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Virtual machine (VM) placement is the current day research topic in cloud computing area. In order to solve the problem of
imposing location constraints on VMs to meet their requirements in the process of VM placement, the location-constrained VM
placement (LCVP) algorithm is proposed in this paper. In LCVP, each VM can only be placed onto one of the specified candidate
physical machines (PMs) with enough computing resources and there must be sufficient bandwidth between the selected PMs to
meet the communication requirement of the corresponding VMs. Simulation results show that LCVP is feasible and outperforms
other benchmark algorithms in terms of computation time and blocking probability.

1. Introduction

+e evolutionary advancements in the field of technology
have led to the instigation of cloud computing [1]. With the
popularity of cloud computing, VM placement has received
more and more attention. Jobs arrive from the cloud con-
sumer and are analyzed to produce the multiple corre-
sponding subtasks that VM can run directly. +e physical
resources provided by a data center are used to build VMs to
support the execution of these subtasks. +e part playing a
connecting role between the two mentioned above is called
VM placement, which is concerned with mapping VMs to
PMs in a data center [2, 3].

+ere has been some research in VM placement. +e
traditional approaches consider VM placement as a well-
known bin-packing problem [4, 5], which assumes that the
performance of task execution can always satisfy cloud
consumers as long as the requested computing resources are
less than the total available resources in a data center.
However, this assumption ignores factors such as available
bandwidth resources and geographical distances between
the selected PMs. Specifically, if available physical resources
in a data center are sufficient but belong to the different PMs
far away from each other, using these resources to build VMs

may lead to network congestion easily, which further detain
the task execution [6]. Based on this consideration, the
authors in [6] proposed a new algorithm for data-intensive
distribution applications, which can promote the effective
execution of these applications by giving bandwidth higher
priority over PMs. Unfortunately, the performance of the
algorithm cannot be guaranteed and it is also possible to end
up with worse solutions. In order to finish the task on time, a
backfilling algorithm to execute deadline-based tasks was
proposed [7]. By introducing the idea of the double auction,
the mechanism in [8] can bridge users’ task requirements
and providers’ resources in two-side cloud markets and
achieve the purpose that the purchase prices of physical
resources for building VMs are as close as possible to their
true value. Mann et al. [2] found that VMplacement and VM
selection influence each other significantly and in a highly
nontrivial way. According to this, they proposed a problem
formulation for the joint optimization of them. However,
they only gave some primary theories and there is still much
work for further research. Based on [2], Pascual et al.
proposed a new combined optimization model to study how
a task affects others on the same PM [9], according to the
sizes and types of user tasks. +e authors in [10] dug into the
design and implementation of virtual machine management
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strategies for energy-efficient cloud data centers and pro-
posed a distributed approach to an energy-efficient dynamic
virtual machine consolidation mechanism. In order to en-
hance security, a virtual resource mapping algorithm was
proposed in [11], which can configure resources based on
evaluating and detecting the threats and vulnerabilities of
VMs. However, the algorithm missed the opportunity to
place multiple VMs onto one PM, which reduces the re-
source utilization of a data center. Zhao et al. proposed a
function model between the performance of task executions,
the resource costs, and the impact of multiple tasks on the
same PM [12]. And then they proposed an optimization
algorithm based on the model. Cortez et al. used machine
learning to predict the resource costs of VMs to achieve the
purposes of reserving resources and improving resource
utilization more effectively [13].

In cloud computing, the data center acts as an infra-
structure to provide physical resources for VMs [14] and one
of the important problems is determining mappings of VMs
to PMs with different objectives, such as optimizing costs,
profits, or performances [15]. As the basic unit to supply
services for cloud consumers, VMs will be placed very
frequently. If multiple VMs that need to communicate with
each other are placed onto the PMs far away from each other,
substantial bandwidth will be occupied inevitably to
maintain communication between the VMs, which will
cause unnecessary waste of network resources and may lead
to network congestion [11]. Moreover, there are usually
thousands of PMs in a data center. If the PMs are searched
for numerous cloud user requests without any constraints,
the complexity of resource management will increase ex-
ponentially. +erefore, considering the factors mentioned
above and the requirements of functionality, security,
availability [16], it is necessary to impose constraints on VMs
and the constraints come from location requirements in this
article.

In summary, the major contributions of this paper are as
follows:

(i) We provide a new perspective for VM placement
and formulate the problem of imposing location
constraints on VMs in cloud computing

(ii) Based on this new perspective, we propose an al-
gorithm to generate the desired solution

(iii) We conduct and analyze extensive simulations to
demonstrate the effectiveness of LCVP. +e results
show that our algorithm achieves better perfor-
mance and lower computation time

In this paper, the LCVP algorithm that can consider the
location constraints is proposed. Simulation results show
that, compared with the existing ones, LCVP can achieve its
goal and outperform other benchmarks in terms of com-
putation time and blocking probability.

+e rest of this paper is organized as follows. In Section
2, the problem description illustrates the problem solved in
this paper first. And then the models are presented in model
definition. +e feasible solution is formulated in the rest of
Section 2. Section 3 describes the LCVP algorithm and its

performance evaluation is done in Section 4. Finally, the
conclusion is given in Section 5.

2. VM Placement

2.1. Problem Description. As mentioned above, it is neces-
sary to impose location constraints on VMs and the problem
solved in this paper is mapping the requested VMs onto the
appropriate PMs under multiple constraints. Specifically,
each VM should be placed onto one of the specified can-
didate PMs that are defined based on the preferred location
and radius, i.e., location constraint. Each selected candidate
PM should have sufficient computing resources to host the
corresponding VM, i.e., computing capacity constraint. And
there should be sufficient bandwidth between each pair of
the selected PMs to maintain the communication between
the corresponding VMs, i.e., bandwidth capacity constraint.
+e objective of LCVP is to serve as many customer requests
as possible and maximize the resource utilization of a data
center based on multiple constraints.

2.2. Model Definition. +e physical resources provided by a
data center to supply cloud computing services are repre-
sented as an undirected graph called PM-graph. +e VMs
needed by a cloud consumer to run his/her tasks are rep-
resented as an undirected graph called VM-graph.

2.2.1. PM-Graph. It indicates the physical resources pro-
vided by a data center. +e PM-graph is defined as an
undirected graph Gs(Vs, Es), where Vs represents the set of
PMs and Es represents the set of communication between
PMs. +e communication is called the physical link in the
following sections. Each PM vs ∈ Vs has a computing ca-
pacity cs

vs and each physical link es ∈ Es has a bandwidth
capacitybs

es . In addition, each PM is also associated with a
location lsvs . Ps is the set of loopless paths in Gs(Vs, Es) and
Ps

vs is the set of loopless paths that start/end at node vs.

2.2.2. VM-Graph. It indicates a customer request, or in
other words, the VMs needed by a cloud customer to finish
his/her jobs before the deadline. +e VM-graph is defined as
an undirected graph Gr(Vr, Er), where Vr is the set of VMs
requested by a cloud consumer and Er is the set of com-
munication that represents bandwidth requirements to
support data flow between the corresponding VMs. +e
communication between VMs is called virtual link (VL) in
the following sections. Each VM vr ∈ Vr has a computing
requirement cr

vr and each VL er ∈ Er has a bandwidth
requirement br

er . In addition, for LCVP, each VM vr ∈ Vr

has a preferred location, denoted as lrvr . Based on lrvr , VM
vr ∈ Vr can only be placed onto the candidate PM(s) that
is(are) defined based on the preferred location lrvr and a
radius ρ, i.e., location constraints mentioned in this paper.
+e set of candidate PM(s) is denoted as Φs

vr , i.e.,

Φs
vr ⊆V

s
,

Φs
vr � u

s ∈ V
s
: l

s
us − l

r
vr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ρ􏽮 􏽯,

(1)
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where ||lsus − lrvr || is the distance between the two locations.
Each VL er ∈ Er is also associated with a candidate

physical path setPs
er , which includes all the paths between

the candidate PMs of the two end-nodes of er, i.e.,

P
s
er � ⋃

vs
1∈Φ

s

er
+

⋃
vs
2∈Φ

s

er
−

P
s
vs
1 ,vs

2
,

(2)

where er
+ and er

− are the two end-nodes of er. 􏽢P
s

er indicates the
subset of Ps

er with sufficient bandwidth to carry VL er.
VM-graphs are derived from the customer requests.

Specifically, a cloud consumer submits jobs and then the jobs
are analyzed to generate the corresponding subtasks that can
be run directly on VMs. After this, according to the degree of
parallelism in subtasks and the communication dependen-
cies among those subtasks, the corresponding VM-graph is
generated.

2.2.3. Compatibility Graph. +eCG is a graph structure. It is
denoted asGc(Vc, Ec), in which each node vc ∈ Vc repre-
sents a candidate physical path for a VL er ∈ Er, and the
nodes in the same row represent all candidate physical paths
for the same VL, i.e.,

fC e
s
1( 􏼁 � fC e

s
2( 􏼁 , if f

−1
N e

s
1( 􏼁 � f

−1
N e

s
2( 􏼁, (3)

where fC( ) is the function to obtain the line number of the
corresponding nodes in a CG and f−1

N ( ) is the inverse
function of fN( ) to obtain the corresponding virtual link
that es

1 is a candidate for.
Each row of the CG represents all candidate physical

paths for a particular VL in the VM-graph, i.e.,

P
s
er � e

s ∈ E
s
: fC e

s
1( 􏼁 � fC e

s
2( 􏼁􏼈 􏼉. (4)

Each link in a CG denotes the corresponding end-nodes
are compatible. Specifically, if two physical paths are
compatible, a link is inserted to connect their corresponding
nodes in CG. Similarly, there is no link between the in-
compatible nodes.

Here, “compatible” means that two compatible physical
paths can carry two VLs in the same VM-graph simulta-
neously. Specifically, the compatible physical paths should
satisfy the following: (1) they are the candidate paths for two
adjacent VLs and have one PM as the common end-node or
(2) they are the candidate paths for two VLs that are not
adjacent.

2.3. Feasible Solution. A feasible solution should satisfy the
following demands. In a feasible solution, each selected PM
to host the corresponding VM should satisfy the location
constraint, computing capacity constraint, and one-to-one
mapping constraint. Each selected physical link for the
corresponding VL should satisfy the bandwidth capacity
constraint and link mapping constraint. On this basis, as
many VMs as possible should be placed to maximize the
resource utilization of a data center. Specifically, each VM
can only be placed onto the candidate PMs, i.e.,

v
s ∈ Φs

vr , if fN v
r

( 􏼁 � v
s
, ∀vr ∈ V

r
, (5)

where fN( ) denotes the mapping relation between VMs and
its candidates.

Each VM in the same VM-graph can only be placed onto
a single PM and any two different VMs in a single VM-graph
cannot be placed onto the same PM, i.e.,

fN v
r
1( 􏼁 � fN v

r
2( 􏼁, if and only if v

r
1 � v

r
2. (6)

If a VM is split and placed onto multiple PMs, additional
bandwidth will be occupied inevitably to support the VM’s
internal communication. And if multiple VMs are placed
onto one PM, the customer request will be vulnerable to
physical resources failures [17]. In addition, multiple VMs
sharing the same PM are vulnerable to resource competition,
which may cause performance interference among VMs and
thus lead to VM performance degradation [18]. Each se-
lected PM should have sufficient resources for the corre-
sponding VM, i.e.,

c
r
vr ≤ c

s
vs , if fN v

r
( 􏼁 � v

s
, ∀vr ∈ V

r
. (7)

Furthermore, each VL should be placed onto one
physical path connecting the PMs that its two end-nodes are
placed onto, i.e.,

fL e
r

( 􏼁⊆Ps
fN er

+( ),fN er
−( ), ∀vr ∈ V

r
, (8)

wherefL( ) is the link mapping relation between VLs and
physical paths and er

+ and er
− are the two end-nodes of VLer.

+e allocated bandwidth on each physical link should
not exceed its bandwidth capacity, i.e.,

b
s
es ≥ 􏽘

er∈Er

􏽘
Ps∈fL er( )

b
er

ps · I
es

ps ,∀es ∈ E
s
,

b
r
er � 􏽘

ps∈fL er( )

b
er

ps ,∀er ∈ E
r
,

(9)

where ber

ps indicates the bandwidth allocated to accommo-
date VL er on the physical path ps and Ies

ps indicates whether
ps traverses es or not, i.e.,

I
es

ps � 1, if p
s traverses e

s
,

I
es

ps � 0, otherwise.

⎧⎪⎨

⎪⎩
(10)

It should be clearly noted that there may be one or more
feasible solutions, but only one of them will be the desired
one that LCVP finally provides to the corresponding cloud
consumer. As illustrated in the previous section, the ob-
jective of LCVP is to serve as many customer requests as
possible and maximize the resource utilization of a data
center. Hence, LCVP will select one with lower blocking
probability from feasible solutions for a cloud consumer,
that is, the desired solution.

3. LCVP Algorithm

3.1. Preprocessing. First of all, LCVP will preprocess all can-
didate PM sets upon receipt of the VM-graph and PM-graph.
+is is because of the one-to-one mapping between VMs and
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PMs, that is, fN(vr
1) � fN(vr

2) if and only if vr
1 � vr

2, as pre-
viously mentioned. +rough the preprocessing, LCVP can
guarantee that each PM only is one candidate for one VM, that
is, Φs

vr
1
∩Φs

vr
2

� ∅, vr
1, vr

2: vr
1 ≠ vr

2􏼈 􏼉. +e detailed procedure is
given in Algorithm 1.

3.2. CGConstruction. After preprocessing, LCVP constructs
CG next by using the VM-graph and PM-graph. +e CG
structure has been mentioned in the previous section, so it
will not be repeated in this section. +e body of CG con-
struction is shown in Algorithm 2.

3.3. Heuristic Maximum Clique Algorithm. With CG, the
problem of imposing location constraints on VM is trans-
formed into the maximum clique problem. Since the nodes
from the same row of CG represent all candidate physical
paths for a particular VL, a node selected from a row in the
CG means a VL has found a feasible physical link. +e
feasible solution has been found when LCVP found one
node from each row of the CG. So, the next thing that needed
to be done is to find the maximum clique that can minimize
the total resource consumption from the constructed CG,
that is, the desired solution. +e resource consumption is
calculated as follows:

R � 􏽘
vr∈Vr

c
r
vr + 􏽘

er∈Er

􏽘
ps∈fL er( )

p
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∗ b

er

ps ≤Q, (11)

where fL is the function between the selected physical link
and virtual link er and ber

ps is the bandwidth allocated on ps

for er in PM-graph.
+e CG has a good property that a maximal clique in it is

also the maximum one as long as there are sufficient
bandwidth resources, which has been proven in [19]. Spe-
cifically, the feasible solution exists as long as there is at least
one node that can be selected in each row. With this
property, the problem of finding the maximum clique is
reduced to finding a maximal one, which can optimize the
computation time of LCVP.

Considering the purpose of load-balancing, the weight h

of the candidate physical path is defined as its hop-count
divided by its available bandwidth. According to the can-
nikin law, the available bandwidth of a physical path de-
pends on the physical link with the smallest available
capacity:

h �
p

s
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

δ + mines∈ps b
s
es

, ∀ps ∈ 􏽢P
s

er , (12)

where |ps| denotes the hop-count of physical path carrying
virtual link er and δ is a small positive number to avoid zero
denominators.

As mentioned previously, LCVP will find the desired
maximal clique from the constructed CG by using the
heuristic maximum clique algorithm shown below. fSP is
the function to obtain the physical path that a node in the
CG represents, while f−1

SP is the inverse function
(Algorithm 3).

3.4. Desired Solution Generation. In the end, since each row
of a CG represents all the candidate physical paths of a
particular VL and each node represents a candidate physical
path for a VL, the desired solution can be generated by
traversing the maximum clique found in the previous
section.

4. Results and Discussion

4.1. Performance Metrics. +e objective of LCVP is to serve
as many customer requests as possible and maximize the
resource utilization of a data center. +e solution found
through LCVP should satisfy the constraints (5)–(9), that is,
feasible solution. Hence, the customer request blocking
probability is used as the performance metrics.

+e so-called blocked request means that, due to in-
sufficient physical resources in a data center, LCVP fails to
generate the feasible solution.

Blocking Probability: it is defined as the ratio of blocked
to total arrived requests, i.e.,

Pb � lim
T⟶∞

Ωb(T)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Ωa(T)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Ωb(T)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (13)

where Ωa(T) and Ωb(T) denote the set of the accepted and
blocked customer requests during [0,T], respectively.

4.2. Simulation Step. In order to verify the feasibility and
time-efficiency of LCVP, simulation experiments are con-
ducted. +e simulation environment is MATLAB 2012b
running on a computer with 3.10GHz Intel Core i3-2100
CPU and 4.00GB RAM. +e PM-graph and all VM-graphs
are randomly generated with the GT-ITM [20], which is a
tool for randomly generating network topology.+ere are 50
PMs and 172 physical links in the PM-graph and all the PMs
are located within a 100×100 grid.

+e PM-graphs used in the simulations are shown in
Figures 1 and 2.

In each VM-graph, the number of VMs is between 2 and
10 randomly and the probability of connecting any two VMs
is 0.5. +e preferred location lrvr of each VM is also randomly
located in the 100×100 grid and the candidate PM set for
each VM consists of the PMs located within the circle that is
centered at lrvr and has a radius of ρ. +e default value of ρ is
20. +e VM-graphs mentioned above are generated
according to the Poisson process. +e average arrival rate of
the Poisson process is λ VM-graphs per time-unit and the
average holding time of each VM-graph is 1/μ time-units.
+erefore, the traffic load of VM-graphs is λ/μ in Erlangs. To
facilitate the following experiments, Yen’s algorithm [21] is
used to precalculate K-shortest physical paths between each
PM-pair.

+e algorithms proposed in [22] and their modified
versions are used as the benchmarks, which are denoted as
DViNE, DViNE-LB, DViNE-KSP, and DViNE-LB-KSP,
respectively. +e algorithms ending with “KSP” are the
modified versions that precalculate K shortest physical paths
compared with the original algorithms, while those in-
cluding “LB” are the benchmark algorithms considering load
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balance. In addition to the algorithms ending with “KSP,”
the others are the original ones proposed in [22]. LCVP also
precalculates the K shortest physical paths by using Yen’s
algorithm and uses these paths to construct CG. Hence,
there is no modified version ending with “KSP” for LCVP.
+e reason for using the modified versions is that the
original ones did not apply limitation on the number of
candidate physical paths for each virtual link, which is
impractical for the data center with massive resources.

4.3. Simulation Results. On the PM-graph shown in Fig-
ures 1 and 2, the simulation experiment was conducted for
500000 time-units under a fixed traffic load as 20 Erlangs to
evaluate the performance of the algorithms. +e results are
shown in Figure 3.

From Figure 3, it can be seen that the blocking proba-
bility of LCVP maintains about 6%, which is lower than the
benchmark algorithms, thanks to the fact that LCVP can
simultaneously consider the capacities of PMs, bandwidth
capacities, and hop-count of physical links. Moreover, the
algorithms considering the network bandwidth load have a
lower probability than those that do not. It is obvious that
the algorithms considering the network bandwidth load
prefer to conserve sufficient bandwidth for each physical link
to achieve load balance, which can provide more available
physical links for subsequent customer requests.

+e experiments are also conducted to compare the
computation times between LCVP and benchmark

algorithms. In order to show the results more directly and
briefly, the computation time of LCVP is used as the basis
and the results on the normalized computation time are
shown in Figure 4. +e algorithms that precalculate the K
shortest physical paths are faster than the others because
they not only save the time to find the paths but also prevent
the algorithms from the unlimited search for potential
candidate paths, which leads to a longer search time. In
addition, it should be emphasized that the computation time
of LCVP includes the time of using Yen’s algorithm, pre-
processing, constructing CG, and finding the maximum
clique. It can be seen that even when the radius ρ is set as 40,
the computation time of LCVP is still much lower than the
benchmarks. +is is due to the good property of CG, which
optimizes the complexity of LCVP.

Finally, the relationship between the blocking rate and
radius ρ is experimented and analyzed. For different values
of radius ρ, i.e., different sizes of candidates PM sets, the
results are shown in Figure 5. It can be seen that even when
the radius ρ is 15, the blocking probability of LCVP is only
7%, which is much lower than the benchmarks. Further-
more, with the increase of radius ρ, the probability decreased
to 1%.+is is because when radius ρ increases, the number of
candidate PMs for each VM also increases, which provides
more choices for LCVP to find the desired solution.
However, benchmark algorithms do not change significantly
with the increase of radius ρ, whose reason is that the al-
gorithms have no performance guarantee and may generate
worse or even infeasible solutions.

input ： Original candidate PM setsΦS
vr , PM set Vs, VM set Vr

output： Preprocessed candidate PM setsΦS
vr

(1) Ψvs←∅, ∀vs ∈ Vs;
//check the candidate PM set for each VM and remove the PMs with insufficient capacity.

(2) for each vr ∈ Vr do
(3) for each vs ∈ Φs

vr do
(4) if cr

vr > cs
vs then

(5) remove vs from Φs
vr ;

(6) endif
(7) endfor
(8) endfor

//for each PM, find out all VMs that consider the PM as a candidate and save the VMs in Ψvs .
(9) for each vr ∈ Vr do
(10) for each vs ∈ Φs

vr do
(11) Ψvs←Ψvs ∪ vr{ };
(12) endfor
(13) endfor

//for each PM whoseΨvs > 1, only reserve it as the candidate for the VM whose candidate PM set
//has the smallest size and remove it from other candidate sets.

(14) for each vs ∈ Vs do
(15) if |Ψvs | > 1 then
(16) vr

m � argminvr∈Ψvs
|Φs

vr |;
(17) Ψvs←Ψvs∖ vr

m􏼈 􏼉;
(18) for each vr ∈ Ψvs do
(19) Φs

vr←Φs
vr∖ vs{ };

(20) endfor
(21) endif
(22) endfor

ALGORITHM 1: Preprocessing.
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input： PM-graph Gs，VM-graph Gr

output： CG Gc(Vc, Ec)

(1) Vc←∅ , Ec←∅;
//check the candidate physical paths setPs

er for each VL and remove the paths with insufficient
//capacity.

(2) for each er ∈ Er do
(3) for each p ∈ Ps

er do
(4) if mines∈pbs

es ≥ br
er then

(5) Insert a node in Vc to represent p;
(6) else
(7) remove p from Ps

er ;
(8) endif
(9) endfor
(10) if Ps

er � ∅ then
(11) return (FALSE);//return construction failure status
(12) endif
(13) endfor

//according to compatible relation between physical paths, connect the corresponding nodes in the
//CG.

(14) for each er
1 ∈ Er do

(15) for each er
2 ∈ Er, er

2 ≠ er
1 do

(16) if er
1 and er

2 are adjacent throughVN vr then
(17) for each vs ∈ Φs

vr do
(18) Ec←Ec ∪ ((Ps

er
1
∪Ps

vs ) × t(Ps
er
2
∪Ps

vs ));
(19) endfor
(20) else
(21) Ec←Ec ∪ (Ps

er
1

× Ps
er
2
);

(22) endif
(23) endfor
(24) endfor
(25) return (TRUE);//return construction success status

ALGORITHM 2: CG construction.

input： CG Gc, PM-graph Gs, VM-graph Gr

output： Maximum clique M
(1) M←∅ ;
(2) PN←fSP(Vc);//put all corresponding physical links of the nodes in CG into the set PN

(3) for each er ∈ Er in nonincreasing order of br
er do

//obtain the physical links with sufficient bandwidth to carry er and store them in 􏽢P
s

er

(4) 􏽢P
s

er← ps: ps ∈ ps
er ∩PN, (mines∈ps bs

es )≥ br
er􏽮 􏽯;

(5) if 􏽢P
s

er � ∅ then
(6) return (FALSE); //return failure status
(7) endif

select ps
m from 􏽢P

s

er with the minimum h-parameter defined by equation (12);
(8) M←M∪ f−1

SP(ps
m)􏽮 􏽯;

(9) PN←PN ∩ ps: (f−1
SP(ps), f−1

SP(ps
m) ∈ Ec)􏽮 􏽯;//only conserve the compatible physical links as candidates for following virtual links.

(10) update computing resources;
(11) endfor
(12) update computing resources;
(14) return (TRUE); //return success status

ALGORITHM 3: Heuristic maximum clique algorithm.
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5. Conclusions

In cloud computing, the VM placement is an important
research direction. +e LCVP proposed in this paper can
place VMs onto PMs under location constraints and ensure
that there is at least one physical link between the selected
PMs.+e experimental results showed that LCVP could serve
more customer requests and provide better blocking prob-
ability than the benchmarks with much lower computation
time. In the future, the focus will be on themodified version of
LCVP that can consider multipath based link mapping.

Data Availability

+e data used can be found at https://pan.baidu.com/s/1-
bjl1P6TM_qJQB09ctfcXw.
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