Hindawi

Scientific Programming

Volume 2020, Article ID 8814247, 13 pages
https://doi.org/10.1155/2020/8814247

Research Article

Hindawi

How to Evaluate the Productivity of Software Ecosystem: A Case

Study in GitHub

Zhifang Liao,' Xiaofei Qi,' Yan Zhang,2 Xiaoping Fan ,> and Yun Zhou®

ISchool of Computer Science and Engineering, Central South University, Changsha 410075, China
2School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK
*Department of Information Management, Hunan University of Finance and Economics, Changsha 410075, China

Correspondence should be addressed to Xiaoping Fan; xpfan@csu.edu.cn

Received 23 March 2020; Accepted 4 May 2020; Published 3 August 2020

Academic Editor: Chenxi Huang

Copyright © 2020 Zhifang Liao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of open source community, the software ecosystem has become a popular perspective in the research on
software development process and environment. Software productivity is an important evaluation indicator of the software
ecosystem health. A successful software ecosystem relies on long-term and stable production activities by the users, which ensures
that the software ecosystem can continuously provide the value needed by users. Therefore, the measurement of software
ecosystem productivity can help maintain the user development efficiency and the stability of the software ecosystem. However,
there is still little literature on the productivity of open source software ecosystems. By analogy with the natural ecosystem, this
paper gives the relevant definitions of software ecosystem productivity and analyzes the factors affecting the productivity of
software ecosystem. Based on the factors of the ecosystem productivity and their interrelationships, this paper establishes a
software ecosystem productivity model and takes the GitHub platform as an example for detailed analysis and explanation. The
results show that the model can better explain the factors affecting the productivity of software ecosystems. It is helpful for the

research on the measurement of the software ecosystem health and the software development efficiency.

1. Introduction

The software ecosystem (SECO) consists of a software
platform, a set of internal and external developers, and a
community of domain experts in service to a community of
users that compose relevant solution elements to satisfy their
needs [1]. With the fast development of open source soft-
ware, the development model of an independent company
has been replaced by the collective intelligence cooperative
development model gradually. And it formed complex
whole. More and more researchers are starting to study the
complex whole generated from this collaborative model
from the perspective of software ecosystems. At the same
time, how to assess the health status of the software eco-
system has become a significant research content in the
software ecosystem.

The concept of software ecosystem productivity mainly
comes from the natural ecosystem, where ecosystem health

refers to the stability and sustainability of an ecosystem. The
health of an ecosystem can be defined by three character-
istics: productivity, organizational structure, and resilience
[2]. By analogy with the natural ecosystem, Manikas K et al.
[3] define the software ecosystem health as the ability to
maintain variables and productivity over time. They think
that the actor’s productivity and robustness influence the
ecosystem. Jansen et al. [4] use productivity, robustness, and
niche to assess the health of open source ecosystems. As an
important indicator of the health of software ecosystems, the
software ecosystem productivity provides evaluation criteria
for the development efficiency, production activities, and
health status of software ecosystems. Quantitative evaluation
of the software ecosystem productivity can provide theo-
retical basis for managers of ecosystem-related organizations
to make better decisions. Currently, the detailed concept of
the software ecosystem productivity is not very clear, so it is
difficult to clarify the meaning of software ecosystem

mailto:xpfan@csu.edu.cn
https://orcid.org/0000-0003-0172-4070
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8814247

productivity and implement it on a specific open source
platform. Secondly, there is a lack of general measurement
models and methods for evaluating the software ecosystem
productivity. It is difficult to quantify and explain the
software ecosystem productivity specifically. Therefore, it is
necessary to construct a general software ecosystem pro-
ductivity assessment model. The purpose of the productivity
assessment model is to provide reference basis for partici-
pants to choose appropriate software ecosystems for pro-
duction activities.

In order to solve the above problems, this paper mainly
makes three contributions. Firstly, this paper proposes the
definition of the software ecosystem productivity. Based on
the concept and evaluation method of the natural ecosystem
productivity, the concept and influencing factors of software
ecosystem productivity are determined. Then, according to
the model of the natural ecosystem productivity, the
quantitative model of software ecosystem productivity
analysis is constructed by analyzing the influence of various
factors on productivity. Finally, for detailed illustration, the
typical open source software platform GitHub is selected for
empirical study as an example.

The structure of this paper is as follows: Section 2 mainly
introduces the related work of the software ecosystem
productivity and health measurement. Section 3 introduces
the research questions and dataset. Section 4 defines the
productivity of software ecosystem and gives the software
ecosystem productivity model. Section 5 is a case study of the
productivity in GitHub software ecosystems. Section 6
verifies the productivity model. Finally, the paper is con-
cluded in the last section.

2. Related Work

In 2003, Messerschmitt and Szyperski [5] proposed the
concept of software ecosystems. They defined the software
ecosystem as an online community organization that has a
common interest in core software technologies. Later, many
researchers defined the software ecosystem from different
perspectives and backgrounds. Based on a detailed study of
the existing literature in the field of the software ecosystem,
in 2013, Manikas and Hansen [1] defined a software eco-
system as the interaction of a set of actors on top of a
common technological platform that results in a number of
software solutions or services.

In recent years, there are many different research di-
rections in the field of software ecosystem. Researchers have
studied software ecosystems from many aspects, such as
software ecosystem health and software ecosystem archi-
tecture. Software ecosystem health is still a research topic
that many people pay attention to. At present, there are
many intelligent tools or models for assessing the health of
personal [6] or natural ecosystems [2]. However, in the
software ecosystem health, productivity is an important
evaluation indicator. How to quantify the software eco-
system productivity is still a problem to be solved [7]. In
terms of health measurement of software ecosystem,
Manikas and Hansen [3] reviewed the existing literature on
health status of software system, compared it with the

Scientific Programming

concepts of natural ecosystem and commercial ecosystem,
and defined the health status of software ecosystem as the
ability of ecosystem to sustain development and maintain
variability and efficiency. Gamalielsson et al. [8] used de-
veloper responsiveness as an open source ecosystem health
indicator for a single project. Amorim et al. [9] proposed a
conceptual framework to actively support SECO health
participants in the public sphere. It is based on the business
ecosystem health indicators including productivity, ro-
bustness, and niche creation defined by Iansiti and Levien
[7]. The productivity in this framework mainly refers to the
influence of architects on platform functions and manage-
ment. In their work, Eclipse and KDE were used as examples
to describe architecture practices that promote and improve
ecosystem health. Compared with our work, it discussed the
impact of different roles of software architects on ecosystem
health. However, our work aims to measure productivity
through the historical data of the software ecosystem. Berk
et al. [10] proposed a SECO-SAM model for compre-
hensive evaluating software ecosystem strategy. This
model involves the SECO biology, lifestyle, environment,
and healthcare organizations. The productivity is a basic
level of software ecosystem health in SECO biology, but
they only discussed the SECO lifestyle and environment in
the case study. Franco [11] proposed a QuESo model to
measure the health of software ecosystem based on sus-
tainability, maintenance, process maturity, network
health, and resource health. This study mainly introduced
the indicators about software ecosystems. These studies
mostly use the productivity indicator but do not mention
any approach. Jansen [4] provided a multilevel and
comprehensive Open Source Ecosystem Health Oper-
ationalization (OSEHO) using three pillars, being pro-
ductivity, robustness, and niche creation pillars, to assess
the health of open source ecosystems. And the pillars are
separated into three layers, being the theory level, the
network level, and the project level. It provides insight into
the indicators but does not provide a detailed method for
their operation. Liao et al. [12] proposed to measure the
sustainability of open source software ecosystem from the
aspects of openness, stability, activity, and scalability and
applied the evaluation method to Stack Overflow. And
Liao et al. [13, 14] also defined the indicators affecting
GitHub ecosystem health from the perspective of vitality,
organizational structure, and elasticity and proposed the
GitHub ecosystem health prediction method. They also
forecasted the lifespan length of projects and proposed a
prediction model to estimate the project lifespan in open
source software ecosystems.

The software ecosystem currently lacks appropriate
management theory, support tools, and solid experience.
Although researchers have proposed a measurement
framework for software ecosystem health, they have not
quantified the model to a specific platform and have not had
in-depth analysis of the specific conditions of various factors
of software ecosystem health. The software ecosystem
productivity plays a huge role in assessing the health of the
software ecosystem and improving the productivity of the
software ecosystem. This paper studies the relevant factors

Scientific Programming

affecting software ecosystem productivity and verifies it by
constructing a software ecosystem productivity model.

3. Research Questions and Data Gathering

3.1. Research Questions. The purpose of this paper is to study
the productivity of the open source software ecosystem.
Through defining the representation of productivity in
GitHub and analyzing related factors, we proposed a specific,
concrete operational approach and analysis model to eval-
uate productivity. To achieve that, the research questions
answered by the paper are as follows:

Q1 What is the definition of the productivity of open
source software ecosystem? And what can explain the
productivity on the GitHub platform? Based on the
natural ecosystem, we defined the software ecosystem
productivity including software primary productivity
and software secondary productivity. Also, we com-
pared the productivity of open source software eco-
system with the productivity of natural and business
ecosystems.

Q2 What are the factors that affect productivity? What
are the specific effects of these factors on primary pro-
ductivity and secondary productivity? Based on the
definition in Q1 and the calculation model of the
natural ecosystem productivity, we found out the
factors affecting the productivity of the ecosystem and
proposed a hypothetical productivity model. It was
analyzed and verified in the example study latter.

Q3 How should we measure the productivity in open
source software ecosystems? Dose this hypothetical open
source software ecosystem productivity model hold? To
answer this question, we used an example study of
GitHub to explain this approach and constructed the
model in Section 5.

Q4 Can this evaluation method and productivity model
be applied to ecosystems of GitHub and other platforms?
In Section 6, the applicability of the productivity model
on other platforms is verified with the same evaluation
method.

3.2. Platform Introduction. As the largest and fastest-
growing open source ecosystem in recent years, GitHub has
attracted millions of developers to release open source
projects. At the same time, it opened APIs to provide a
convenient way for researchers to obtain the required data.
Therefore, this paper focused on projects in the GitHub open
source ecosystem. GitHub is an open source community that
performs code changes based on pull requests. In open
source projects, users can perform a variety of actions, in-
cluding forking, adding stars, watching, creating issues,
commenting, pulling requests, pushing, and making com-
mits. Users can be divided into owners, core developers, and
noncore developers. Owners can execute all activities and
assign privileges to other developers. Core developers can
directly perform submission activities on code by pushing
their changes after assigning permissions. Noncore

developers submit code changes by pulling requests and can
only perform submission activities after core developers
review. GitHub is a project hosting platform for open source
and proprietary software projects. It is also the most popular
open source library at present. GitHub platform saves a lot of
historical data of development process. These data provide
material for the study of project status. Project data is easy to
obtain, and the API of GitHub website provided data
crawling routes with high data integrity.

Therefore, this paper took GitHub ecosystem as an
example to build a software ecosystem productivity model
and verify the accuracy and universality of the model.

4. Definition and Methodology

In this section, the definition of software ecosystem pro-
ductivity is provided firstly. Then, the method used in the
experiment is explained in detail.

4.1. Productivity Definition. Q1 What is the definition of the
productivity of open source software ecosystem? And what
can explain the productivity on the GitHub platform?

In the natural ecosystem, biological productivity refers to
the ability to produce substances at different life levels, such
as individuals, groups, ecosystems, regions, and even bio-
spheres. It determines the overall material cycle and energy
flow and is also an important indicator of the health status of
the system [15]. The concepts of biological productivity
include primary productivity (GPP) and secondary pro-
ductivity. Primary productivity in ecosystem refers to the
fixed solar energy or organic matter manufactured by plants.
Secondary productivity refers to the ability of consumers to
metabolize the substances manufactured by primary pro-
duction and stored energy and form their own substances
and energy through assimilation. Additionally, in human
ecology, many other energy sources, such as wind energy, are
also used. There are many different affected factors and
measurement methods for the different types of energy [16].
In business ecosystem, the productivity is defined as how the
ecosystem effectively converts raw materials into living
organisms. It is the capacity of the ecosystem to transform
inputs into new products and functionalities with low cost
[7]. And it emphasizes the delivery of innovations and the
lower costs. The difference between the definition of pro-
ductivity in natural ecosystems and business ecosystems is
that natural ecosystems measure the ability to produce a
product, mainly based on the total number, while business
ecosystems pay more attention to efficiency and measure
how to produce more products at a lower cost.

By drawing an analogy between natural ecosystem and
business ecosystem, this paper gives the definition of soft-
ware ecosystem productivity with more focus on the pro-
duction and information. The definition of productivity in
this paper differs from that in business ecosystem. It focuses
on the ability of software ecosystem to produce ecological
products and does not reflect the innovation of the software
ecosystem. And it can be measured from activity data in the
ecosystem.

Definition 1(software ecosystem total productivity). The
total productivity of software ecosystem (SEP) refers to
the amount of information generated by the interaction
and collaboration of participants, platforms, and sup-
porters in the ecosystem.

Taking the GitHub platform as an example, the user’s
main contributions include building code repository,
committing codes, presenting issues, and commenting
on different issues and commits. These behaviors
produce a series of interactive information. This in-
formation brings vitality to the production activities of
the ecosystem. It becomes the total production of the
ecosystem.

Definition 2(software ecosystem primary productivity).
The software ecosystem primary productivity (SEPP)
refers to all information produced by participants that
affects ecosystem products in a software ecosystem.

Different software platforms have different functions,
and the information affecting ecosystem products is
also different. For example, in the GitHub platform,
ecosystem products are mainly codes. Therefore, the
information affecting software ecosystem products
produced by participants mainly includes committing
codes, making an issue, and repairing defects.

Definition 3(software ecosystem secondary productivity).
Software ecosystem secondary productivity (SESP)
refers to the valuable information that the participants
produce and the ecological products which directly
affect the software eco-products in the software
ecosystem.

This information is usually further processed by the
previously generated information, such as reviewing and
merging pull requests, closing issues and commits, or
commenting on commits and issues in the GitHub. The
commit generates a large amount of code information. After
the code is approved and merged, it can be merged into the
original code repository. It affects the project version and
forming valuable information for the software ecosystem.
Similarly, after the issue, commit, or pull requests behavior
are generated, the user will comment on these issues and
commit to exchange information. The information on the
impact of these production activities on the production
activities of users is the subproductivity of software eco-
system. In the platform-based open source software eco-
system, users are the main participants of the platform. A
series of activities on the platform interact with the platform
to generate information. This information promotes the
normal development of the platform and becomes the en-
ergy to maintain the normal operation of the software
ecosystem.

4.2. Productivity Model Hypothesis. Q2 What are the factors
that affect productivity? What are the specific effects of these
factors on primary productivity and secondary productivity?

The productivity index of software ecosystem can be
used to evaluate the development efficiency of software
projects and the health of software ecosystem. Participants

Scientific Programming

carry out production activities in the ecosystem. The con-
tribution of participants is also the main energy source of
open source software ecosystems. Productivity in software
ecosystem is mainly generated by the interaction between
software participants and platforms. The main factors af-
fecting the productivity of software ecosystem include
platform factors and user factors. Platform factors are
mainly external factors that have great impact on the
software ecosystem, including project popularity and project
development language. Participant factors mainly include
the number of participants in the software ecosystem and the
willingness of participants to contribute. This paper mainly
studies whether there is a certain relationship between the
activities of the participants and the productivity of the
software ecosystem and whether this relationship can be
quantified in a similar way to the quantitative model of
natural ecosystem productivity.

In the measurement model of productivity in natural
ecosystems, the main influencing factors of productivity are
illumination radiation, that is, the input of energy. The
calculation model of primary productivity is usually ob-
tained by multiplying the coefficient of the factors affecting
the conversion of illumination energy by the amount of
effective illumination. In terrestrial ecosystems, geographic
detection platforms usually use GLOPEM model algorithm
[17] to retrieve primary productivity data from various
satellite remote sensing data. Primary ecosystem produc-
tivity can be expressed as

GPP = PAR x FPAR x &. (1)

In equation (1), GPP represents primary ecosystem
productivity, PAR is photosynthetically active radiation,
FPAR is the ratio of photosynthetically active radiation
absorbed by vegetation, and ¢ is the actual light utilization
rate based on the concept of GPP. The multiplication of PAR
and FPAR is the photosynthetically effective radiation
absorbed by vegetation, that is, the light utilization rate of
vegetation.

This paper mainly analyzed the influence of factors of the
number and activities of participants on productivity in
software ecosystem. In software ecosystem, the contribution
activities of participants are the main energy source of open
source software ecosystem. Therefore, according to the
abovementioned quantitative model of natural ecosystem
productivity, the software ecosystem productivity model is
similarly represented as a linear function of participants. We
hypothesize a quantitative model of software ecosystem
productivity as equation (2). Then, we verify it in the ex-
ample study:

SEPP = Ac * Pe + C. (2)

In equation (2), SEPP represents the primary produc-
tivity of software ecosystems, and it is a linear function
related to the number of users and the willingness to
contribute. Pe is the number of participants, Ac is the in-
troduced parameter, representing the activity factor, and C is
a constant. In different natural ecosystems, the primary
productivity of ecosystems will vary depending on the

Scientific Programming

effective radiation ratio of vegetation to absorb photosyn-
thesis. Similarly, in different software ecosystems, different
programming languages, project lifetimes, project followers,
etc. are not exactly the same for the effective information
production rate of the ecosystem. These different factors
together constitute the Ac. And the default minimum
productivity of a participant is 1. Thus, the value of SEPP is
the number of participants when C is negative number and
Ac * Pe is less than C absolute value.

Similarly, according to the definition of secondary
productivity, secondary productivity is transformed from
primary productivity. And it is also a linear function related
to the number of users and willingness to contribute. This
hypothesis can be expressed as

SESP = SEPP % Cr + C1. 3)

In equation (3), SESP is the secondary productivity of
software ecosystem, Cr is the productivity conversion rate,
and Cl1 is the constant. According to the primary produc-
tivity formula, the relationship model of secondary pro-
ductivity can be transformed as follows:

SESP = Ac'* Pe + C2. (4)

In equation (4), Ac' is the conversion parameter of
productivity, which is obtained by multiplying the active
factor by the conversion rate. C2 is a constant; the value is
equal to C1 multiplied by the conversion rate with a constant
added. It can also be predicted that the secondary pro-
ductivity of software ecosystem is linearly related to the
number of users and their willingness to contribute.

In Sections 5 and 6, we specifically analyzed the influ-
encing factors of software productivity for different plat-
forms and made an empirical study on the feasibility and
universality of the abovementioned hypothetical model to
verify whether the models can express the impact of par-
ticipants on the ecosystem productivity.

4.3. Methodology. Q3 How should we measure the pro-
ductivity in open source software ecosystems? Dose this
hypothetical open source software ecosystem productivity
model hold?

The research method analyzed the factors affecting the
productivity. Then, the productivity model of software
ecosystem was verified and established. It was divided into
three steps.

Step 1 (data collection): firstly, the appropriate data
were selected and the ecosystem was divided. In order
to verify the feasibility of the model, the typical open
source software platform GitHub was selected for
empirical research. We took GitHub platform as an
example in Section 4. Because project popularity and
development language are important platform factors
affecting ecosystem, in order to eliminate the impact of
these factors in the ecosystem, we divided the eco-
system with different types of platforms, mainly using
development language as the index. For platforms that
cannot divide ecosystem according to the development

language, we adopt other dividing standards such as
project type and project popularity.

Step 2 (correlation analysis): in order to analyze the
impact of user activities on software ecosystem pro-
ductivity, the relationship between productivity and
ecosystem participants in software ecosystem was an-
alyzed. The data of productivity and participants in the
ecosystem were analyzed in a month-long observation
period, and the relationship between different types of
productivity in the ecosystem and those produced by
people in a unit time were analyzed. The data used in
this paper are spaced monthly and the data variables are
equidistant, the person formula is applicable to mea-
sure the coefficient of linear relationship between the
fixed distance variables, and the data scale is suitable for
the calculation of the person correlation coefficient, so
this paper used the person correlation coeflicient to
analyze the correlation between the participant data
and the software productivity data:

T = Y (i -%X)(yi -) |
s (Ve - (VR)

In equation (5), i is the first month of time, x is the
number of software ecosystem participants, and y is
productivity of this software ecosystem. r,,, represents the
correlation coefficient between productivity and partic-
ipants, r,, € (=1,1); 7,y islarger, which indicates that the
software ecosystem productivity is more positively cor-
related with the participants. The negative value means
that the software ecosystem productivity is negatively
correlated with the participants. And r,, tends to 0,
which means that there is no correlation between them.

Step 3 (model construction): the construction of this
model was divided into two parts. The first is regression
analysis. According to the prototype of the software
ecosystem productivity model, the linear relationship
between productivity and participants was judged.
Under the condition of linear relationship, the initial
regression equation between productivity and partici-
pants was obtained by the least square method [18].
Because the productivity created by different types of
producers is different in the same ecosystem, the
specific ecosystem presents different regression models
because of the different activity of participants.

The second is the construction of the real model. The
regression equation of each ecosystem is inconsistent.
To determine a regression model applicable to most
projects, this study used truth discovery methods [19].
Truth discovery is a method to measure the reliability of
multisource information and estimate the real infor-
mation. The flow of this algorithm was shown in Al-
gorithm 1. By this method, we calculated the reliability
of the regression equation based on each project and
obtained a general regression equation with a greater
accuracy.

Scientific Programming

Input: Data from n project: {Acy, , Ac,}
Output: Truths Ac*), ¢* @
(1) Initialize the truths
ActW =31 Aci/n
W =37 ci/n
(2) repeat
(3) fori < 1toN do
(4) fori < 1to Tdo

(6) Acr = 2;:1 (w; lipi)/nZ?:I w;
(7) = Zi=1 (w; *¢)l YL, w;
(8) end for
(9) end for
(10) until Convergence criterion is satisfied;
(11) return Ac*®, ¢ ®

(5) w; = log (T, ((Ac* U0 — Ac)®) + ((¢* VY —¢))/ (Ac* “D — Ac,)* + (c* D —¢))?)

ALGOrITHM 1: Truth discovery.

The specific algorithm was described as follows. Firstly,
the initial settings of {Ac,, » Ac, b ey et , c,} are
determined by the regression equation of each item and
sorted. The results of the first iteration are the average value
of Ac*™ and ¢* V. Secondly, the weight (w;) of each item in
the overall ecosystem is calculated, where i represents the
ecosystem number i, ¢; represents the activity of the eco-
system i obtained through the regression equation, Ac* ()
represents the activity result of the t-time iteration, and c*)
represents the constant result of the t-time iteration. Finally,
the results of the t-time iteration are calculated.

In this paper, we used the truth discovery algorithm to
get the real software ecosystem productivity quantification
model under a specific software ecological platform. The
specific experimental process was described in detail in
Section 5.

5. Case Study

This paper focused on the analysis of user factors influence
on ecosystem productivity. This section verified the rela-
tionship between the number of users, activities, and pro-
ductivity. In this section, we took GitHub as an example to
quantify the software ecosystem productivity model and
conduct empirical research.

5.1. Data Collection. The first task was data collection and
preprocessing. The main external factors affecting ecosystem
productivity include the function type, the popularity of the
project, and the popularity of the development language.
Based on the type of development language, this paper chose
seven of the most popular languages and divided GitHub
platform into several technological ecosystems to analyze the
productivity model.

In order to scientifically compare the popular languages
of each platform, we ranked the top 10 languages in the four
platforms of Stack Overflow, GitHub, TIOBE, and IEEE. As
shown in Table 1, we reversed the popularity of these lan-
guages. The first language in each platform had 10 points, the
second had 9 points, and so on. The scores of the four

TaBLe 1: Comparison of language popularity on different
platforms.

Score Stack Overflow GitHub TIOBE IEEE
10 JavaScript JavaScript Java Python
9 Java Python C C++
8 C# Java C++ C

7 PHP Ruby Python Java
6 Python PHP VB.net C#

5 Html C++ C# PHP
4 C++ css PHP R

3 css C# JavaScript JavaScript
2 SQL Go SQL Go

1 ASP.NET C Swift Ass

platforms were added, and we selected the top 7 languages in
terms of popularity. Then, technical ecosystems of the
platform were divided by language as the main factor, and
the ecosystem productivity was analyzed. The final scores
were JavaScript, Java, C, C++, C#, PHP, and Python, the
seven different development languages for analysis.

Using the seven popular languages mentioned above, the
platform was divided into software ecosystems of different
languages. According to the definition of software ecosystem
productivity in this paper, the data of user contribution
activities were used. GitHub platform saves a lot of historical
data of development process, and the API of the website
provides high data integrity for data crawling. As shown in
Table 2, this paper used several projects with the highest
attention in GitHub and collected 70 projects with the largest
number of stars in JavaScript, Java, C, C++, C#, PHP, and
Python.

5.2. Correlation Analysis. After data processing was com-
pleted, the correlation between productivity and participants
was analyzed. This paper attempted to find out the rela-
tionship between the number of participants and produc-
tivity through the statistical analysis of average user
activities.

Scientific Programming 7
TaBLE 2: Projects of the largest number of stars in different languages on GitHub.
JavaScript Java C++ C# C Python PHP
Vue Java-design- TensorFlow Shadowsocks-windows Linux Awesome- Laravel
patterns python
System-
React RxJava Electron CodeHub Netdata design- Symfony
primer
D3 Elasticsearch Swift CoreFX Redis Public-apis Faker
JavaScript Spring-boot Bitcoin PowerShell Git Models Composer
E:?if; Retrofit NW.js Wox Ijkplayer Youtube-dl Codelgniter
Angular.js Interviews x64dbg CoreCLR Php-src Flask DesignPatternsPHP
Font- OkHttp Protobuf Roslyn Wrk Thefuck SecLists
Awesome
Create- How-to-Make-a-
Guava OpenCV Dapper Computer-Operating- Httpie Framework
react-app
System
Node MPAndroidChart Caffe WaveFunctionCollapse the_silver_searcher Django Guzzle
In a specific software ecosystem, it is necessary to select data 12
that can represent the ecosystem productivity and make cor- N T e o) 0579 0977 o7 o
relation analysis with the number of users. In GitHub ecosystem, : 0.908 0.901 : Wosit
the most important contribution of users usually comes from 0.8 :
the pull requests behavior, so PR data is a good representation of
the software ecosystem productivity, while valuable PR is usually 06
merged into the project code base. So, the merged PR was used 0.4
as the secondary productivity after transformation. The corre-
lation between the productivity and the ecological participants in 02
software ecosystem projects was analyzed.

In this paper, the productivity data of each project in unit
time and the data of participants in statistical time threshold
were counted according to the observation period, and the
correlation coefficient of person was used to analyze the
correlation between participant data and software produc-
tivity data. The results are shown in Figure 1.

As shown in Figure 1, in the GitHub platform, a highly
positive correlation can be found between the total PR and
the total number of participants. Among them, the lowest
degree of association of a development language is 0.922,
while the highest level is JavaScript ecology, up to 0.986. The
number of PR that has been merged and the number of
participants are also highly positively correlated, and the
degree of association ranges from 0.811 to 0.967. Therefore,
it can be concluded that, in GitHub ecosystem, there is a
highly positive correlation between the productivity of
software ecosystem and the number of participants in
ecosystem, and the number of participants directly affects
the productivity.

Based on the above analysis of the correlation between
productivity and the number of users, it was concluded that
there is a highly positive correlation between the pro-
ductivity of software ecosystem and the number of par-
ticipants in the ecosystem. The number of participants
directly affects the value of productivity. Because pro-
ductivity comes from the interaction of all participants in
the ecosystem, the main influencing factors of software
productivity are the number and activity of producers in
the ecosystem. Therefore, this paper used the number of

Java C# PHP

JavaScript

Python C++ C

® Primary productivity
= Series2

FiGURE 1: The correlation between the number of participants and
productivity on the GitHub platform. The blue column represents
the correlation between primary productivity and the number of
participants, while the orange column represents the relationship
between secondary productivity and the number of participants.

users and the activity of users to build a model of the impact
of participants on productivity.

5.3. Model Construction. According to the above correlation
analysis, it was found that there is a clear positive correlation
between ecosystem productivity and the number of par-
ticipants. Therefore, it was necessary to judge whether
productivity and the number of participants have linear
function relations and carry out regression analysis. On the
GitHub platform, the impact model of participants on
productivity was constructed by using seven representative
languages. In Figure 2, we found that there is a linear re-
lationship between productivity and the number of partic-
ipants. Specific projects or ecosystems present different
regression models depending on the activity of participants.

As shown in Figure 2, in every ecosystem, productivity is
a linear function related to the number of participants.
Primary and secondary productivity models can be met in
both primary and secondary productivity. Therefore, the

Scientific Programming

1800 - e = 1800 -
@ o ° >~
>~ = o0
£71500 - H . = 1500 4
& o .‘.\' o © % e, .‘ . % f. o® ®
5 1200 | o3 $lev o 21200 | 0 W .
! LT ” S 8° * emyee’,®
S 900 | Y . o~ & 900 | o Wy et e .
o ow® s ’}A’ = I s %*
£ 600 e gy ‘**.-3." : £ 600 - F °.
g RN A g o el e fs
B=| s - ¥
£ 3004 j!‘ g 300 4 Y o = ?‘ é?ﬁ;-m
o P 370 MRS~
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600
o C# @ JavaScript o C# ® JavaScript
o C++ PHP o C++ » PHP
oC Python oC Python
Java Java

(a)

(®)

FIGURE 2: Correlation analysis between productivity and participant. (a) The correspondence between the number of participants and the
primary productivity in each observation period on the GitHub platform. The dots of different colors represent the correspondence between
the participants of different languages and productivity. (b) The correspondence between the number of participants and the secondary

productivity.
TaBLE 3: The linear function of productivity related to the number of participants.

Languages Equation of primary productivity Equation of secondary productivity Ac C1 Ac"Cr C2
C# y=5.46x — 31.985 y=4.66x —29.407 5.46 31.985 4.665 29.407
C++ y=3.37x-24.101 y=2.69x-31.796 3.37 24.101 2.690 31.796
C y=2.05x—-9.555 y=0.97x-6.834 2.05 9.555 0.967 6.834
Java y=2.94x-13.341 y=197x-29.100 2.94 13.341 1.974 29.100
JavaScript y=2.05x—-5.639 y=0.56x-10.923 2.05 5.639 0.557 10.923
PHP y=1.93x+11.439 y=0.99x +23.920 1.93 11.439 0.987 23.920
Python y=1.65x+2.464 y=0.94x-19.103 1.65 2.464 0.941 19.103

primary regression equation was obtained by the least square
method, as shown in Table 3.

Since the regression equations of each project are in-
consistent, the lowest activity factor, Ac, was 1.65 and the
highest was 5.46. The constant C1 ranged from —31.99 to
11.44. Through analysis, it was found that the active factor
can usually indicate the willingness of users in the eco-
system. To obtain a regression model for most projects, the
participant’s impact model on productivity was con-
structed using the real-discovery approach described in
Section 3:

SEPP = 2.22 * Pe — 9.44, (6)

SESP = 1.20 * Pe — 21.11. (7)

In equation (6), SEPP is the primary productivity of
GitHub ecosystem, and in equation (7), SESP is the sec-
ondary productivity. Pe represents the number of partici-
pants in the software ecosystem. The primary activity was
2.22, the secondary activity was 1.20, the constant C1 of
primary productivity was —9.44, and the constant C2 of
secondary productivity was —21.11. And in this paper, the
default minimum productivity of a user was 1. The value of
SEPP and SESP is the number of users when C is a negative
number and Ac*Cr is less than C absolute value.

Through the analysis of the software ecosystem pro-
ductivity of GitHub platform, it was found that the software
productivity model proposed in Section 4 can be applied to
multiple software ecosystems. Because of the different
functions of the specific ecosystem and the different user
groups, the user’s active degree will be different. Therefore,
when using the model, we need to analyze the productivity of
the software ecosystem according to the user’s active degree
on different platforms. Usually, the average activity of users
can be used to replace the active factors derived from the
inversion of productivity and the number of participants.

6. Verification Analysis

Q4 Can this evaluation method and productivity model be
applied to ecosystems of GitHub and other platforms?

To answer this question, we verified the model in other
ecosystems in this section, which include three different class
ecosystems in GitHub. Then, the ecosystems in Stack
Overflow and Bugzilla were verified.

6.1. Verification in Other Ecosystems of GitHub. In this
section, we verified the model in the three different class
ecosystems in GitHub. In biology, the range of ecosystems
can be large or small, and ecosystem productivity can
represent the production capacity of individuals, groups,

Scientific Programming

ecosystems, regions, and even biosphere. Similarly, this
paper selected three software ecosystems of different sizes
and types in GitHub for verification. They are the single
software product ecosystems, the software development
team ecosystems, and the language ecosystems. The rela-
tionship between model productivity and actual productivity
was verified by statistical calculation.

Three different ecosystems, Moby, GitBook, and Ruby,
were selected to validate the model. Moby is an open source
project dedicated to promoting the movement of software
containerization. In the Moby project, users and software
frameworks, components, and other software products
gather to form a software ecosystem. The GitBook team is
mainly a development team for text editors using Git
technology. In the GitBook ecosystem, users and software
development environments, software products, services, and
others are condensed together through a team to form a
software ecosystem. Ruby is a simple and fast object-ori-
ented scripting language. It is a popular project development
language in GitHub. In the Ruby ecosystem, users, software
products, and development environment form a software
ecosystem with the same development language.

Figure 3 shows that the software ecosystem primary
productivity was calculated by the productivity model. It was
consistent with the trend of the actual productivity of the
software ecosystem, and the quantity is roughly the same.
And through correlation analysis, the correlations between
model productivity and measured productivity in the single
software product ecosystem, the software team ecosystem,
and the language ecosystem were higher than 90%. However,
there was a difference between the predicted and the
measured value. Because this model analyzed the charac-
teristics of multiple ecosystems, the large dataset obscured
the characteristics of specific ecosystems. It caused the
predicted value to be different from the average productivity
of the platform. The predicted value is greater than the
measured value; this means that the productivity of this
ecosystem is lower than the average productivity of this
platform, and user activities should be improved. The
predicted value is less than the measured value; this means
that the users of this ecosystem are more active, and the
productivity is higher than the average productivity of the
platform. When the productivity of the ecosystem is contin-
uously higher than the prediction model, the model should be
adjusted according to the characteristics of this software
ecosystem to ensure its accuracy. This fully proved that the
abovementioned composition model of software ecosystem
primary productivity is applicable to GitHub and other soft-
ware ecosystems. It was also found that the number of users is
limited by the environmental capacity of the ecosystem during
the stable operation of the platform. In the software ecosystem,
the transition from primary productivity to secondary pro-
ductivity takes time. It takes some collaboration with other
users to convert primary productivity to secondary produc-
tivity. Hence, the prediction of secondary productivity was not
very good in the last few months. Also, the prediction of
secondary productivity of these three ecosystems in GitHub is
analyzed. The result is shown in Figure 4.

During the verification process, we found the impact of
factors other than the number of users and activity on the
software ecosystem productivity. On the GitHub platform,
the software primary productivity problem had a high
correlation with the number of participants, but when the
ecosystem is small and the data volume is sparse, the ac-
curacy of the model will be greatly reduced. During the
productivity verification experiment of a single project team,
it was found that each user participating in the PR sub-
mission would have one or two problems, but a few core
developers would generate a large number of submissions
during certain observation periods, resulting in partial errors
in the model. The reason why the secondary productivity
and the number of participants are lower than the primary
productivity was that the large number of submissions
generated by these few core developers is often incorporated
into the code base, so the primary productivity depends
more on the activities of the core developers. In the initial
phase of the project, the contribution rate of core users is
usually high. However, as the project progresses, the number
of noncore developers participating in the project will in-
crease, and the proportion of secondary productivity con-
verted from primary productivity will gradually increase.
Therefore, in the next step of the work, the impact of the core
developer’s user activities will be considered.

In the experiment, we also found that, in the process of
stable operation of the platform, there is no sudden effect of
external force. And after the number of users reaches a certain
level, it will remain in a range for a long time. Therefore, the
most important thing for primary productivity is to improve
the participants and active level. And in these open source
software ecosystems, the transition from primary productivity
to secondary productivity takes time and needs to be dis-
covered and collaboratively completed by other users to drive
primary productivity into secondary productivity. Therefore,
the amount of secondary productivity is not very good in the
last few months. And because the ecological secondary
productivity is converted from primary productivity, the
secondary productivity is almost zero when the primary
productivity is low, so the secondary productivity model is too
dependent on the core user for the product of a small project
team. Therefore, in order to increase secondary productivity,
it is necessary to increase primary productivity, conversion
factor, and number of core users.

6.2. Verification in Other Ecosystems of Other Platforms.
To verify the universal applicability of this model, we also
verified the model in the ecosystems of other ecosystems.
Using the same method, the software ecosystem productivity
of Stack Overflow platform and Bugzilla platform was ob-
tained. Stack Overflow is a standard Q&A website on
computer science and programming topics. On the Stack
Overflow platform, users can perform a variety of different
activities such as questions, answers, votes, and comments.
Users participate in group intelligence collaborative activi-
ties such as questions and answers to form an open source
ecosystem. It has been highly popular with software

10 Scientific Programming

Moby productivity prediction in GitHub

GitBook productivity prediction in GitHub
700 50
600
500
400
300
200
100
0 0 e I s e e e e B B B e e o N B
g8283283823988=238383833 R s R R R R R -
nnon F F 1NN 1m0 O O NN X] O U S I D U OROR T A
SE555333355:5°:c5:::88 SE2E2ZE5E3E52555832552%
Real primary productivity —— Real primary productivity
Predicted value —— Predicted value

(a) (b)

Ruby productivity prediction in GitHub

1600
1400
1200
1000
800
600
400
200
0

e RN R e e R R R RN e R L N e R

LIRS IRIReeSe?

O =~ AN ANNMM®N I FLLNLN OO 0NN 00K

p e I A L L L el e e R e i

OO0 0000000000000 00000000 0O

AAAAAAAAAAAAAAAAAAAAAAAQQQ

—— Real primary productivity
Predicted value

(c)

FIGURE 3: Model predictive value vs. real primary productivity. (a) The Moby project primary productivity predictions compared to real
primary productivity. (b) The GitBook team’s primary productivity predictions compared to real primary productivity. (c) The Ruby
language ecosystem primary productivity predictions compared to real primary productivity. The red line indicates the predicted value. The
blue line represents the real value. The abscissa axis is the different month and the ordinate axis is the productivity of the ecosystem.

Moby secondary productivity prediction

600

GitBook secondary productivity prediction

AN N O~ A WN Lo~ LW R~ LW D~ A N 0~ 1N 0 —~ A
232723372935 7935 793579955 TIITZLoLZS2sn oo nRERE
Mo N O FHF H DN NN O OO O DN DN 00 000 A VI T U N S U TR G S U S O SR VRPN RS
DO FIIINLLBL N OO YN N NN %% %0 R R VR Y
O 0O 0 0000000000000 000000 00O
AR AAAAAAAAAAANARAARAARAAAQRAAQ SR AZARNASARSAZ AN A SRS A

Real secondary productivity

Real secondary productivity
Predicted value

Predicted value

(a) (b)

FiGure 4: Continued.

Scientific Programming

1200
1000

11

Ruby secondary productivity prediction

800

600

400

200

0
A== In = —
LIFIILILILIRST
S~ == A H
[B0 0 i i gt g
Soooooooo0o
SIS IS RS IS IR SIS IR S IR S IR SIS

Predicted value

2014-05
2014-09
2015-01
2015-05
2015-09
2016-01
2016-05
2016-09
2017-01

2017-05
2017-09
2018-01
2018-05
2018-09
2019-01

Real secondary productivity

(c)

F1GURE 4: Model predictive value vs. real secondary productivity. (a) The Moby project secondary productivity predictions compared to real
secondary productivity. (b) The GitBook team’s secondary productivity predictions compared to real secondary productivity. (c) The Ruby
language ecosystem secondary productivity predictions compared to real secondary productivity.

HTML productivity prediction

X NN O O ~— AN AN n on F F n O O DN

G SRR RO AR S SN Y

58 38585 PSS EIEB FasB

SRS IZERISO0s AT RS2
Real productivity

Predictive productivity

(a)

2

2

1

1

Bugzilla productivity prediction

500
000
500
000
500
N DO OO D~ AN N FF N
eSS YA i AT AT
S5 E 5558588585888 5E8 5
DBSEmLSENnSIST NSNS un s s n s
—— Real productivity

—— Predictive productivity

(b)

FIGURE 5: Model predictive value vs. real productivity. (a) The productivity predictions compared to real productivity on Stack Overflow. (b)
The productivity predictions compared to real productivity on Bugzilla of Mozilla projects.

developers and is considered to be one of the most successful
open source ecosystems. Bugzilla is a defect tracking system
developed by the Mozilla Foundation (http://www.mozilla.
org). Many users, including open source projects (Apache,
Open Office for Linux), private projects, and public agencies
(NASA, IBM) are using Bugrzilla. In Bugzilla, the user’s
contribution mainly starts from the user’s submission of a
bug report, which is passed to the defect repair, inspection
activity behavior, etc. Therefore, we selected these software
ecosystems to verify the productivity model.

Before verification, the ecosystems and their produc-
tivity data in these platforms were determined. In the Stack
Overflow, the information is in questions and answers.
Therefore, the number of questions and answers represent
productivity. In the Bugzilla, the user’s contribution starts
from the bug report to the bug repair. Therefore, the pro-
ductivity is represented by the number of reports. Then, the
ecosystems on the platform were divided. According to the
characteristics of the platform, users in Stack Overflow

usually gather with different technical fields. Therefore, Stack
Overflow was divided according to the programming lan-
guage. In Bugrzilla, there are five types of projects, so the
ecosystems were divided in terms of project types.

Then, we determined the activity factor of these eco-
system models according to the method in Section 4.3. First,
the correlation between productivity and the number of
participants was analyzed. It was found that, on the Stack
Overflow, the productivity is highly positively correlated
with the number of participants. The lowest correlation was
0.88 and the highest was 0.995. On the Bugzilla, there was
also a positive correlation between productivity and par-
ticipants with a maximum of 0.94 and a minimum of 0.65.
Then, according to the method in 4.3, regression analysis
and truth discovery were used to adjust the productivity
model parameters of the corresponding platform. Finally,
the model was verified. On the Stack Overflow platform, the
ecosystem of HTML language was selected to verify the
model. On the Bugzilla platform, we chose the ecosystem of

http://www.mozilla.org
http://www.mozilla.org

12

the single software product Firefox for verification. The
result was shown in Figure 5.

The correlation between the model productivity and real
productivity of the two platforms was well over 90%. This
result verified that the proposed model of software eco-
system productivity is applicable to other platforms. It was
proved that the model is able to represent the software
ecosystem productivity. And it was also found that, in the
software ecosystem, the transition from primary produc-
tivity to secondary productivity takes time. It took some
collaboration with other users to convert primary produc-
tivity to secondary productivity. Therefore, the prediction of
secondary productivity was not very good in the first and last
few months.

7. Discussion and Conclusions

Based on the definition of natural ecosystem productivity,
this paper proposed a definition of software ecosystem
productivity. Analogous to the primary and secondary
productivity of natural ecosystems, this paper decomposed
software ecosystem productivity into primary and secondary
productivity according to the different impacts of user ac-
tivities on ecosystems. Also, the productivity was quantified
in different software ecosystems. According to the source of
productivity, this paper put forward the view that the
number, scale, and activity of participants play the most
direct and important role in ecosystem productivity. In the
process of verifying the relationship between the number
and activity of participants and the productivity of software
ecosystem, we found that primary productivity is highly
correlated with the number of participants, while secondary
productivity was less correlated with the number of par-
ticipants. This paper presented a model of software eco-
system productivity. The validity of the model was verified
by experiments.

In this paper, the relevant factors of software ecosystem
productivity and the composition model were studied,
hoping to provide help for further software ecosystem re-
search, software ecosystem health measurement, develop-
ment efficiency measurement, and so on. This paper
researched the impact of indirect factors such as user reviews
and external environmental factors on software ecosystem
productivity. However, this paper analyzed the number and
activity of users as the factors influencing software ecosystem
productivity, which is not comprehensive enough.

Some threats affect the validity of the measurement
methods proposed in this paper, including external threats
and internal threats. The main external threat is the validity
of datasets. In this work, parameters of this model were
obtained through data analysis. Therefore, the quality of this
model is determined by the quality of the used dataset. In
this paper, the verification datasets of Stack Overflow and
Bugzilla were dumped from their platforms, and the GitHub
datasets were obtained through the data service GitHub API
V3. The small ecosystem and little data will lead to inaccurate
acquisition of parameters in the model, which will threaten
the validity of the conclusion. The internal threat is that the

Scientific Programming

model only considers the number of users and the impact of
user activities on productivity. However, there may be other
factors affecting the accuracy of the model. Due to the
characteristics of the large amount of data used in building
the model, the characteristics of some specific projects in the
ecosystem may have been ignored. And this model considers
the productivity of the software ecosystem from a quanti-
tative rather than qualitative perspective, ignoring the im-
pact of different events on the ecosystem. For example, in the
project-level ecosystem, some core developers frequently
submit code during the observation period. It will threaten
the validity of the conclusion.

In future work, we plan to validate the adaptability and
reliability of the model in other open source websites and to
analyze and verify other factors affecting software ecosystem
production, such as the language of projects and life length
of projects. It is clear that language affects the willingness of
users to contribute to the ecosystem. Also, we consider the
use of neural network to improve the model, especially
robust multilayer extreme learning machine [20] and plan to
use a visualization method [21] and develop a tool to show
the impact of various factors in the ecosystem on its pro-
ductivity and the evolution of the open source software
ecosystem.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by Ministry of Science and
Technology: Key Research and Development Project
(2018YFB003800), Hunan Provincial Key Laboratory of Fi-
nance and Economics Big Data Science and Technology
(Hunan University of Finance and Economics) (2017TP1025),
China NSF (61876190 and HNNSF 2018]J2535), and Funda-
mental Research Funds for the Central Universities of Central
South University (2019zzts150).

References

[1] K. Manikas and K. M. Hansen, “Software ecosystems - a
systematic literature review,” Journal of Systems and Software,
vol. 86, no. 5, pp- 1294-1306, 2013.

[2] K. Ma, H. Kong, M. Guan, and B. Fu, “Ecosystem health
assessment: methods and directions,” Acta Ecologica Sinica,
vol. 21, no. 12, pp. 2106-2116, 2001.

[3] K. Manikas and K. M. Hansen, “Reviewing the health of
software ecosystems-a conceptual framework proposal,” in
Proceedings of the Fifth International Workshop on Software

Scientific Programming

Ecosystem (IWSECO-2013), vol. 987, pp. 26-37, Potsdam,
Germany, May 2013.

[4] S. Jansen, “Measuring the health of open source software
ecosystems: beyond the scope of project health,” Information
and Software Technology, vol. 56, no. 11, pp. 1508-1519, 2014.

[5] D. G. Messerschmitt and C. Szyperski, Software Ecosystem:
Understanding an Indispensable Technology and Industry,
MIT Press Books, Cambridge, MA, USA, 2003.

[6] M. Chen, Y. Li, X. Luo, W. Wang, L. Wang, and W. Zhao, “A
novel human activity recognition scheme for smart health
using multilayer extreme learning machine,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 1410-1418, 2019.

[7] M. Iansiti and R. Levien, “Keystones and dominators: framing
operating and technology strategy in a business ecosystem,”
Harvard Business School Working Paper, vol. 03-061, 2004.

[8] J. Gamalielsson, B. Lundell, and B. Lings, “Responsiveness as a
measure for assessing the health of oss ecosystems,” in Pro-
ceedings Of the 2nd International Workshop On Building
Sustainable Open Source Communities (OSCOMM 2010),
IFIP, Notre Dame, IN, USA, June 2010.

[9] S. Amorim, J. D. McGregor, E. S. Almeida, C. Flach, and
G. Chavez, “The architect’s role in software ecosystems
health,” in Proceedings Of the 2nd Workshop On Social,
Human, and Economic Aspects Of Software (WASHES’17),
DBLP, Salvador, Brazil, May 2017.

[10] V. Berk, L. V. Den, S. Jansen, and L. Luinenburg, “Software
ecosystems: a software ecosystem strategy assessment model,”
in Proceedings Of the 4th Software Architecture, European
Conference (Ecsa), Companion Volume DBLP, DBLP,
Copenhagen, Denmark, August, 2010.

[11] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch,
“QuESo a quality model for open source software ecosys-
tems,” in Proceedings Of the 9th International Conference On
Software Engineering and Applications (ICSOFT-EA),
pp. 209-221, Vienna, Austria, August 2014.

[12] Z. Liao, L. Deng, X. Fan et al., “Empirical research on the
evaluation model and method of sustainability of the open
source ecosystem,” Symmetry, vol. 10, no. 12, 2018.

[13] Z.Liao, M. Yi, Y. Wang et al., “Healthy or not: a way to predict
ecosystem health in GitHub,” Symmetry, vol. 11, no. 2, p. 144,
2019.

[14] Z. Liao, B. Zhao, S. Liu et al., “A prediction model of the
project life-span in open source software ecosystem,” Mobile
Network Application, vol. 24, no. 4, pp. 1382-1391, 2019.

[15] F.Jing and C. A. Ping, “Implications and estimations of four
terrestrial productivity parameters,” Acta Phytoecologica
Sinica, vol. 25, no. 4, pp. 414-419, 2001.

[16] X. Luo, J. Sun, L. Wang et al., “Short-term wind speed
forecasting via stacked extreme learning machine with gen-
eralized correntropy,” IEEE Transactions on Industrial In-
formatics, vol. 14, no. 11, pp. 4963-4971, 2018.

[17] J. B. Wang, J. Y. Liu, and Q. Q. Shao, “Spatial-Temporal
patterns of net primary productivity for 1988-2004 based on
Glopem-Cevsa model in the "Three-River Headwaters’ region
of Qinghai province, China,” Chinese Journal of Plant Ecology,
vol. 33, no. 2, pp- 254-269, 2009.

[18] X.Zhang, X. Pan, and M. Lu, “Meshless weighted least-square
method,” Acta Mechanica Sinica, vol. 17, no. 3, pp. 270-282,
2003.

[19] Q.Li, Y. Li, J. Gao et al., “Resolving conflicts in heterogeneous
data by truth discovery and source reliability estimation,” in
Proceedings Of the 2014 ACM SIGMOD International Con-
ference On Management Of Data, pp. 1187-1198, Snowbird,
UT, USA, June 2014.

13

[20] X. Luo, Y.Li, W. Wang, X. Ban,].-H. Wang, and W. Zhao, “A
robust multilayer extreme learning machine using kernel risk-
sensitive loss criterion,” International Journal of Machine
Learning and Cybernetics, vol. 11, no. 1, pp. 197-216, 2020.

[21] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Ex-
ploring the characteristics of issue-related behaviors in
GitHub using visualization techniques,” IEEE Access, vol. 6,
pp. 24003-24015, 2018.

