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With the increasing applications in the domains of ubiquitous and context-aware computing, Internet of +ings (IoT) is gaining
importance. +e study to efficiently exploit and manage a spectrum resources for industrial IoT (IIoT) applications is currently in
the interest of research community. As increasing number of IIoTdevices is heading towards the future-connected society with the
cost of high system complexity, to meet the growing demands of wireless communication in future, cognitive IoT (CIoT)
technology is considered as a choice. Reliable detection of the vacant spectrum holes is a vital task in the CIoTnetwork with data.
However, the performance of spectrum sensing severely degraded with the existence of malicious users (MUs) which falsifies the
sensing results by reporting false data to the fusion center (FC). In this paper, we focus on the use of particle swarm optimization
(PSO) to safeguard the cooperative spectrum sensing (CSS) from the negative effects caused by the MUs. +e effectiveness of the
proposed scheme is verified numerically in various scenarios with different types of MUs through analysis and simulations.

1. Introduction

Wireless communication networks have gained tremen-
dous progress in the last decade to meet the growth in
application devices from 1G to 4G Long-Term Evolution
(LTE) advanced wireless networks [1]. +ese generations
have played their roles in order to achieve improved data
rate, high reliability, minimum latency and more things on
the way. Wireless communication is facing the challenge of
how to connect wireless devices with each other at anytime
and anywhere. In the evolution process, 5G is expected to
offer significant contributions towards spectrum man-
agement, public safety consideration, energy utilization
efficiency, improved data rate, and low latency [2–4]. Since
the 5G wireless communication technology is on the

horizon in combination with IoTconsideration as its center
stage, IoT devices will perform a central role in the for-
mation of a 5G network paradigm [5].

+e term IoT introduced and mentioned by Ashton for
the first time is a technological revolution that brings het-
erogeneous networks under the common umbrella of IoT
[6]. +is technological revolution represents the future of
connectivity and reachability. Unlike the traditional net-
works of embedded systems, IoT is capable of inter-
connecting heterogeneous devices, having diverse
functionalities, produced by different manufacturers [7]. IoT
has changed the landscape of numerous industries tre-
mendously ever since it has been introduced [8]. It is a
promising subject of the social, technical, and economic
implications that will hold a strong and meaningful impact
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on our daily life in the near future. IoT is going to help in the
improvised logistic learning, automation, e-health-care
units, and intelligent transportation systems [8, 9]. +e
functionality of IoT is extended using mobile computing in
the healthcare environment to bring massive healthcare in
the form of mobile healthcare in [10]. Similarly, the fog-
based IoT healthcare framework proposed to minimize
energy consumption of the fog sensing nodes along with
network delay in [11]. +emajor focus is this paradigm from
a technological perspective is to enhance computation,
communication, and connectivity procedures. However,
connectivity and radio spectrum management are more
crucial and challenging responsibilities in front of the re-
search community. In the near future, over 50 billion
wireless devices have to be interconnected that may demand
for a large number of spectrum resources [12]. In [13], the
authors argued on the importance and employment of
cognitive capabilities in IoT with the objective that without
implication of the cognitive capability, it is similar to an
awkward stegosaurus with all brawn and no brains. A dozen
of wireless communication technologies are already in use
such as WiFi, Bluetooth, LTE, earlier 3G standards, ZigBee,
Near Field Communication (NFC), and different satellite
services. +erefore, the rapid growth in wireless commu-
nications demands for the new wireless services in both the
used and unused part of the radio spectrum [14]. Spectrum
sharing in 5.4GHz band has already been legalized by the
federal communication commission (FCC), where devices
sense the existence of military radars before accessing the
channel [15]. Cognitive radio (CR) is an intelligent wireless
communication technology with efficient radio spectrum
utilization abilities trying to learn and adjust its internal
states according to environment [16]. +e primary users
(PUs) are able to transmit any time with no restrictions while
the secondary users (SUs) gain the benefit of the spectrum
access only when it is declared to be free [17].

In CR networks (CRNs), an incorrect detection of the PU
results in false alarm and reduces the SUs’ opportunities to
access the spectrum. Similarly, any misdetection of the
occupied PU channel produces interference to the PU by the
secondary access. Masking of the optimal interference
subcarrier is obtained based on genetic algorithm (GA) to
suppress intercarrier interference caused by the SUs to the
PU channel [18]. In [19], a side-lobe reduction scheme using
a generalized side-lobe canceller combined with GA and
differential evolution is proposed to minimize the impact of
the interference.

Spectrum sensing with single SU is facing a number of
limitations such as the limitations with the energy con-
straints, shadowing, fading, and hidden terminal problems
[20]. On the other hand, in the cooperative spectrum sensing
(CSS), the sensing problems faced by the single user is
mitigated by allowing the cooperation among the multiple
SUs to share their sensing results to make a global decision
on the existence of PU [21]. In the CSS, the SUs forward their
local decisions to the fusion center (FC) to make a global
decision to infer the absence or presence of the PU [21].

However, the existence of malicious users (MUs) in the
CSS severely reduces effectiveness of cooperation.+erefore,

proper detection and exclusion of the MUs’ information are
extremely critical [22]. Significant investigations have been
carried out to make the CSS robust to the attack of MUs.+e
MU transfers erroneous sensing reports to the FC, in order
to create confusion about the spectrum conditions. Such
attacks are referred to as spectrum sensing data falsification
(SSDF) attack [23]. A systematic review is conducted in [24]
to analyze the security problem of IoTdevices and to counter
various security challenges using mobile computing.

Boosted trees algorithm (BTA) is proposed in [25] that
uses the AdaBoost ensemble method to make results of the
cooperative decision at the FC reliablity in the presence of
abnormal sensing data.+e work in [26] suggested the use of
differential evolution (DE) to identify the weighting coef-
ficient vector against user sensing reports. +is strengthens
the reports of normal sensing users with high weights
compared to the abnormal sensing users. An enhanced CSS
scheme is determined at the FC using flower pollination
algorithm (FPA) in [27]. Similarly, performance comparison
is made at the FC between different hard combination
schemes in the presence of abnormal reports of the lazyMUs
in [28]. +e work in [29] reduces the effect of the false
sensing reports before making the final decision at the FC
using modified double-sided neighbor distance algorithm
with a GA optimization scheme. Amachine learning scheme
such as support vector machine (SVM) in [30] effectively
classified the normal sensing users and different categories of
MUs to help FC decision. In [31], malicious sensing nodes
with false sensing reports are quantified in the simulation
environment of the Poisson point process. As the MUs do
not share honest sensing reports with the FC, a contract
theory approach with incentive design scheme is proposed
in [32] to reward honest SUs and to strengthen their co-
operation. +e normal SUs discussed in [33] follow the FC
recommendation as a final decision of the PU channel and
use their local sensing decisions to guarantee the CSS re-
liability. A Bayesian-inference scheme is proposed in [34] to
identify and countereffects of the individual and collabo-
rative SSDF attackers using a sliding window trust model.

A robust scheme which deals with always yes malicious
users (AYMUs) is implemented in [35]. An extended se-
quential cooperation scheme with reduced sensing reports
and improved sensing performance is investigated in [36].
+e soft fusion schemes such as maximum gain combining
(MGC) and equal gain combining (EGC) combine the
energy statistics reported from the SUs to make a decision
[37–39]. All cooperating SUs in the hard decision scheme
forward the binary values denoting the local decisions to the
FC to make a global decision [40–42]. +e works in [43, 44]
utilize GA for optimizing the detection and false alarm
probabilities to minimize the error probability. A novel
evolution-based CSSmechanism is discussed in [45] to select
and optimize the weight coefficients of the SUs’ sensing
result. +e binary GA- (BGA-) based soft fusion scheme
proposed in [46] is used to improve the detection perfor-
mance and bandwidth utilization. Particle swarm optimi-
zation (PSO) is utilized as a tool for the optimization of the
threshold point to enhance the spectral efficiency and detect
the potential spectrum [47, 48]. An energy-efficient PSO
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which provides high protection to the legitimate user is
proposed in [49]. In our previous study in [50], FC deter-
mines the Kullback–Leibler (KL) divergence score based on
the users’ soft energy sensing reports. +e KL divergence
score is acknowledged to the users and stored in the FC local
database to improve future decision. Similarly, in the pro-
posed method in [51, 52], a double-sided neighbor distance
(DSND) and outlier detection schemes followed by the
majority voting decision in GA is used to reduce global
decision error probability of the centralized CSS.

In this paper, the PSO algorithm has been employed to
search for the spectrum information representing the actual
status of the PU’s activity on behalf of all cooperative SUs.
+e spectrum selection of the PSO results in overcoming the
effect of MUs in the CSS. In the proposed scheme, the SUs
forward their sensing results to the FC at certain sensing
intervals.+e FC utilizes the PSO algorithm to determine the
most suitable energy statistics among the information re-
ceived from the SUs including the MUs. Please note that the
MUs pretend to be normal SUs.+e one-to-many Hamming
distances and z-score is used as a composite outlier score and
fitness function of the PSO algorithm. Out of the PSO
population, the sensing report with minimum outlying is
selected as the PU channel status on behalf of all SUs for a
global decision. +e global decision of the PU channel is
made with EGC, MGC, and majority voting hard fusion
schemes based on the selections of the PSO algorithm. +e
PSO algorithm selection contains less harmful effects from
any MUs; thus, the FC’s decision becomes more reliable
which improves the overall CSS performance.

+e proposed scheme is verified in the false sensing of
always no MU (ANMUs), AYMU, opposite MU (OMU),
and random opposite MU (ROMU) in a cooperative en-
vironment. +e AYMU sends an always high-energy sta-
tistics of the channel irrespective of the actual status; thus, it
increases false alarm probability and reduces throughput of
the SUs. +e ANMU category of the MU forwards always
low-energy statistics that result in misdetection and induce
interference to the PU.+eOMU, which is the most harmful
type of the MU, forwards the opposite values of energy
statistics against its actual sensing result. Finally, the ROMU
acts like the OMU with probability P and like normal SU
with probability 1 − P.

+e rest of the paper is organized as follows. In Section 2,
the system model considered through this paper is pre-
sented. Section 3 describes the details that how the PSO
algorithm is utilized to reduce the effects of abnormal SUs by
identifying accurate sensing results before using EGC,MGC,
and majority voting decision at the FC. Numerical evalu-
ations and analysis are presented in Section 4. Finally,
Section 5 concludes the paper.

2. System Model

As the probability of experiencing deep fading at all SUs is
extremely low, the shared sensing results of the users to
cooperatively decide the PU activity can reduce the sensing
problems which may occur with single SU’s sensing.

+e objective is to minimize the error probability
Pe � Pf + Pm, where Pf and Pm denote the false alarm and
misdetection probabilities. +erefore, in order to reduce Pe,
the detrimental effects of the misdetection Pm � 1 − Pd and
false alarm Pf probabilities must be minimized.

As in Figure 1, the SUs cooperate to sense the activity of
the PU channel and inform the FC about their sensing
information. +e received information from the AYMU is
an always high-energy signal representing busy status of the
channel. Similarly, the ANMU provides with a low-energy
signal to the FC.+e OMU negates the actually sensed status
of the PU and the ROMU acts like an OMU or a normal SU
probabilistically. Hence, the ROMU’s nature is more difficult
to predict. Based on the received reports from the SUs, the
FC makes global decision of the channel availability.

+e binary hypothesis test at the lth time slot with the jth

SU received signal is as follows [35]:

yj(l) �
H0, nj(l),

H1, hjs(l) + nj(l),

⎧⎨

⎩ (1)

where the hypotheses H0 denotes the idle status of the PU
channel and H1 represents the channel occupation by the
PU, yj(l) is the received signal by the jth SU in the lth time
slot, nj(l) is the additive white Gaussian noise (AWGN) at
jth SU, hj is the channel gain between the PU channel and
the jth SU, and s(l) is the signal transmitted by the PU in the
lth time slot, respectively.

+e received signal energy of the PU channel by the jth

SU at the ith sensing interval is

Ej(i) �

􏽘

li+K−1

l�li

nj(l)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, H0,

􏽘

li+K−1

l�li

hjs(l) + nj(l)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, H1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where K is the number of samples in the ith sensing interval.
According to the central limit theorem, the number of
samples needs to be large enough so that the energy reported
by each SU becomes similar to a Gaussian random variable
under both H0 and H1 as [35, 53].

Ej ∼
N μ0 � K, σ20 � 2K􏼐 􏼑, H0,

N μ1 � K ηj + 1􏼐 􏼑, σ21 � 2K ηj + 1􏼐 􏼑􏼐 􏼑, H1.

⎧⎪⎨

⎪⎩
(3)

In (3), ηj is the signal to noise ratio (SNR) between the
PU and jth SU. Similarly, (μ0, σ20) and (μ1, σ21) are the mean
and variance values of the energies reported under the H0
and H1 hypotheses.

3. Proposed Particle Swarm Optimization
Process at FC

PSO is derived from the bird flocking or fish swarming
introduced by Eberhart and Kenedy in 1952 [54]. In PSO,
individual intelligence, as well as collective intelligence, plays
an important role in finding an enhanced solution. In GA, it
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is likely that every novel group is flourishing better than the
previous generations. Similarly, in the PSO, the same group
is likely to become better and better. +e individuals es-
tablish their intelligence and improve it with the passage of
time. +e whole group is expected to improve its group
intelligence. Particles in the PSO algorithm utilize its own
and neighbor knowledge to update their position and ve-
locity. +e PSO particle exchanges information about their
best position among each other during a number of
iterations.

+e proposed model of the CSS using the PSO is shown
in Figure 2. In this model, the SUs sense the PU channel and
forward their energy statistics to the FC for a number of
observations to form the PSO population. +en, the FC
applies the PSO technique in identifying sensing reports
which are closer to the actual status of the PU channel. +e
FC measures the fitness score under all sensing iterations
and declares the minimum outlying particle as the actual
channel information for a final decision. Fusion schemes are

applied by the FC, based on the selected global best particle
of the population to generate a more accurate and reliable
final decision of the PU channel.

In the PSO algorithm, a particle represents a row of the
population matrix and each particle element (soft energy
report) has a certain position and velocity. Initially, we
assume that the positions and velocities of the particles are
set to zero. +e overall process of the PSO algorithm to
determine the sensing reports, on the basis of which global
decision is taken by the FC, is by proceeding the following
steps:

Step 1: local spectrum decisions
+e FC receives the soft energy reports from the SUs to
form a history reporting matrix consisting soft energy
statistical observations in the N0 sensing intervals
representing all SUs such as

E � Eij􏽨 􏽩 �

E11 E12 . . . E1M

E21 E22 . . . E2M

E31 E32 . . . E3M

⋮ ⋮ ⋱ ⋮

EN01 EN02 · · · EN0M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i ∈ 1, 2, . . . , N0, j ∈ 1, 2, . . . , M, (4)

where Eij denotes the energy information of the jth SU
in the ith sensing interval. Spectrum sensing infor-
mation is gathered at the FC database for the M SUs
including the MUs in the N0 intervals as in (3). +e
SSDF effect caused by the MUs can be minimized by
utilizing the following steps.

Step 2: finding the fitness of the particles

After the collection of energy information as in (4), the
FC modifies the particle positions to observe the dif-
ferences in each individual sensing report with the
reports provided by the other SUs. A new population is

PU

H0

Normal SU

Normal SU

Normal SU

Malicious SU

FCH1

Figure 1: System model: CSS in CRN.
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formed for all SUs based on the information already
collected in (4) as

E′ � Eij
′􏽨 􏽩 �

E11′ E12′ . . . E1M
′

E21′ E22′ . . . E2M
′

E31′ E32′ . . . E3M
′

⋮ ⋮ ⋱ ⋮

EN01
′ EN02
′ · · · EN0M

′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i ∈ 1, 2, . . . , N0, j ∈ 1, 2, . . . , M, (5)

where Eij
′ � |(􏽐

M
j�1 Eij − Eij)/(M − 1)|, which denotes

the average of individual soft energy reports provided
by all other SUs while taking out the report of the jth

user in this averaging.
Step 2.1: outlying using one-to-many sensing distances
Outlying factors are determined for the sensing reports
from the SUs based on the one-to-many sensing dis-
tances dj(i) for the jth SU in the ith sensing particle as

dj(i) � Eij − Eij
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, i ∈ 1. . . . , N0, j ∈ 1, . . . , M. (6)

Based on the results in (6), the outlier score dj(i) of the
normal SUs andMUs is added to discover the total one-

to-many Hamming distance score under each sensing
interval:

di � 􏽘
M

j�1
dj(i)􏼐 􏼑, i ∈ 1, . . . , No, j ∈ 1, . . . , M, (7)

where di is the total outlier score representing absolute
sum of the Hamming distances of the individual re-
ports Eij with the average reports Eij

′ of all other SUs in
the ith sensing interval.

+e measurement in (7) is made for the N0 intervals,
and the results are collected as

PU
Local spectrum

decisions by
SUs, to forward

soft energy
reports to the

FC

Identification of accurate sensing
results with PSO followed by global

decision of the PU channel with
soft and hard fusion schemes

Step 1: Local spectrum decision

Step 2: Fitness function of the
particles

Step 3: Finding the local best and
global best results of the

population

Step 4: Updating velocity and
position of the particles to

generate a better population

Updating the local best if required
and search for a new global best

Iteration criteria < Limit

No

Yes

Global best particle

Step 5: Global decision of the
licensed user channel using soft/

hard fusion schemes

H0/H1

Figure 2: Proposed cooperative spectrum sensing scheme using PSO.
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d � d1 d2 d3 · · · dN0􏽨 􏽩
T

, (8)

where d is the outlier score results of the N0 sensing
intervals. +is score is a measurement of how far the
report of each SU is away from the average sensing
reports provided by all other SUs by separating those
sensing intervals during which the MUs and the im-
perfection of the normal SU were misguiding the FC
final decision about the PU channel.
Step 2.2: outlying using z-score
Similarly, the other outlier score measurement is made
with the z-score measurement in comparison with the
sensing reports received from each SU as

oj(i) �
Eij − μ(i)􏼐 􏼑

σ(i)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, i ∈ 1, . . . , N0, j ∈ 1, . . . , M,

(9)

where μ(i) � (􏽐
M
j�1 Eij)/M is the mean and σ(i) is the

standard deviation of the ith particle in the PSO pop-
ulation. oj(i) is the z-score outlying of the jth report in
the ith interval of the history log. +e result of oj(i) in
(9) shows how much the local sensing observation of
the jth user is detached away from the group obser-
vations provided by all other SUs.
Now, for guaranteeing the authenticity of each of the ith

reports, the sum of z-score measurements for all
particles is made as

oi � 􏽘
M

j�1
oj(i)􏼐 􏼑, i ∈ 1, . . . , No, j ∈ 1, . . . , M. (10)

+e total z-score of the N0 particles of PSO population
is collected as

o � o1 o2 o3 · · · oN0􏽨 􏽩
T
. (11)

As the fitness function is the representation for the
suitability of each sensing reports, the final selection of
the fitness of each sensing reports from both the normal
SUs and MUs is determined, and the best selection of
the sensing results having less abnormal behavior is
calculated.
+e criteria for selection of the particles according to
their fitness values are declared according to (6) and (9)
as

f(i) � di + oi. (12)

+e result in (12) declares the minimum score for
sensing reports with fewer abnormalities in comparison

to those that are badly affected due to the abnormal
behavior of the MUs.
Step 3: updating population
+e global best position g is the particle that results in
minimum outlying score among all particles in E
according to (12). Each particle may improve its own if
its new version is better compared to the previous one.
Local best particles of the population are selected as
P � E.
+e positions and velocities are initially set to zero. +e
particle velocities are updated with the individual and
collective intelligences as

V(i+1)j � Vij + C1 × R1 × Pij − Eij􏼐 􏼑

+ C2 × R2 × gj − Eij􏼐 􏼑,
(13)

where C1 and C2 are the learning acceleration coeffi-
cients that describe the particles’ individual and social
contributions. Similarly,R1 and R2 are the uniformly
distributed random numbers in the range 0 to 1 to
present stochastic contribution to the algorithm.
Next to the measurements of particles’ velocities with
the local and global intelligence, these velocities are
rounded to the two extremes as

V(i+1)j �
max(V), Vij ≻ max(V),

min(V), Vij≺max(V).

⎧⎨

⎩ (14)

+e jth particle’s position representing soft energy
information at the (i + 1)th iteration is updated with the
measured velocities as

E(i+1)j � Eij + V(i+1)j, (15)

where E(i+1)j are the reports of the modified pop-
ulation, Eij is the initial report of the jth SU in the ith

interval, and V(i+1)j are the velocities as in (14).

Step 4: updating local best and global best

Fitness measurements of the new population in (15) are
determined by following the same procedure as in (12).
+e novel particle fitness is compared with the earlier
population fitness to search for any improvements in
the local and global best positions in comparison with
the earlier energy reports. Similarly, the local best
positions of the population are updated as

Pi �
Ei, f Ei( 􏼁≺f Pi( 􏼁,

Pi, otherwise,
􏼨 i ∈ 1, . . . , N0. (16)
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In (16), the results of the local best particles are updated
by comparing the fitness of the new population (15) to
that of the local best particles P fitness. +e local best
particles are updated and take values of the new par-
ticles if their outlying results in (12) are higher com-
pared to the newly created population.
Similarly, a search is made to identify new global best
particle in the entire population by cross analysis of the
fittest. Fitness of the updated local best particles in (16)
is placed for comparison to search for any improve-
ment in the selection of the global best particle as

g �

Pi, f Pi( 􏼁≺f(g),

g, otherwise,
∀i ∈ 1, . . . , N0.

⎧⎪⎪⎨

⎪⎪⎩
(17)

In (17), outlying score of each particle of the local best
population is compared with the global best particle
determined earlier. If any particle of the local best
population has a fitness function found to be optimum
in comparison with the global best particle with the
minimum outlying score in (12), then the global best
particle is replaced.
Here, the new global best particle is selected as g
representing the particle with the best fitness function
having minimum outlying results in the current and
previous PSO population.
+e PSO production of the new population and search
for the global best results continues until the stopping
criterion is met. At the end of the desired number of
iterations, the final global best particle containing re-
liable and trusted soft energy reports against M

cooperating SUs is elected for a final decision by the FC.
Step 5: global decision combination schemes
Based on the final selection of the global best particle g
as the soft energy reports on behalf of all M cooperative
SUs, FC utilizes soft and hard combination schemes in
Section 2 for declaring a unanimous decision about the
PU channel. +e EGC, MGC, and majority voting hard
fusion combination schemes are used as decision cri-
teria in this section.
+e EGC is combining the individual statistical in-
formation of all SUs by giving equal weight to each
individual SU decision and summed coherently. +e
combination is compared with the threshold by the
EGC as

EGC �
H1,

􏽐
M
j�1 gj􏼐 􏼑

M
≥ c,

H0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

+e cooperative detection and false alarm probabilities
Pd EGC and Pf EGC made by the EGC scheme based on the
global decision made about the PU spectrum are

Pd EGC � Pr
􏽐

M
j�1 gj􏼐 􏼑

M
≥ c|H1

⎧⎨

⎩

⎫⎬

⎭,

Pf EGC � Pr
􏽐

M
j�1 gj􏼐 􏼑

M
≥ c|H0

⎧⎨

⎩

⎫⎬

⎭.

(19)

In the MGC scheme, each receiving signal branch is
multiplied with a weighed function proportional to the
branch gain. +e branches with a strong signal in the MGC
are amplified more, while the weak signal components re-
ceive attenuations with the weights. +e idea to boost the
strong signal component and attenuate weak signal com-
ponent in the MGC diversity is exactly the same as that of
filtering and signal weighting in the matched filter receiver.
Similarly, the MGC scheme at the FC is giving higher
weights to the decision of the SUs with higher SNR values
and low weights to the decisions of the SUs with low SNR
values as

MGC � H1, 􏽘
M

j�1
wj × gj􏼐 􏼑≥ c, H0, otherwise,

⎧⎨

⎩ (20)

where wj � η(j)/􏽐
M
j�1 η(j). +e cooperative detection and

false alarm probabilities of the MGC scheme are measured
based on the received soft energy statistics as

Pd MGC � 􏽘
M

j�1
wj × gj􏼐 􏼑≥ c⎛⎝ ⎞⎠|H1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

Pf MGC � 􏽘
M

j�1
wj × gj􏼐 􏼑≥ c⎛⎝ ⎞⎠|H0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(21)

In the majority voting schemes, the FC counts the total
number of the SUs with their energy value greater than the
threshold as

MV � H1, 􏽘
M

j�1
gj ≥ cj􏼐 􏼑≥ k, H0, otherwise.

⎧⎨

⎩ (22)

+e three commonly used hard combination schemes
are the majority voting, OR, and AND fusion combination
schemes. In the count hard decision, a global decision on the
PU existence is made if k out of total M cooperative users
provide PU detection information with their energies larger
than a threshold. +e FC concludes a final decision H1 if k

users’ reports validate the PU existence. Similarly, the total
number of cooperative users with PU detection information
less than k lead the FC to conclude in favor of H0 to declare
an idle condition of the PU channel. +e counting score k is
taken as 1 for the OR fusion rule and M for the AND rule. In
the proposed work, the majority voting scheme is selected
with k � M/2. In case of majority voting, if half cooperative

Scientific Programming 7



SUs energies are passing the threshold, a global decision is
made as H1; otherwise, the decision is made in favor of H0.

+e detection and false alarm probabilities measurement
of the majority voting hard decision schemes based on the
best selection of the PSO at the FC are as follows:

Pd MV � Pr 􏽘
M

j�1
gj ≥

M

2
|H1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

Pf MV � Pr 􏽘
M

j�1
gj ≥

M

2
|H0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(23)

where Pd MV and Pf MV are cooperative detection and false
alarm probabilities of the majority voting schemes when
PSO is used as a detection mechanism at the FC.

4. Numerical Evaluation

For simulation purposes, parameter adjustment is made for
the CRN with M � 11 SUs. Among the total SUs, 7 SUs are
selected as normal and 4 SUs are randomly selected as
AYMUs, ANMUs, OMUs, and ROMUs. +e sensing time is
kept as 1ms which contains K � 270 sensing samples. +e
total number of sensing iterations N is selected as 100. +e
sensing interval in which the ROMU performs a malicious
act is adjusted randomly from 1 to N. +e system perfor-
mance is verified in the presence of equal distributions of
OMU, ROMU, AYMU, and ANMU users. +e sensing
reports of the SUs formed the PSO population of size N0 ×

M with N0 particles representing the sensing information of
the M cooperating SUs.

In this part of the simulation, the MUs are first selected
as AYMU, and then, its nature is changed to ANMU. In
Figure 3, results are drawn to compare the performances of
EGC, MGC, and majority voting schemes. From the sim-
ulation results in Figure 3, it is obvious to show an im-
provement in the detection results of the PSO-based EGC,
MGC, and majority voting schemes against the conventional
combination schemes. +e cooperative scheme performance
under the considerations of AYMU and ANMU is more
optimized for the PSO based soft and hard combinations. It
is shown that the detection response in both the cases when
only AYMU and the one with only ANMU users’ consid-
erations are identical.+e equal consideration of AYMU and
ANMU cases are similarly treated in the CSS with almost
identical probability of detection Pd for a given false alarm
Pf. Figure 3 also shows better receiver operating charac-
teristics (ROC) results for the PSO based-MGC scheme
which is followed by the EGC scheme. +e majority voting
hard fusion combination illustrates minimum detection
results compared with the other two schemes. It is also
obvious that the PSO-based soft and hard fusion combi-
nation schemes are able to outperform the simple MGC,
EGC, and hard fusion combinations for any given false
alarm.

In the second part, authenticity of the system is verified
by comparing results of the proposed PSO-based soft and
hard combinations with conventional schemes. In this case,

the MUs are first selected as OMU, and then, their nature
changes to ROMU. +e result illustrates that the MGC
scheme shows better detection compared with the EGC and
majority voting counterparts. +e ROC collection of the
three schemes under the proposed and the conventional
schemes show the reliabilities of the PSO-based combination
techniques. In Figure 4, the ROMUs affect the sensing
environment more hazardously than the OMU. +e pro-
posed scheme is superseding the traditional fusion schemes
in both the OMU and ROMU cases.

In the third part of the simulation, the performances of
the conventional and the proposed PSO-based fusion
combinations schemes are tested, when the MUs are dis-
tributed equally as AYMU, ANMU, OMU, and ROMU in
Figure 5.

+e minimum ROC results in Figure 5 show the per-
formance of the conventional fusion schemes under the
consideration of all 4 MUs, while the upper three ROC
curves show the PSO fusion combination scheme perfor-
mance under the same parameter settings. +is shows an
improvement in the detection performance of the PSO-
based fusion combination schemes compared with the
conventional combination schemes. It is noticeable that the
MGC fusion combination scheme provides more sophisti-
cated detection performance compared to the other
schemes.

+e proposed PSO-based fusion combination scheme is
further verified by illustrating the error probability Pe

according to the SNR varying from −35 dB to 0 dB in
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Figure 3: ROC curve, when AYMU and ANMU exist in the
network.
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Figure 6. +e error in sensing the PU channel by the pro-
posed scheme is the minimum of all and with increasing

SNR the proposed scheme error reduces more quickly as
compared with the other traditional schemes.

It is clear that, by following the PSO-based algorithm, the
proposed fusion combination schemes are more optimized
and accurate in the presence of the MUs. +e selections of
the PSO following by the soft and hard fusion combinations
make the CSS authentic and suitable against the MUs. +e
risk of considering the MUs in the CSS is significantly re-
duced with the proposed scheme. +e results show that the
SUs cooperation is more effective using the proposed
scheme. +e proposed scheme is able to eliminate the
considerations of MUs in making global decision at the FC
and produce reliable sensing results.

5. Conclusions

+e impact of the MUs on the CSS reduces the effectiveness
of cooperation in CIoT. +erefore, it is necessary to detect
the MUs in order to avoid any confusion about the actual
status of the PU channel. +is paper focuses on improving
the performance of the CSS by using the PSO algorithm.
Based on the energy statistics reported by the SUs, the PSO is
able to reduce the effect of the MUs in authenticating the
global decision of the PU’s existence. +e FC combines the
diversified sensing reports of the users using the proposed
EGC, MGC, and majority voting decisions to acquire the
global decision of the PU activity. +e proposed PSO al-
gorithm is able to overcome the effects of OMU, ROMU,
AYMU, and ANMU categories of the MUs in the soft and
hard combinations. Simulations verify the superiority and
the authenticity of the proposed scheme in producing more
accurate and reliable decisions for the soft and hard com-
bination schemes at the FC.
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