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(is study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis,
which is a practical problem in the actual industrial field. (e objective of the problem is to design a series of routes that minimize
the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as
transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. (e
problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm
optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive
such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with
70 customers, 30 vehicles, and 3 types of hazardous materials.

1. Introduction

In the past few years, the rapid development of China’s
chemical industry has led to the expansion of the road
transportation market for hazardous materials. (us, the
transportation demand of hazardous materials presents a
high-speed rising trend. Road transportation is still the main
mode of transportation for hazardous materials, with the
advantage of its strong mobility, flexibility, continuous
transportation capacity, and less restrictive requirements. In
contrast, the disadvantages of road transportation are the
greatest potential risk, high unit transportation costs, and
variability in operating conditions. Due to the characteristics
of being flammable, explosive, corrosive, toxic, and radio-
active, dangerous goods often cause more serious secondary
hazards in traffic accidents, not only the serious loss of
personnel and property, but also a huge negative impact on
society. Enterprises need to consider the cost of trans-
portation and, more importantly, to ensure the safety of the
transportation process, which has brought great challenges.
In order to reduce transportation costs, companies will
choose shorter transportation routes, and these

transportation routes will pass through areas with higher
population density, leading to increased potential risks in the
transportation process, while choosing a farther trans-
portation route will undoubtedly increase total costs. As
reported in this research, the problem of hazardous mate-
rials transportation includes two basic objective, minimum
cost and risk control [1]. (e key to solving such problems is
to make a balance between the two points.

According to the regulations of theMinistry of Transport
of the People’s Republic of China, different types of haz-
ardous materials transportation vehicles have different re-
strictions during actual operation. For some flammable and
explosive products, according to the regulations, transport
on specific roads is not allowed without permission.
However, limited quantities of dangerous goods with a total
mass not exceeding 8000 kg can be transported as ordinary
goods. In addition, the hazardous materials manufacturers
have the characteristics of limited production and unsuitable
long-term storage in the actual situation. During the
transportation process, a single visit to a customer cannot
take advantage of the vehicle transportation, so as to control
the potential risks. It is reasonable for the carrier to complete
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the transportation task by traversing multiple manufacturers
of similar products. (is is also the dilemma currently faced
by hazardous materials transportation companies. In this
paper, we propose a multidepot heterogeneous vehicle
routing model in order to find the optimal scheme to
complete the transportation task among different
manufacturers.

(e traditional vehicle routing problem (VRP) aims
generally to make the transportation cost the lowest under
certain restrictions. It is based on general cargo transportation
and does not consider the vehicle type, which means that all
the vehicles can carry different types of goods. However, in
heterogeneous vehicles routing problem, different types of
goods must be transported by the specified vehicle type. In
hazardous materials transportation, gasoline requires tanker
trucks while solid hazardous materials should be carried by
special lorry, and they are not interchangeable. In the real
business, transportation always takes place between multiple
depots and customer points. In addition, risk needs to be
considered in the road transportation of hazardous materials.
(e treatment of risk in this article aims to convert the hazard
after the accident into a risk coefficient and introduce un-
certain scenarios to predict the probability of risk. (e
product of the probability of risk and the risk coefficient is the
risk cost, which is used to add weighted transportation costs
to obtain the total objective. (e risks include road accidents,
leakage of dangerous goods, and pedestrians on the way.
Comprehensive consideration of factors such as trans-
portation costs, multiple depots, heterogeneous vehicles,
risks, and multiple accident scenarios can make the study
closer to the actual situation. However, in contrast, the more
factors we considered, the more difficult it is to solve the
problem. Most of the research involves only two or three
factors, and few involve more than three factors, which also
makes our research valuable.

We propose a more complicated mixed integer pro-
gramming (MIP) model which is close to the actual situation.
Existing solvers, such as CPLEX, can only solve small-scale
calculation examples. As the scale of the problem becomes
larger, the efficiency of CPLEX’s solution continues to decrease.
(erefore, we design a bidirectional tuning heuristic and a
particle swarm optimization algorithm (PSO) to solve prob-
lems at different scales.(e results show that the algorithms we
designed can effectively solve larger-scale problems and can
also find near-accurate solutions to small-scale problems.

(e reminder of this paper is organized as follows.
Section 2 reviews related literature. Section 3 formulates a
mathematical model. In Section 4, two different algorithms
are proposed. Section 5 reports the numerical experiments.
Conclusions are summarized in the last section.

2. Related Literature

(e difference between vehicle routing problem for haz-
ardous materials (VRPHM) and traditional VRP is that
VRPHM needs to consider the risk and it is a key issue in
research which cannot be ignored. Bula et al. [2] pointed out
that the research on VRPHMmainly focuses on the shortest
path problem and the routing problem. (e former research

focuses on controlling risks, and such research has already
achieved many results. A population exposure model was
proposed by [3], which defines the range of the affected
population on each side, and the risk value on each side is
summed up to obtain the total risk value on the entire path.
Tarantilis and Kiranoudis [4] had also done a similar topic
research; the difference was that this research is based on
vehicle fleet to meet customer needs, rather than focusing on
the shortest path, which is more realistic. Bula et al. [5]
defined the risk value of hazardous materials during
transportation. (e risk value is composed of the probability
of accident, the extent of the accident, and the population
density of the route. Based on this, a MIP model with the
minimum risk value as the objective was established. Cuneo
et al. [6] focused on the transportation of fuel oil; they
proposed an innovative risk index in the function as far as
possible to reduce the risk of accidents during the trans-
portation of fuel oil. (e method of most related work is to
calculate fixed risk values few papers take stochastic into
consideration. However, in other fields, the stochastic is
widely used to access uncertainty. Rabbani et al. [7] studied
hazardous waste management and controlled the processing
costs of industrial wastes by introducing scenarios to defined
risks. (e risk defined in this paper is much like the method
used in [8].

Another direction of research is to solve the VRPHM
from the perspective of traditional VRP. Pradhananga et al.
[9] considered the multiobjective problem of transportation
time and risk. Risk in their paper was obtained by multi-
plying the incidence rate of each arc accident by the pop-
ulation density of the region. Du et al. [10] constructed fuzzy
bilevel programming, which is a multidepot problem, and
proposed a fuzzy simulation-based heuristic algorithm to
solve the problem.

To the best of our knowledge, VRPHM with heteroge-
neous vehicle and uncertainty risks is rarely studied. Ho-
mogeneous models are easy to study, but the transportation
of hazardous materials usually involves the problem of
heterogeneous vehicle. Golden et al. [11] considered the
problem of distribution of mixed vehicles with unlimited
number, but the article only focused on the capacity of the
vehicles. In the general VRP problem, there are many studies
on heterogeneous vehicles. A number of effective algorithms
were proposed to solve this problem; [12–14] used exact
algorithms while [15, 16] designed heuristic algorithms. Due
to the fact that VRPHM needs to consider more factors than
general VRP, few scholars have studied heterogeneous
vehicles.

In sum, the contributions of this paper are as follows.
First, we propose a complex model to solve multidepot
VRPHM, considering risk, heterogeneous vehicles, trans-
portation cost, and time limit. Second, we describe the risk as
uncertainty in different scenarios. (ird, two effective al-
gorithms are developed.

3. Problem Definition and Formulation

In this section, we describe the multidepot VRPHM, define
the parameters, and then formulate a MIP model.
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3.1. Problem Definition. (e objective of this problem is to
minimize the transportation costs, the risk costs resulting
from the transformation of transportation risks, and the
penalty cost of additional working time. We also consider
various sudden scenes during transportation and consider
the distribution of hazardous materials in multiple depots
and heterogeneous vehicles. Different vehicles have different
capacities and distribution categories.(e vehicle cost in this
paper consists of fixed cost and variable cost. Fixed cost
refers to the cost unrelated to transportation which includes
depreciation cost and insurance cost, while variable cost is
related to the transportation distance and chosen route,
which includes transportation cost and risk cost. (e fixed
costs of starting a vehicle and the variable costs per unit of
travel distance are also different.(e transportation network
of hazardous materials can be defined on a directed network
G � (O, A), where the set O represents the union of the set D

composed of depots and the set N composed of customer
points, and A � (i, j) | i, j ∈ O􏼈 􏼉 is an edge set.(e network is
depicted clearly in Figure 1.

Let the set K represent the vehicles of fixed cost gk. (e
maximum load of each vehicle is qk. (e vehicle determines
whether it can visit the customer based on the type of
hazardous materials, described using parameter ci,k. Each
vehicle must depart from its own depot 0 to the customer
i ∈ N. After process time ti, the vehicle can travel from
customer i ∈ N to customer j ∈ N. We introduce a virtual
node N + 1 to represent the depot that the vehicle returns to
after the transportation.(is virtual node is the same node as
0. (e transportation time is different according to the
chosen route which can be expressed as di,j,r,k, where the

route set is Ri,j. Besides, the travel time is different from 0 to
each customer if the vehicle belongs to different depots. Each
vehicle k has the latest working time yk, and an additional
overtime costs ctime is needed if the total transportation time
is beyond the latest working time. Accidents are very likely to
occur in the transportation of hazardous materials. (is
paper introduces the concept of scenarios with different
probability to eliminate such uncertainties. (e set of sce-
narios is represented by S. (e risk under different scenarios
is related to the route chosen by the vehicle. We use wi,j,r,s to
describe the probability of accident that may occur from the
customer i ∈ N to the customer j ∈ N.

Before formulating the model, some assumptions are
listed as follows:

(1) All vehicles must return to the depots where they
came from after transportation

(2) Each vehicle can only transport one type of haz-
ardous materials

(3) Each customer can be accessed multiple times by
different vehicles

(4) Each vehicle serves one customer no more than once
(5) Each vehicle must wait for the preceding vehicle to

complete the operation before starting service

3.2. Notations. In this section, we define all the parameters
and decision variables (Table1).

3.3. Mathematical Model.

Minimize 􏽘
k∈K

gkηk +
1

|S|
􏽘
s∈S

􏽘
k∈K

􏽘
j∈N∪ e(N){ }

􏽘
i∈N∪ 0{ }

􏽘
r∈Ri,j

ctrandi,j,r,kci,j,k,r,s + 􏽘
s∈S

􏽘
k∈K

􏽘
j∈N∪ e(N){ }

􏽘
i∈N∪ 0{ }

􏽘
r∈Ri,j

criskwi,j,r,sci,j,k,r,s
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+ 􏽘
s∈S

􏽘
k∈K

ctime βe,k,s − yk􏼐 􏼑
+
⎤⎦,

(1)

subject to 􏽘
k∈K

αi,k ≥ 1, ∀i ∈ N, (2)

αi,k ≤ ci,k, ∀i ∈ N, k ∈ K, (3)

αi,k ≤ ηk, ∀i ∈ N, k ∈ K, (4)

􏽘
i∈N∪ 0{ }

􏽘
r∈Ri,j

ci,j,k,r,s � 􏽘
i∈N∪ e(N){ }

􏽘
r∈Ri,j

cj,i,k,r,s � αj,k, ∀j ∈ N, k ∈ K, s ∈ S,
(5)

􏽘
j∈N∪ e(N){ }

􏽘
r∈R0,j

c0,j,k,r,s � 􏽘
j∈N∪ 0{ }

􏽘
r∈R0,j

cj,e,k,r,s � 1, ∀k ∈ K, s ∈ S,
(6)

􏽘
i∈N

􏽘
j∈N

􏽘
r∈Ri,j

ci,j,k,r,s ≤ N1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1, N1⊆N, 2≤ N1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ |N|, ∀k ∈ K, r ∈ Ri,j, s ∈ S,
(7)

ci,j,k,r,s ≤ bi,j,r,s, ∀i ∈ N∪ 0{ }, j ∈ N∪ e(N){ }, k ∈ K, r ∈ Ri,j, s ∈ S, (8)
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􏽘
i∈N

ζ i,k,s,v ≤ qk, ∀k ∈ K, s ∈ S, (9)

􏽘
k∈K

ζ i,k,s,v � fi,v, ∀i ∈ N, s ∈ S, v ∈ V, (10)

ζ i,k,s,v ≤fi,vμk,vαi,k, ∀i ∈ N, k ∈ K, v ∈ V, s ∈ S, (11)

􏽘
v∈

μk,v � ηk, 1, ∀k ∈ K, (12)

δi,k,s + ti + di,j,r,k ≤ βj,k,s + M 1 − ci,j,k,r,s􏼐 􏼑, ∀i ∈ N∪ 0{ }, j ∈ N∪ e(N){ }, k ∈ K, r ∈ Ri,j, s ∈ S, (13)

δi,k,s ≥ βi,k,s, ∀i ∈ N, k ∈ K, s ∈ S, (14)
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Figure 1: A vehicle routing network with three depots and several customers.

4 Scientific Programming



δi,k,s + ti ≤ δi,k′,s + M 1 − εi,k,k′ ,s􏼐 􏼑, ∀i ∈ N, k ∈ K, s ∈ S, (15)

􏽘
k∈K∪ 0(K){ }

εi,k,e(K),s � 􏽘
k∈K∪ e(K)

εi,0(K),k,s � 1, ∀i ∈ N, k ∈ K, k ∈ K, (16)

􏽘
k∈K∪ 0(K){ }

εi,k,k′,s � 􏽘
k∈K∪ e(K)

εi,k′ ,k,s � 1, ∀i ∈ N, k′ ∈ K, s ∈ S, (17)

􏽘
k∈K

􏽘

k′∈K

εi,k,k′ ,s ≤ K1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1, K1⊆K, 2≤ K1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ |K|,∀i ∈ N, s ∈ S, (18)

αi,k, ci,j,k,r,s, εi,k,k′ ,s, ηk ∈ 0, 1{ }, ∀i ∈ N∪ 0{ }, j ∈ N∪ e{ }, k ∈ K, r ∈ Ri,j, s ∈ S, (19)

βi,k,s, εi,k,k′,s, ζ i,k,s ≥ 0, ∀i, j ∈ N, k, k′ ∈ K, s ∈ S. (20)

(e objective function (1) minimizes the total costs of
vehicle startup, additional overtime costs, and risk con-
version costs. Constraints (2) ensure that a customer is
visited at least once. Constraints (3) limit whether vehicle k

can serve customer i. Constraints (4) show that if vehicle k

serves customer i, the vehicle must be started. Constraints
(5) make sure that if a customer is visited by a vehicle, other
nodes must be visited before and after this node. Constraints

(6) mean that, in any scenario, each vehicle must travel from
the original depot and return to the same depot. Constraints
(7) eliminate subpaths. Constraints (8) impose the condition
that whether the vehicles are allowed to choose a route r

from customer i to customer j under scenario s is deter-
mined by whether the route is passable. For example, some
routes may be restricted during the morning and evening
rush hours, specific time period, and temporary event.

Table 1: Notations.

Indices and sets
i, j Index of customer.
N Set of customers.
k Index of vehicle.
K Set of vehicles.
s Index of scenario.
S Set of scenarios.
r Index of route.
Ri,j Set of routes from customer i to customer j.
v Index of type of hazardous materials.
V Set of type of hazardous materials.
Parameters
ci,k Equals 1 if vehicle k can visit customer i.
di,j,r,k Travel time from customer i to customer j for vehicle k on route r.
ti Service time at customer i.
fi,v Transportation demand of hazardous materials v at customer i.
qk Capacity of vehicle k.
yk Latest working time of vehicle k.
gk Fixed cost of vehicle k.
wi,j,r,s Risk probability from customer i to customer j on route r.
ctran Coefficient of transportation cost.
crisk Coefficient of risk cost.
ctime Coefficient of work overtime cost.
Decision variables
αi,k Binary, equals 1 if vehicle k serves i.
ci,j,k,r,s Binary, equals 1 if vehicle k travels from customer i to customer j by route r on scenario s.
εi,k,k′,s

Binary, equals 1 if vehicle k′ serves customer i earlier than vehicle k.
ηk Binary, equals 1 if vehicle k is started.
μk,v Binary, equals 1 if vehicle k transports hazardous material v.
βi,k,s Float, time point when vehicle k arrives at customer i on scenario s.
δi,k,s Float, time point when vehicle k starts serving customer i on scenario s.
ζ i,k,s,v Integer, quantity of hazardous material v transported by vehicle k at customer i on scenario s.
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Constraints (9) guarantee that the total loads of a vehicle will
not exceed the maximum vehicle capacity. Constraints (10)
and (11) ensure that all the demands of hazardous materials
must be satisfied. Constraints (12) put the limit that each
vehicle can only transport one type of hazardous material.
Constraints (13) and (14) describe the time relationship
between the time point of arrival and time point of service.
Constraints (15) determine the service time of different
vehicles at the same customer according to their sequence.
Constraints (16) and (17) address the sequence of vehicle
access for every customer. Constraints (18) ensure that there
are no subpaths in vehicle loop. Constraints (19) and (20)
limit the range of decision variables.

3.4. Linearizing the Products of Two Variables in the
Constraint. In constraint (11), the load quantity contains the
form of products of variables μk,v and αi,k.(e nonlinear part
is not conducive for solver to calculate. To linearize the
constraint, some new variables are added as follows. Con-
straints (11) are then transformed into constraints (21)–(24).

A newly defined variable is as follows:
θi,k,v: binary, equals 1 if αi,k � 1 and μk,v � 1.
Newly defined constraints are as follows:

θi,k,v ≤ μk,v, ∀i ∈ N, k ∈ K, v ∈ V, (21)

θi,k,v ≤ αi,k, ∀i ∈ N, k ∈ K, v ∈ V, (22)

θi,k,v ≥ αi,k + μk,v − 1, ∀i ∈ N, k ∈ K, v ∈ V, (23)

ζ i,k,s,v ≤fi,vθi,k,v, ∀i ∈ N, k ∈ K, v ∈ V, s ∈ S. (24)

4. Algorithm Strategies

(e model presented in Section 3 can be solved by solvers
(e.g., CPLEX) directly in small-scale examples. To deal with
large-scale problems, we develop two different heuristics,
bidirectional tuning heuristic and particle swarm optimi-
zation algorithm (PSO), to solve our proposed model. In
Sections 4.1 and 4.2, we describe the framework of the two
heuristics, respectively.

4.1. Bidirectional Tuning Heuristic. (e main idea of bidi-
rectional tuning heuristic is to transform the model into
several interrelated subproblems. Solving the subproblems
using some fixed decision variables, we can obtain the
remaining decision variables and then use the them to gain
other decision variables. In the iterative process, if the value
of the objective is better than the optimal value, the optimal
solution needs to be updated. (e exit mechanism of the
algorithm can be determined by the number of iterations or
by the rules to judge whether the objective value can get a
better solution.

Before we start solving, the decision variables need to be
classified. (e decision variables in this paper can be divided
into three different types according to their definitions. (e
first type is αi,k, the variables used to decide whether a vehicle

visits a customer. (e second type is μk,v and ηk, used to
determine the type of hazardous material each vehicle
transports. (e other decision variables contain the di-
mensions of random scenarios and are limited by the first
two kinds of decision variables, so they are always taken as
the variables to be solved. We determine the customer that
each vehicle visits and then optimize the transportation
types with fixed αi,k. (en, we move to determining the
transportation types and optimize the customers with fixed
μk,v and ηk. (e solving is repeated until the iteration reaches
upper limit or no improvement can be obtained. (e basic
procedure can be defined as follows and the detailed process
is shown in Algorithm 1.

Step 1: solve the model to find a feasible solution, which
can be taken as the initial solution. Record the initial
decision variables and the objective value.
Step 2: based on αi,k from initialization, determine
decision variable ηk and μk,v. Compare the obtained
objective value with the historical optimal value, and if
the value is better than the historical optimal value,
update the optimal value.
Step 3: solve the model with fixed ηk and μk,v to obtain
αi,k. Update the objective value.
Step 4: judge the exit condition; if it is satisfied, the
optimal solution is obtained and the algorithm stops;
otherwise, go to step 2.

4.2. Particle Swarm Optimization (PSO). Particle swarm
optimization (PSO) has been studied extensively since it was
proposed [17]. As one of the swarm intelligence algorithms,
PSO has been widely used in vehicle routing problem in the
past few years, for example, vehicle routing problem with
multiple pickup and delivery [18] and multidepot multitrip
vehicle routing problem [19].

4.2.1. Initialization and Velocity Updating Strategy. (e
particle swarm optimization algorithm not only considers
the personal optimal value, but also records the global
optimal value of the entire group in the process of searching
for solutions. It has excellent performance in solving opti-
mization problems. (e movement of particles depends on
the update of their position and velocity; each particle
contains the current position and the personal optimal
position. (e current position of the particles is adjusted by
updating the velocity formula, the solution is judged by the
specific fitness value, and the optimal position of the entire
group is updated in the global range.

In the model we proposed, the decision variables αi,k and
μk,v are obviously related to other decision variables. When
αi,k is fixed, ηk can be determined by constraints (4) and
ci,j,k,r,s can also be determined by constraints (5)–(7).
Furthermore, the decision variables βi,k,s, related to time, are
limited by ci,j,k,r,s according to constraints (13). (en the
variable δi,k,s can be derived from constraints (13). At this
point, we can judge whether the service time δi,k,s of each
customer is reasonable. If it is not reasonable, we update the
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time according to the time sequence of starting time and the
processing time. It is also necessary to trace back to update
variable βi,k,s, which is the subsequent vehicle arrival time of
the route. When all decision variables related to time are
determined, we can easily confirm the decision variable
εi,k,k′ ,s. When we know both αi,k and μk,v, the load variable
ζ i,k,s,v can also be determined. We now have clarified the
relationship between all the decision variables.

Based on the description above, we set μk,v as the outer
variable of the algorithm. And the particles that we set up
contain information to find the vehicles assigned to cus-
tomer and to generate visit sequence of each vehicle, which is
similar to the approach taken in this work [20]. We define
the particle as Pn

m, and its velocity can be defined as Velnm.
(e velocity update formula can be expressed by formula
(25) and the position update formula is (26). We use PBestnm
to represent the best personal optimal position of the particle
and GBestnm to represent the global optimal position, where
m means the number of particles (we take 300) and n means
the current iteration number:

Veln+1
m � w

nVelnm + c1r1 PBestnm − P
n
m( 􏼁 + c2r2 GBestnm − P

n
m( 􏼁,

(25)

P
n+1
m � P

n
m + Velnm. (26)

In the formula for particle velocity update, wn denotes
inertia weight and it is calculated by equation
wn � wmax − (wmax − wmin)n/N, in which N is the number
of total iterations (we take 50) and wmax and wmin are
maximum and minimum inertia weight (we take 0.9 and
0.4). (is makes the particle swarm have strong global
convergence ability at the beginning, but strengthens local
convergence ability with the increase of iteration. c1 and c2
are acceleration weights (we take 0.683 for both), while r1
and r2 are random decimals between zero and one.

4.2.2. Procedure of PSO. According to the initialization and
velocity updating strategy described above, the basic pro-
cedure of the PSO can be depicted as follows and the detailed
process is shown in Algorithm 2:

Step 1: initialize particle swarm related parameters,
including swarm size, position information contained
in each particle, and particle velocity.

Step 2: normalize the information contained in the
particles to obtain the vehicle assignment and sequence
of customers which can further determine the visit time
of each vehicle.
Step 3: judge whether the solution generated by each
particle meets the capacity constraint. If not, the fitness
value of the particle is the maximum value, and if it
meets the constraint, the fitness value of the particle can
be calculated.
Step 4: compare the fitness value with the personal
optimal value of the particle. If it is better than the
historical personal optimal value, update the personal
optimal value and record the position information of
the particle.
Step 5: update the particle position information and
particle velocity according to the formula.
Step 6: determine whether the exit condition is satisfied
(the gap is small enough or the maximum number of
iterations is reached). If the condition is met, exit the
loop; otherwise return to step 2.

4.2.3. Coding Rule of PSO. According to line 3 of the particle
swarm flow above, parameter transformation refers to the
transformation of the position information contained in the
particles into the variables needed to solve the model, that is,
the vehicle assignment and customer sequence. Figure 2
shows the process of assigning vehicles to customers by
taking 6 customers of hazardous materials type 1 as example.
Figure 2(a) shows the subset of customers for hazardous
materials type 1 that need transportation services and the
corresponding particle positions. Figure 2(b) shows a subset
of vehicles capable of transporting type 1 hazardous ma-
terials. Figure 2(c) shows the vehicle that each customer is
assigned to based on the location information contained in
its particle. If all customers are assigned to one single vehicle
and customer demand exceeds the capacity of the vehicle, we
then need to adjust the vehicle allocation strategy. We add
the requirements in ascending order according to the par-
ticle locations of the customers and assign the customers
exceeding the capacity to the vehicles with smaller serial
numbers in turn until the requirements are fully met.

Figure 3 depicts the generation of vehicle visiting se-
quence, and the number of customers is 5. Figure 3(a)
represents the location information of each particle, and the

(1) Initialization
(2) Solve the model, and determine αi,k

(3) Update the optimal solution
(4) While (n < MaxIter)
(5) Solve model with fixed αi,k, determine μk,v and ηk

(6) Update the optimal solution
(7) Solve model with fixed μk,v and ηk, determine αi,k

(8) Update the optimal solution
(9) End while

ALGORITHM 1: Bidirectional tuning heuristic.
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customer sequence obtained after sorting it in ascending
order is depicted in Figure 3(b). Each iteration of PSO brings
about a change in particle position, and a new sequence will
be generated after sorting. Better paths can be found by
constantly adjusting the sequence.

5. Numerical Experiments

In this part, we use extensive numerical experiments to
verify whether the heuristic proposed in this article is effi-
cient as well as the effectiveness of the model. All the ex-
periments were conducted on a workstation with two Xeon
E5-2643 CPUs (24 cores) of 3.4GHz and 128G of memory.
All programs were compiled with C#, and the mixed integer
programming model was solved by CPLEX.

5.1. Parameter Setting. We have designed multiple groups of
randomly generated numerical examples for both small-
scale and large-scale problems. In the small-scale example,
we calculated the situation of 5, 10, and 15 customers with 2
or 3 types of hazardous materials, respectively, while in
larger scale, we calculated the problem with customer
number from 20 to 70 of three different hazardous materials.
Since a customer could have multiple transportation de-
mands with heterogeneous vehicles, each customer can be
viewed as multiple customers, which makes solving on a
larger scale more difficult. (e remaining parameters were
generated under some specific rules; for example, each
customer had at least 1 type of hazardous materials trans-
portation demand and the quantity was limited to a certain
range. Each vehicle had a fixed latest working time.(e three

Cargo type v = 1:

Customer ID

Customer ID

Vehicle ID

Vehicle ID

1
1

1.23

2

3.31

3
3

0.28

(a) (b)

(c)

4

0.54

5
5

1.95

6

1

1 1

2 3

33

4 5

5

6

6

6
2.46Random position

Figure 2: Vehicle assignment mechanism. (a) PSO particle. (b) Vehicle subset. (c) Vehicle ID assigned to each customer.

Vehicle 1:

Customer ID

Random position

(a)

(b)

6

0.42

2

0.530.15

5 10

0.68

8

0.36

Customer ID 6

0.42

2

0.530.15

5 10

0.68

8

0.36Random position

Figure 3: Generation of customer sequence. (a) PSO particle. (b) Customer sequence of each vehicle.

(1) Initialize swarm
(2) For each particle
(3) Parameter conversion (generate customer sequence, vehicle assignment)
(4) Check the constraints
(5) Fitness evaluation
(6) Update best personal solution and global solution
(7) End for
(8) While termination condition not met
(9) Update particle position and velocity
(10) Goto line 2
(11) End while

ALGORITHM 2: Particle swarm optimization (PSO).
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cost coefficients are estimated under China’s hazardous
material transportation market. ctran � 200 means the
transportation cost in an hour which is calculated by speed,
fuel consumption, and fuel cost (60 km/h× 0.66 L/
km× 5.05 yuan/L), crisk � 10000 is a large number based on
practical accident losses, and ctime � 50 represents additional
work cost per hour.

5.2. Performance ofTwoHeuristics. (e comparison between
two heuristics and CPLEX is illustrated in Table 2, where Z

means the objective value, T means computation time, and
GAP is calculated by equation (Z − ZC)/ZC. (e subscripts
C, B, P represent CPLEX, bidirectional tuning heuristic, and
PSO, respectively.

We tested fifteen cases in small scale, shown in Table 2.
(e case ID A5-3-2-1 means 5 customers, 3 vehicles, and 2
hazardous material types of instance 1. When the customer
turns to 20, the proposed model cannot obtain a feasible
solution in 7200 seconds. It is obvious that CPLEX can only
maintain high calculation efficiency in extremely small-

scale examples which contain less than 10 customers. As
the customer number and types of hazardous materials
increase, the calculating time spent by CPLEX grows ex-
ponentially. Meanwhile, the bidirectional tuning heuristic
can also obtain the optimal solution without increasing
time significantly. In terms of small-scale problem, bidi-
rectional tuning performed the best among the three
methods with an average of 51.8 seconds of computation
time and average gap of about 0.01%. (e PSO spent the
shortest time with an average of 33.3 seconds and average
gap of about 1.17%, which could be considered as a near-
optimal solution.

We list a group of large-scale instances of customer
number from 20 to 70 to further verify the effectiveness of
the algorithm. (e result is shown in Table 3, where each
case ID means the same as in Table 2. (e GAP is cal-
culated by equation (ZC − Z)/Z. Due to the complexity of
the model, when the customer number is over 30 with
vehicle number of 10, the bidirectional tuning heuristic
cannot find optimal solution in 7200 seconds. We find
that even if it takes more time to search, the solution is

Table 2: Comparison of two heuristics and CPLEX in small-scale problems.

Cases ID
CPLEX Bituning Comparison PSO Comparison

ZC TC ZB TB TB/TC GAPB (%) ZP TP TP/TC GAPP (%)

A5-3-2-1 10237 0.2 10237 0.2 1.0 0.00 10265 9.1 45.5 0.27
A5-3-2-2 10198 0.2 10198 0.2 1.0 0.00 10233 4.3 21.5 0.34
A5-3-2-3 9421 0.2 9421 0.1 0.5 0.00 9461 4.2 21.0 0.42
A5-3-3-1 14739 2.0 14739 1.3 0.7 0.00 14921 7.3 3.7 1.23
A5-3-3-2 14249 1.4 14249 0.2 0.1 0.00 14287 24.8 17.7 0.27
A5-3-3-3 13789 1.7 13789 0.6 0.4 0.00 13946 57.3 33.7 1.14
A10-3-2-1 12041 144.1 12041 6.3 0.0 0.00 12248 24.9 0.2 1.72
A10-3-2-2 12217 335.0 12217 1.1 0.0 0.00 12457 31.3 0.1 1.96
A10-3-2-3 12527 606.3 12527 4.3 0.0 0.00 12636 29.7 0.0 0.87
A10-3-3-1 15570 358.14 15570 22.2 0.1 0.00 15703 42.7 0.1 0.85
A10-3-3-2 16655 602.9 16692 63.8 0.1 0.22 16889 32.7 0.1 1.40
A10-3-3-3 19774 610.3 19774 98.9 0.2 0.00 20003 39.1 0.1 1.16
A15-6-2-1 23551 1576.2 23551 215.2 0.1 0.00 24079 61.1 0.0 2.24
A15-6-2-2 21115 1352.1 21115 144.5 0.1 0.00 21577 60.2 0.0 2.19
A15-6-2-3 24790 2161.1 24790 218.7 0.1 0.00 25169 70.4 0.0 1.53
Avg. — 516.8 — 51.8 0.3 0.01 — 33.3 9.6 1.17

Table 3: Comparison of two heuristics and CPLEX in large-scale problems.

Case ID CPLEX (7200) Bituning PSO Comparison
ZC ZB TB ZP TP TP/TB GAPB (%) GAPP (%)

A20-6-3-1 36507 35915 809.1 36404 124.4 0.15 1.65 0.28
A20-6-3-2 35412 34148 815.3 34972 119.7 0.15 3.70 1.26
A30-10-3-1 49132 — >7200 46878 341.3 — — 4.81
A30-10-3-2 53486 — >7200 50540 438.5 — — 5.83
A40-15-3-1 69194 — >7200 63715 923.4 — — 8.60
A40-15-3-2 71866 — >7200 66598 732.2 — — 7.91
A50-20-3-1 86210 — >7200 78238 1229.2 — — 10.19
A50-20-3-2 100626 — >7200 88068 1521.2 — — 14.26
A60-25-3-1 115044 — >7200 99065 2671.9 — — 16.13
A60-25-3-2 114854 — >7200 97965 3016.5 — — 17.24
A70-30-3-1 172731 — >7200 134730 7407.3 — — 28.21
A70-30-3-2 139333 — >7200 113436 6175.8 — — 22.83
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not improved. (erefore, we had to use the results
computed by solving the problem after relaxation to
judge the effectiveness of algorithm. (e method proved
to be feasible in other research [21]. However, even after
relaxation, CPLEX still takes a long time to find a feasible
solution. A long calculation time means no practical
value, so it is acceptable that we set the computation time
as 7200 seconds to get the solution within the effective
time. From the data of Table 3, we can see an evident
improvement of the PSO’s gap value. Moreover, the
improvement increases with the scale of problem. (e
computation time increases linearly as the problem size
increases, which is much better than CPLEX and bidi-
rectional tuning heuristic.

To summarize, in small-scale problem, bidirectional
tuning heuristic can obtain the same optimal solution as
CPLEX, while PSO can obtain near-accurate solution. On
the contrary, PSO spent less time to find the solution, fol-
lowed by the bidirectional tuning heuristic. In large-scale
problem, PSO shows great capability with high-quality so-
lution in a short time.

6. Conclusion

(e heterogeneous vehicle routing problem for hazardous
materials is a practical problem that deserves to be studied. It
is difficult to balance the total cost under the premise of
considering many influencing factors. In this paper, we
study the multidepot VRPHM with risk analysis and pro-
pose mixed integer programming to transform the actual
problem into a model, which can be solved by mathematical
methods. (e main contributions we made in this research
are listed as follows: First, we consider comprehensive
factors including transportation costs, multiple depots,
heterogeneous vehicles, risks, and multiple accident sce-
narios which make the study closer to the actual situation.
Furthermore, the risk is defined as uncertainty in different
scenarios, and we consider heterogeneous vehicles which are
rarely studied. For solving the problem in an efficient way,
we design a bidirectional tuning heuristic and particle swarm
optimization (PSO) to be applied to different scales of
problem.

(e numerical experiments show that our proposed
algorithm can be used in small-scale problem with faster
speed than CPLEX. And in large-scale problem (70 cus-
tomers, 30 vehicles, and 3 types), PSO can find high-quality
feasible solution in acceptable time.

However, this model can still be improved in terms of,
for example, the definition of risk with uncertainty. (e data
we tested in numerical experiments are randomly generated
in a reasonable range, which may be a little difference from
the actual situation. And more algorithms can be tried to
solve this complex problem.

Data Availability

(e raw/processed data required to reproduce the findings
cannot be shared at this time as the data also form a part of
an ongoing study.

Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

(is study was supported by Beijing Nova Program of
Science and Technology (no. Z191100001119029) and Re-
search on Multi-Depot Heterogeneous Vehicle Routing
Problem.

References

[1] K. G. Zografos and K. N. Androutsopoulos, “A decision
support system for integrated hazardous materials routing
and emergency response decisions,” Transportation Research
Part C: Emerging Technologies, vol. 16, no. 6, pp. 684–703,
2008.

[2] G. A. Bula, C. Prodhon, F. A. Gonzalez, H. M. Afsar, and
N. Velasco, “Variable neighborhood search to solve the ve-
hicle routing problem for hazardous materials trans-
portation,” Journal of Hazardous Materials, vol. 324,
pp. 472–480, 2017.

[3] C. ReVelle, J. Cohon, and D. Shobrys, “Simultaneous siting
and routing in the disposal of hazardous wastes,” Trans-
portation Science, vol. 25, no. 2, pp. 138–145, 1991.

[4] C. D. Tarantilis and C. T. Kiranoudis, “Using the vehicle
routing problem for the transportation of hazardous mate-
rials,” Operational Research, vol. 1, no. 1, pp. 67–78, 2001.

[5] G. A. Bula, F. A. Gonzalez, C. Prodhon, H. M. Afsar, and
N. M. Velasco, “Mixed integer linear programming model for
vehicle routing problem for hazardous materials trans-
portation∗∗universidad nacional de colombia. universite de
technologie de troyes,” IFAC-PapersOnLine, vol. 49, no. 12,
pp. 538–543, 2016.

[6] V. Cuneo, M. Nigro, S. Carrese, C. F. Ardito, and F. Corman,
“Risk based, multi objective vehicle routing problem for
hazardous materials: a test case in downstream fuel logistics,”
Transportation Research Procedia, vol. 30, pp. 43–52, 2018.

[7] M. Rabbani, R. Heidari, and R. Yazdanparast, “A stochastic
multi-period industrial hazardous waste location-routing
problem: integrating NSGA-II and Monte Carlo simulation,”
European Journal of Operational Research, vol. 272, no. 3,
pp. 945–961, 2019.

[8] L. Zhen, “Tactical berth allocation under uncertainty,” Eu-
ropean Journal of Operational Research, vol. 247, no. 3,
pp. 928–944, 2015.

[9] R. Pradhananga, E. Taniguchi, T. Yamada, and A. G. Qureshi,
“Bi-objective decision support system for routing and
scheduling of hazardous materials,” Socio-Economic Planning
Sciences, vol. 48, no. 2, pp. 135–148, 2014.

[10] J. Du, X. Li, L. Yu, R. Dan, and J. Zhou, “Multi-depot vehicle
routing problem for hazardous materials transportation: a
fuzzy bilevel programming,” Information Sciences, vol. 399,
pp. 201–218, 2017.

[11] B. Golden, A. Assad, L. Levy, and F. Gheysens, “(e fleet size
and mix vehicle routing problem,” Computers & Operations
Research, vol. 11, no. 1, pp. 49–66, 1984.

[12] A. Pessoa, R. Sadykov, and E. Uchoa, “Enhanced Branch-Cut-
and-Price algorithm for heterogeneous fleet vehicle routing
problems,” European Journal of Operational Research,
vol. 270, no. 2, pp. 530–543, 2018.

10 Scientific Programming



[13] W. Sun, Y. Yu, and J. Wang, “Heterogeneous vehicle pickup
and delivery problems: formulation and exact solution,”
Transportation Research Part E: Logistics and Transportation
Review, vol. 125, pp. 181–202, 2019.

[14] Y. Yu, S. Wang, J. Wang, and M. Huang, “A branch-and-price
algorithm for the heterogeneous fleet green vehicle routing
problem with time windows,” Transportation Research Part B:
Methodological, vol. 122, pp. 511–527, 2019.

[15] Y.-J. Kwon, Y.-J. Choi, and D.-H. Lee, “Heterogeneous fixed
fleet vehicle routing considering carbon emission,” Trans-
portation Research Part D: Transport and Environment,
vol. 23, pp. 81–89, 2013.

[16] P. H. V. Penna, A. Subramanian, L. S. Ochi, T. Vidal, and
C. Prins, “A hybrid heuristic for a broad class of vehicle
routing problems with heterogeneous fleet,” Annals of Op-
erations Research, vol. 273, no. 1-2, pp. 5–74, 2019.

[17] R. Eberhert and J. Kennedy, “A new optimizer using particle
swarm theory,” in Proceedings of the Sixth International
Symposium on Micro Machine and Human Science MHS ’95,
Nagoya, Japan, October 1995.

[18] V. Kachitvichyanukul, P. Sombuntham, and
S. Kunnapapdeelert, “Two solution representations for solv-
ing multi-depot vehicle routing problem with multiple pickup
and delivery requests via PSO,” Computers & Industrial
Engineering, vol. 89, pp. 125–136, 2015.

[19] L. Zhen, C. Ma, K. Wang, L. Xiao, and W. Zhang, “Multi-
depot multi-trip vehicle routing problem with time windows
and release dates,” Transportation Research Part E: Logistics
and Transportation Review, vol. 135, Article ID 101866, 2020.

[20] L. Zhen, Z. Xu, K. Wang, and Y. Ding, “Multi-period yard
template planning in container terminals,” Transportation
Research Part B: Methodological, vol. 93, pp. 700–719, 2016.

[21] L. Zhen, “Modeling of yard congestion and optimization of
yard template in container ports,” Transportation Research
Part B: Methodological, vol. 90, pp. 83–104, 2016.

Scientific Programming 11


