.12 0.7760 0.5341
SSPKA [44] 75.72 79.48 0.7717 0.5524
Proposed algorithm 81.01 80.09 0.8064 0.6111

Table 8: ,e performances of different methods in length 21.

Method Sn (%) Sp (%) F1 MCC
DNABIND [34] 71.87 71.78 0.7184 0.4365
DNAbinder [34] 70.97 74.70 0.7232 0.4571
DBD-,reader [35] 58.87 95.52 0.7208 0.5846
DNA-Prot [35] 68.56 81.27 0.7321 0.5024
iDNA-Prot [36] 78.70 76.20 0.7773 0.5492
DBPPred [37] 80.19 75.19 0.7823 0.5545
PLMLA [38] 66.05 70.64 0.6760 0.3673
Phosida [39] 80.33 85.15 0.8231 0.6556
LysAcet [40] 78.36 76.00 0.7745 0.5437
EnsemblePail [41] 77.84 72.47 0.7581 0.5039
PSKAcePred [42] 72.09 70.33 0.7146 0.4243
BRABSB [43] 81.30 73.06 0.7809 0.5455
SSPKA [44] 76.10 80.55 0.7783 0.5670
Proposed algorithm 83.07 80.50 0.8201 0.6359
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Figure 3: ,e ROC curves of classification algorithms in length 21.
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4. Conclusions and Discussions

In this study, a novel predictor named CirBiTree has been
designed to predict citrullination residues with the classi-
fication model based on a fuzzy neural network and flexible
neural tree algorithm. As far we are concerned, it is the first
time these abovementioned classification algorithms are
utilized to the classification of the citrullination samples and
noncitrullination ones. Experimental results and perfor-
mances demonstrated that CirBiTree achieved an excellent
performance and could be a useful bioinformatics tool to
accurate identification of citrullination sites.

At the same time, several key elements of citrullination
sites predicition issue should be considered. First of all, the
effective description and the available features’ discovery can
be regarded as one of the most important elements to deal
with such classification issue. On the one hand, several
classical and typical methods should be utilized in this field.
On the other hand, some potential information should be
found with the deep learning approaches. Secondly, the
high-effective classification algorithms should be proposed
in the field of machine learning and artificial intelligence.
With the development of deep learning, the deep learning
methods can be utilized in this field. Meanwhile, it was
pointed that the real-time capability should be taken into
account in the model construction.
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