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Infectious diarrhea has high morbidity and mortality around the world. For this reason, diarrhea prediction has emerged as an
important problem to prevent and control outbreaks. Numerous studies have built disease prediction models using large-scale
data. However, these methods perform poorly on diarrhea data. To address this issue, this paper proposes a parsimonious model
(PM), which takes historical outpatient visit counts, meteorological factors (MFs) and Baidu search indices (BSIs) as inputs to
perform prediction. An experimental evaluation was done to compare the short-term prediction performance of ten algorithms
for four groups of inputs, using data collected in Xiamen, China. Results show that the proposed method is effective in improving
the prediction accuracy.

1. Introduction

To keep up with the pace of income growth, urbanization,
and globalization, risk management of infectious diseases in
public has become a critical task [1]. Infectious diarrhea (ID)
[2] is one of the most common infectious diseases in the
world, which infects more than 1 billion persons. It became
the 37th legally notifiable disease in the China’s National
Notifiable Disease Reporting and Surveillance System, and
any new case must be reported within 24 hours of diagnosis
[3].

Early warning techniques [4] have been developed to
monitor the status of infectious diseases and the demand for
healthcare and health services. *ese techniques can support
decision making for medical intervention strategies [5], by
preinforming people, health service providers, and the
government.

*e problem of predicting upcoming diarrhea outpa-
tient visits can be viewed as time series prediction problem.
In past decades, numerous studies have used autore-
gression (AR), autoregressive integrated moving average

model (ARIMA), and machine learning methods to predict
upcoming values based on past observations. *e widely
used machine learning methods are multiple linear re-
gression (MLR), support vector regression (SVR), and
random forest regression (RFR) [6–8]. A famous autore-
gression method is that of Box and Jenkins [9], which has
been applied in many fields [10], such as for electricity load
forecasting and stock price prediction. Another famous
statistical method is spline interpolation [11], which learns
and uses a cubic spline interpolation to predict future
values. But the performance of these methods degrades
when dealing with nonstationary and chaotic time series,
such as those of diarrhea outpatients.

Recently, to alleviate the uncertainty of a time series,
exogenous data have been collected and fused into machine
learning methods to achieve better predictions [12–14].
Hereto, the methods using exogenous data are called NARX
[15]. According to the structure of NARX, we categorize
them into wide models and deep models.

A wide model commonly builds more than two com-
ponents in a layer. To capture the sequential features of a
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time series, a recurrent neural network (RNN) [16] is
adopted to process exogenous data. To discriminatively
process exogenous data and historical observations, the
encoder-decoder framework [17] is introduced to undertake
predictions. Meanwhile, the gated recursive unit (GRU) [18]
is used to replace RNN in the framework, which captures
long- and short-term memory (LSTM) [19]. Moreover, an
attention mechanism is designed to adjust the values of
exogenous inputs and historical inputs in the stage of
encoding and decoding, respectively [20–22].

*e deep model consecutively connects components
from inputs to outputs using more than two neural network
layers. For example, DL4Epi in [23] consists of a CNN layer,
a RNN layer, and a residual link layer. DilatedRNN in [24]
dilated three RNN layers from input to predict glucose
incidence rate. TPA-LSTM in [25] uses a temporal pattern
attention layer to deepen a model as well.

However, not only wide models but also deep models
suffer from the problem of needing numerous samples.
Given a time series of weekly or monthly diarrhea outpa-
tients, the number of training samples is usually in hun-
dreds. If a model has lots of parameters and the training
samples are few, the learned model has a poor generalization
performance. In the following, we call a model having many
parameters a heavy model. In reality, heavy models re-
member almost the training samples and thus perform
poorly for predicting unknown inputs.

How to build a parsimonious model, which has few
parameters and learns from hundreds of samples? Obser-
vations about from previous models reveal that models
assign weights to input elements, and then weights are
passed and transformed into the target. Can the weights of
elements be reduced? Can the reduced weights be passed to
the output?

To address the issues, we propose a parsimonious model
(PM). *e proposed model first assigns a vector to each
input dimension, and then the vectors are connected to the
target.

*e rest of this paper is organized as follows. Section 2
briefly introduces the study area and data sources. Section 3
illustrates the defined problem and presents the proposed
method. Section 4 describes the experimental setting and
related benchmarks. Section 5 compares different methods
and analyses their sensitiveness. Finally, a conclusion is
drawn in Section 6.

2. Study Materials

*is section first introduces the study area, i.e., Xiamen city.
*en, it briefly describes meteorological factors and search
behavior in this city using basic descriptive statistics.

*e basic statistical variables of inputs and the target are
listed in Table 1.

*e reasons for choosing meteorological factor (MF)
data and Baidu search index (BSI) data as exogenous data are
that those data are significantly correlated to the infectious
diseases. MF data have been proved to be associated with the
incidence of infectious diseases [26, 27], such as ID and
“hand, foot, and mouth disease” (HFMD). As an important

entrance for users to obtain digital information resources on
the Internet, the search engine provides lots of useful in-
formation. *e search index of specific keywords directly
reflects the social attention on infectious diseases [28–30].
Hence, MF data and BSI data are considered as exogenous
inputs to models.

In order to determine the relationships between ex-
ogenous variables and the target variable, the Person
correlation coefficient (PCC) values are figured out in the
last column of Table 1. All of the exogenous factors are
significantly correlated to weekly outpaitent counts except
weekly maximum temperature. Hmax is used as an im-
portant input, since humidity is considered as an important
factor [27].

2.1. Study Areas. Xiamen is a developing city, which has a
population of around 4 million permanent residents and
around 4 million temporary residents as of 2018. It is an
important special economic zone in China since 1980 and is
located in southeast China. It covered a land area of
1,699.39 km2and a sea area of over 390 km2 in 2017. Xiamen
has a monsoonal humid subtropical climate, characterised
by long, hot, and humid summers (but moderate compared
to much of the rest of the province) and short, mild, and dry
winters, and the annual mean temperature is 20.7°C [31].

Herein, the detailed population from 2012 to 2016 is
listed in Table 2 as a background for this study. *e annual
growth of its population is between 1.3% and 2.1%, which is
relatively stable. Morbidity and mortality are influenced by
disease trends within a period. Meanwhile, infectious di-
arrhea is the most common infectious disease. Hence, the
number of infectious diarrhea outpatient visits is key to
monitor the status of infectious diseases in a city.

2.2.Meteorological Factor (MF). *eMFdata from January 1,
2012, to December 31, 2016, were collected from Weather
Underground (http://www.wunderground.com), which is a
popular personal weather website. *ose data from meteo-
rological monitoring sites provide globally comprehensive,
timely, and reliable meteorological data. At the moment, this
website provides web-based application program interfaces for
users to download data or develop third-party applications.

*e provided weather information is formatted in days.
We calculate 261 weekly weather information pairs by those
daily records. *e selected weather information in weeks
consists of 12 factors, e.g., highest temperature (°C), average
dew point (°C), lowest atmospheric pressure (hPa), and
average relative humidity (%). *us, we get 12 groups of
exogenous data to describe weather conditions.

2.3. Baidu Search Index (BSI). Baidu is the most widely used
search engine (http://index.baidu.com) in China, and it is
also the largest Chinese search platform. People in Xiamen,
China, are accustomed to using that search engine as well.
Baidu search index records the search volume of many
terms, which are queried by users since January 2011, and it
is publicly available. BSI has been used to monitor the
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incidence of influenza epidemics [33], analyse regional in-
fectious diseases, and perform real-time monitoring and
prevention [28].

A major concern to acquire query data (search indices)
is to find proper query words [29], which reflects user
behavior about searching for infectious diarrhea. *e en-
gine returns daily counts of a given keyword, which can be
conditioned by a region and a platform. Six time series of
each query word are downloaded by choosing a region
from {Xiamen, countrywide} and a platform from {mobile,
PC, total}, respectively. *ose data pairs are calculated in
weeks. We have six groups of search indices, and they are
used as exogenous data for each keyword. A correlation
coefficient analysis is carried out on those input indices and
target output (i.e., the number of cases). We found that the
indices of the keyword “腹泻” (i.e., ID) have significant
correlation, while others do not. Hence, we adopt the six
group indices as inputs of models.

3. Approach

*is section first defines the problem of time series pre-
diction using exogenous data and then introduces data
preprocessing and postprocessing. Finally, the proposed
method is presented.

3.1. ProblemFormulation. *e epidemic prediction problem
can be viewed as a time series forecasting task [10]. A time
series is defined as a sequence of observation values with
consecutive identical interval lengths.

Let yt ∈ R1 denote the observation measured at time t

and xt ∈ Rn denote the exogenous data measured at time t,
where n is the number of input series. Furthermore, let T be a
time window size.*e known exogenous series with window
size T is symbolized as [x1, x2, . . . , xT], and the historical
target observations are denoted as [y1, y2, . . . , yT].

*e goal is to predict the value of a future time point
􏽢yT+1, given historical observations and exogenous series. In
detail, a nonlinear mapping F(·) is applied into the pre-
dictive formula:

􏽢yT+1 � F y1, y2, . . . , yT, x1, x2, . . . , xT( 􏼁. (1)

Moreover, let X � (x1, x2, . . . , xT) denote the available
training data in a time-span of size T and y � (y1, y2, . . . ,

yT) be the recent historical outpatient visit counts.

3.2. One-Step Forward Split and Normalization

3.2.1. One-Step Forward Split. A time series cannot be di-
rectly used as input of regression models. Hence, we conduct
one-step forward split to transform a time series to super-
vised data. *e formula of the one-step split is shown as
follows:

y1 y2 · · · yT x1 x2 · · · xT

y2 y3 · · · yT+1 x2 x3 · · · xT+1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

yM− T− 1 yM− T · · · yM− 1 xM− T− 1 xM− T · · · xM− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⟶

yT+1

yT+2

⋮

yM
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

Table 2: Summary of the population in Xiamen [32].

Year Population (million) Population growth rate (%)
2012 3.67
2013 3.73 1.6
2014 3.81 2.1
2015 3.86 1.3
2016 3.92 1.6

Table 1: Basic statistical characteristics of exogenous time series and infectious outpatient visits (261 samples).p 0.01

Symbols Parameter (unit)
Range

Mean Median STD PCC
Min Max

Tmax Maximum temperature (°C) 14 39 29.21 31 5.64 − 0.342∗∗
Tmin Minimum temperature (°C) 1 27 16.9 18 6.54 − 0.304∗∗
Tavg Average temperature (°C) 9.29 31.29 22.32 23.14 6.03 − 0.317∗∗
Dmax Maximum dew temperature (°C) 9 29 22.32 23 4.94 − 0.385∗∗
Dmin Minimum dew temperature (°C) − 12 24 10.57 11 9.32 − 0.345∗∗
Davg Average dew temperature (°C) 3.57 26.71 17.47 18.14 6.54 − 0.393∗∗
Hmax Maximum relative humidity (%) 69 100 98.33 100 4.25 − 0.092
Hmin Minimum relative humidity (%) 9 70 39.78 42 13.59 − 0.372∗∗
Havg Average relative humidity (%) 52.14 94.71 75.18 75.43 9.5 − 0.339∗∗
Amax Maximum atmospheric pressure (hPa) 1004 1037 1018.84 1019 7.12 0.381∗∗
Amin Minimum atmospheric pressure (hPa) 964 1021 1007.3 1008 7.46 0.392∗∗
Aavg Average atmospheric pressure (hPa) 998.1 1026.6 1013.56 1013.7 6.63 0.342∗∗
Bp,c BSI of “腹泻” in PC, China (count) 1953 6000 3804.34 3584 998.43 − 0.181∗∗
Bm,c BSI of “腹泻” in mobile, China (count) 5764 9121 6415.20 6328 447.32 − 0.241∗∗
Bt,c BSI of “腹泻” in total, China (count) 7971 12500 10219.53 10046 978.45 − 0.325∗∗
Bp,x BSI of “腹泻” in PC, Xiamen (count) 0 440 311.03 303 85.07 − 0.323∗∗
Bm,x BSI of “腹泻” in mobile, Xiamen (count) 0 515 307.31 430 205.63 − 0.348∗∗
Bt,x BSI of “腹泻” in total, Xiamen (count) 0 925 618.34 683 194.09 − 0.324∗∗
Cd Infectious diarrhea outpatient visits (case) 15 349 69.7 52 50.03 —
“STD” denotes standard deviation. ∗∗ indicates that p value is less than 0.01, which means significant correlation.
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where M is the length of inputted time series and T is the
window size.

3.2.2. Normalization. It is a process of rescaling the data
from the original range so that all values are within a given
range [34], usually within 0 and 1 or 0.05 and 0.95. Both
min-max normalization and standard (i.e., z-score) nor-
malization methods are commonly applied to normalize
time series data.

Min-max normalization scales data in the [0, 1] interval
by using the bounds of the minimum and maximum values.
Standardizing a dataset involves rescaling the distribution of
values, so that the mean of observed values is 0 and the
standard deviation is 1. *e mean and standard deviation
estimates of a dataset can be more robust to new data than
the minimum and maximum.

We choose standard normalization to rescale inputs and
the target, since we regard the outpatient visit counts as
Gaussian distribution, and the standardization fits a
Gaussian distribution well. *e standard normalization of
inputs is formulated and recovered as

d′ �
d − μ(d)

σ(d)
,

d � d′ · σ(d) + μ(d),

(3)

where d ∈ RM denotes a feature of observed samples, M is
the number of observed samples, d′ is the normalized data,
μ(d) is the mean value of d, and σ(d) is the standard
variation of d. *e recovered formula is applied on model
outputs in the postprocessing stage. Because normalization
is only applied on exogenous data, the recovery action can be
skipped while generating predictions.

3.3. Parsimony Model (PM). *e diagram of the proposed
PM is shown in Figure 1. *is diagram consists of three
stages: data preprocessing, PM, and postprocessing. In the
preprocessing stage, the exogenous time series is normalized
and combined with target time series to split the supervised
data using one-step forward. In the PM processing stage, a
parameter layer is exploited to extract pattern features from
heterogeneous inputs. *e outputs of the model are gen-
erated by linear summarization of the intermediate state
result.

*e left bottom part of Figure 1 gives toy examples of the
structure of the parsimonious method with respect to inputs
and weights. *e yellow solid circle denotes exogenous
inputs, such as meteorological factor or Baidu search index.
*e blue solid rectangle denotes historical observed out-
patient visits, and red solid rectangle is the target. *e yellow
solid rectangles are weights to be learned. *e goal is to
reduce these complex models and find a parsimonious
model to learn and predict well on the diarrhea data
collections.

*erefore, the weights of the first layer in a neural
network are exploited to reconsider model structures. *e
left bottom part of Figure 1 gives inputs of exogenous data
(i.e., MF, BSI, orMF+BSI) and historical cases, and the right

part indicates the weights and connections among them
(arrows between circles and rectangles). *e two following
definitions are introduced to provide clearer explanations.

Definition 1. A weight is assigned to each input element.
Definition 1 is formulated as follows:

F1(W, [X; y])⟶ 􏽢yT+1, (4)

where [X; y] ∈ R(n+1)×T is the input of a given sample (i.e.,
input matrix), 􏽢yT+1 is the target of this sample, which means
the outpatient visit counts of the upcoming week,
W ∈ R(n+1)×T is the weight corresponding to the inputs (i.e.,
weight matrix), and F1 is a linear or nonlinear mapping from
input and weight matrices to target.

Both wide models and deep models in the research field
of epidemic prediction are based on this definition. A wide
model processes X and y in different components. For
example, the encoder-decoder structure encodes X, passes a
code to the decoder, and the decoder processes the code and
y to make predictions. A deep model adds layers on the
sequence of W, such as CNN and RNN.

When learning with a small number of samples, the
number of samples is usually in hundreds, and these models
have a burden of parameter training. In reality, the number of
parameters is greater than the number of samples times the
number of exogenous factors. Hence, these trained models
would remember all the training samples and have a value of
loss close to 0, but they poorly predict upcoming events.

*erefore, the wide model and the deep model are
condensed into a light neural network by setting F1 as a
linear function or nonlinear function, such as sigmoid
function. But the condensed light neural network has many
parameters as well. *us, we try to use two vectors to restore
weight W in equation (4). *e aim is not only to have fewer
parameters during the training stage but also to obtain better
performance at the predicting stage.

Definition 2. A weight is assigned to each input dimension.
Definition 2 is formulated as follows:

F2 wr,wc, [X; y]( 􏼁⟶ 􏽢yT+1, (5)

where [X; y] ∈ R(n+1)×T is the input matrix, and 􏽢yT+1 is the
prediction target (i.e., the upcoming week outpatient
counts), wr ∈ Rn+1 and wc ∈ RT are the weights corre-
sponding to two input dimensions (i.e., weight vectors), and
F2 is a linear function or a nonlinear mapping from input
and weight matrices to the target.

*ere are limitations in accurately capturing the input
matrix of a sample solely on the basis of using two vectors,
whose lengths are the same as the size of input matrix. Hence,
we exploit two ways to recover W in equation (4) using wr

and wc: the addition method and the multiplication method.
For each element wij inW, it can be recovered using the

addition method. *e addition recovery formula is

􏽢wij � wri + wcj, (6)

where 􏽢wij is the recovered value, wri ∈ wr denotes the i-th
element of wr, and wcj ∈ wc denotes j-th element of vector
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wc, respectively. Equation (6) shows that a matrix can be
recovered by two vectors, which would reduce the training
parameters.

Another recovery method is the multiplication
method. For each element wij in W, it can be recovered
using the multiplication method. *e multiplication re-
covery formula is

􏽢wij � wri · wcj, (7)

where 􏽢wij is the recovered value, wri ∈ wr denotes the i-th
element of wr, and wcj ∈ wc denotes j-th element of vector
wc, respectively. Equation (7) shows that a matrix can be
recovered by two vectors, which would reduce the training
parameters as well.

To benefit the recovery effects from the bothmethods, we
add them together and get

􏽢wij � wri + wcj􏼐 􏼑 + wri · wcj. (8)

According to equations (8) and (5), we have

F2(
􏽢W, [X; y])⟶ 􏽢yT+1, (9)

where 􏽢wij ∈ 􏽢W. Lots of methods applied to equation (5) can
be used to equation (6) as well, whereas the goal of this paper
is trying to find a parsimony method to fit well with small-
scale datasets. Hence, F2 in equation (9) should be as simple
as possible.

We adopt the summarization and sigmoid activate
function to replace F2 and make it be simple. *e prediction
function is formulated as

􏽢yT+1←􏽘
T

j�1
􏽘

n+1

i�1
wri + wcj􏼐 􏼑 + wriwcj􏼐 􏼑sij, (10)

where sij ∈ [X; y] denotes the element in the i-th row and
j-th column of input matrix [X; y]. Equation (10) is called
the prediction function of the proposed PM.

4. Experimental Settings

*is section first describes the exogenous feature selection,
experimental settings, and relevant related work, which are
compared with our proposed method. Finally, an analysis of
the comparable results is provided.

4.1. Experimental Configuration. *e disease data collection
is divided into two subsets: the first part, from the 1st week of
2012 to the 52nd week of 2015, is used to build and train
model; the remaining part, from the 1st to the 52nd week of
2016, is utilized to assess the learned models.

All neural models are trained using the Adam optimizer
[35]. *e batch size is set to 32. *eir learning rate is set to
0.001, and mean squared error (MSE) is chosen as the loss
function. For RNN and LSTM, the number of hidden
neurons is set to {64, 128}.
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Figure 1: *e diagram of the proposed PM.
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We ran each method five times and reported the median.
*e optimal RMSE values of models at given T and input
data are in bold types. DA-RNN [20] and DL4Epi [23] have
been applied on the four groups of inputs, and they are not
converged in training stage. Hence, their results are not
listed and compared.

4.2. Evaluation Metrics. A number of performance evalua-
tion criterion have been employed to evaluate and compare
the performance of models, but there is a no uniform
standard. *erefore, we evaluate models based on error
metrics, which are commonly adopted in regression per-
formance evaluation.

*e evaluation criterion consists of the mean absolute
error (MAE), the root mean square error (RMSE), and the
coefficient of determination (R2). *ese metrics are
expressed as the following mathematical expressions:

MAE �
1
N

􏽘

N

i�1
(|y

i
T+1 − 􏽢y

i
T+1|),

RMSE �

������������������

1
N

􏽘

N

i�1
(y

i
T+1 − 􏽢y

i
T+1)

2
,

􏽶
􏽴

R
2

� 1 −

􏽘

N

i�1
(y

i
T+1 − 􏽢y

i
T+1)

2

􏽘
N

i�1y
2
i

,
(11)

where yi
T+1 is an actual value at week (relative time) i in the

test set, 􏽢yi
T+1is a predicted value at week (relative time) i,

yT+1 is the mean value in the test set, and N is the number of
weeks in the test period. *e model providing the smallest
MAE and RMSE and the largest R2 is considered to have the
best performance.

4.3. Comparable Methods. According to the type of input
variables, the prediction methods are categorized into
univariate models and multivariate models. We choose
models which can work with multiple inputs and unstable
series and keep ARIMA as a baseline.

4.3.1. Multiple Linear Regression (MLR). It is widely adopted
to model the connection between several independent
variables and dependent variables. *e prediction model of
MLR based on generalized MLR analysis formula is given
below:

􏽢yT+1 � wy
′ · y + b + ε

� 􏽘
T

i�1wy,i · yi + b + ε,
(12)

where wy ∈ RT and b are weights and bias to be learned, T is
the size of the historical data, ε represents the random error
term, and E(ε) � 0.

We extendMLR tomodel exogenous inputs and target as
follows:

􏽢yT+1 � wxy
′ · x1; x2; . . . ; xT; y􏼂 􏼃 + b + ε, (13)

where wxy
′ ∈ R(n+1)T×1 denotes weights of exogenous inputs

and historical data at past T time intervals.

4.3.2. Random Forest Regression (RFR). It is a CART [36]
method. It has been used to predict the death characteristics
of patients, postoperative prognosis of hepatocellular car-
cinoma, and other data [37]. Random forest regression
(RFR) consists of a collection of unpruned regression trees
using different bootstrap samples of the training data. In
each bootstrap sample, a random sample with replacement
and with the same length, some of the data are repeated, and
the left-out samples are called out of bag (OOB). In practice,
the number of trees ntrees and the size of the variable subset
nsubsets should be optimized to reach the ideal forest by
minimizing the OOB error. *e values of the parameters
ntrees and nsubsets were optimized simultaneously by using the
grid-search method ranging from 10 to 1000 (with step size
10) and from 1 to 9 (with step size 1), respectively. *e
parameter values which give the lowest RMSE of the OOB
data were selected as an indicator for the performance.

4.3.3. Support Vector Regression (SVR). It is a nonlinear
kernel-based regression method, which tries to find the best
regression hyperplane with smallest structural risk in a high
dimensional feature space. It has been used in many medical
related applications, such as diagnosis of the incidence of
infectious diarrhea [26]. *e relationship between input (or
inputs) and output is formulated as

􏽢yT+1 � wxy
′ · φ(y) + b,

􏽢yT+1 � wxy
′ · φ([X; y]) + b,

(14)

where ϕ(·) denotes kernel function, xt is a vector of inputs at
time t, and b is a bias term. Radial basis function expressed as
K(a, b) � exp(− |a − b|2/σ2) was used as a kernel function
because of its advantages and simple implementation only
one tuning parameter.

4.3.4. Gradient Boosting Regression (GBR). It is a powerful
regression model that enhances the decision tree model
using gradient boosting, which produces a regression model
by combining a series of weak prediction models [38].

GBR iteratively constructs decision trees, and the newly
added decision tree is trained according to the negative
gradient information of the loss function from the current
model. *e goal of GBR is to learn an optimal model F(x)

that minimizes 􏽐
n
i�1 L(yi, F(xi)) for a specified loss function

L(y, F(x)). *e optimal model F∗(x) of GBR can be cal-
culated as follows:

F
∗
([X; y]) � F0([X; y]) + v 􏽘

m

i�1
ρihi([X; y]), (15)

where F0(·) is the first built decision tree, m is the number of
iterations, v represents the shrinkage parameter that controls
the learning rate of GBR, hi(·) denotes the tree trained in the
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i-th iteration, and ρi is the weight of hi(·). *e generated
optimal model is used for testing.

4.3.5. Extreme Gradient Boosting Regression (XGBoost).
It is an improvement on the gradient boosting algorithm
[39]. XGBoost adds the regularization terms during the
decision tree construction phase. *e loss function is

L
(t)

� 􏽘
T

t

l(yt, 􏽢yt) + 􏽘
k

Ω fk( 􏼁, (16)

where 􏽢yt represents the prediction of the t-th training
sample and Ω is the regularization term. *e regularization
term is calculated as follows:

Ω(f) � cN +
1
2
λ|w|

2
, (17)

where N is the number of leaf nodes, w is the vector formed
by all leaf node values of the decision tree, and c and λ are
manually set parameters. Similar to GBR, the goal of
XGBoost is also to minimize the loss function. Besides,
XGBoost uses weight shrinkage and column sampling
techniques to resist overfitting.

4.3.6. Convolutional Neural Networks (CNN1d). CNN [40]
consists of convolutional layers that are based on the con-
volutional operation. Filtering with kernel window function
gives an advantage of image or series processing to CNN
architectures with fewer parameters, which are beneficial for
computing and storage [41–43]. *e basic convolution
operation is shown as follows:

s � relu x1; x2; . . . ; xT􏼂 􏼃
∗W( 􏼁, (18)

where s denotes mapped space and W denotes kernel. CNN
has been verified to have good accuracy results when applied
to pattern recognition [44].

4.3.7. Neural Network Regression (NNR). On account of the
neural network (NN) approximation and generalization
property, NN-based prediction is widely used. Recurrent
neural network is a type of deep neural network specially
designed for sequencemodelling [16].*emain idea of RNN
is to provide a weighted feedback connection between layers
of neurons and add time significance to the entire artificial
NN. But RNNmay face the problem of vanishing gradient or
gradient explosion during backpropagation. LSTM was
proposed by Hochreiter and Schmidhuber in [45].

We adopt a lite RNN model like NARX in [15], which
consists of an input layer, an RNN layer, and an output layer,
to test its performance.*e nonlinear sequential layer can be a
LSTM layer or a gated recurrent unit (GRU) [18] layer as well.

5. Experimental Results and Analyses

*is section presents the results of intensive experiments to
evaluate algorithms over four kinds of inputs and analyses
them. Figure 2 shows the performance of PM with varying

window size T. Figure 3 shows the evaluation results of all
the methods over all the inputs for all metrics. Figure 4 gives
the visual comparison of PM methods over four groups of
inputs.

5.1. Ae Impact of Window Size T. Parameter sensitivity is a
significant part of experimental analysis. In time series
prediction study, T is the most interesting parameter of time
delay. Different window sizes will affect the parameter
complexity and the overall prediction performance of the
methods. In addition, window size is an important indicator
to reveal the incubation period of infectious diseases.
*erefore, this study visualized the influence of different
window sizes on the proposed model. *e performance of
PM with varying window size T in terms of MAE, RMSE,
and R2 is plotted in Figure 2.

According to the results, when we vary T and keep other
parameters fixed, it is easily observed that the performance
of PM degraded when T increases from 4 to 20, and the
performance tends to get worse as the length of delay time
steps continues to increase. A possible reason is that the
longer lagged time delay leads to larger feature dimension of
the inputs, which causes an increase in the complexity of the
regression function in the training process and directly
influences the weighted parameter representation for small-
scale sample, resulting in the regression function unable to
accurately fit the input. By setting T � 4, we notice that PM
usually achieves the best performance, which possibly
suggests that the diarrhea infection cycle pattern lags about
four days in Xiamen. *is is an important artificial pa-
rameter required by the predictive model.

5.2. Ae Performance of Time Series Prediction. *e optimal
performance of the benchmark and proposed methods is
found at T � 4. Hence, the evaluation results of all the
comparable methods are shown in Figure 2 when T is fixed
at 4.

Several important observations are made about these
results:

(1) By benefiting from MF and BSI data, the PM model
obtains the best performance in terms of three
metrics

(2) *e performances of MLR and GBR are better than
some complex RNN methods, and ARIMA cannot
perform well under unstable time series

(3) CNN1d and RNN methods can achieve stable per-
formance when processing each type of inputs

(4) Both MF and BSI data can improve the prediction
accuracy of diarrhea outpatient counts in upcoming
weeks.

To demonstrate the effectiveness of PM, we compare the
performance of PM against some common methods for the
same prediction tasks. *e comparable experiments choose
MLR, GBR, RFR, SVR, and XGBoost as the representative of
the traditional methods and three other deep learning
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methods. *e deep learning methods include CNN, RNN
and LSTM with {64, 128} hidden nodes.

Comparing the performances of all the methods over the
four inputs, according to the results of predictions based on
historical cases, we can observe that the PM method shows
the best performance, and CNN1d, RNN, GBR, and MLR
also have good results. *e performance of MLR is better
than the performance of deep learning methods when the
inputs are solely on the basis of historical cases. A possible
reason is that the small-scale data collections cannot train
deep learning methods well, especially the LSTM method,
either overfitting or underfitting. According to the results of
predictions based on cases+BSI, we can observe that the
traditional m`ts that common learning methods cannot

extract sufficient features from high dimensional inputs to
predict the upcoming values. According to the results of
predictions based on historical cases and BSI, we can observe
that the performance of all the methods has degraded, which
suggests that too many missing values will greatly affect the
prediction performance of the model. However, PM has
ability to adapt to input and to deal with missing values,
which is significantly stronger than other models. According
to the the inputs are solely on the basis of predictions based
on cases+MF+BSI, we can observe that PM obtains the best
results. Compared to the CNN1d method, it is difficult for
traditional learning models to give stable performance with
exogenous inputs. *e prediction accuracy of the LSTM
method has a slight improvment when compared with MLR.
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Figure 2: *e performance of PM with varying window size T in terms of MAE, RMSE, and R2. (a) *e MAE of PM with varying T. *e
minimum value is found at T � 4 (see the red dashed line). (b) *e RMSE of PM with varying T. *e minimum value is found at T � 4 (see
the red dashed line). (c) R2 of PM with varying T. *e maximum value is found at T � 4 (see the red dashed line).
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*e prediction effect of the RNN method fluctuates sig-
nificantly. It is suggested that exogenous inputs can effec-
tively improve model performance, but it also related to the
adaptability of the model’s structure to exogenous inputs.

*ere are two potential reasons for the improvements in
the PM method. On the one hand, the RNN models only
consider the temporal dynamics of exogenous inputs. With
small-scale samples, these models cannot extract sufficient
features to predict the target. *e traditional machine

learning methods are easily converged and have worse
performance in predicting the upcoming values with ex-
ogenous inputs. A possible reason is that these methods
cannot capture the correlations among different compo-
nents of the inputs.*e proposed method has ability to learn
the interactions of different exogenous factors by intro-
ducing the weighted layers, which can effectively improve
model performance in small-scale data collections through
more concise feature representation. On the other hand, and
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Figure 3: Comparisons of eleven methods on four inputs in terms of three metrics. T is fixed at 4. Lower MAE and RMSE values and higher
R2 value indicate better performance. (a) MAE comparison on methods over inputs (the red dashed line denotes ARIMA). (b) RMSE
comparison on methods over inputs (the red dashed line denotes ARIMA). (c) R2 comparison on methods over inputs (the red dashed line
denotes ARIMA).
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two weights for each input element greatly decreases the
need of parameters, which can be updated by the training
process, and the two weighted vectors are adopted to learn
temporal weights and factor weights.

When compared with CNN1d, the proposed method
exploits the multiplication and addition of two vectors to
generate predictions instead of using a kernel matrix to
calculate the inputted 2d data to get output values. When T

is small, the convolution kernel of CNN has poor per-
formance, since the kernel size should smaller than input
size. Moreover, not only wide or deep models but also
machine learning models have abilities in overcoming

overfitting using decay weights (i.e., regularization items)
in their loss functions. *e key concern is that more pa-
rameters will lead to hard training on small-scale data
collections. *erefore, PM is more concise and effective,
which has better results and better adaption on broad
inputs.

Another considerable result is that the performance
differences in results among the methods are enlarged with
complicated inputs. For example, when only considering the
outpatient cases with T � 4, PM’s performance is similar to
other models. But the performance differences become
larger when fusing exogenous inputs, since the mined
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Figure 4: *e visualizations of real values and PM predictions. *e window size T is set to 4, where the best performance is found. *e red
dashed lines mark the significant differences, whose values follow the highest and lowest real values, respectively. (a) Real values vs. PM
predictions based on cases. (b) Real values vs. PM predictions based on cases +MF. (c) Real values vs. PM predictions based on cases + BSI.
(d) Real values vs. PM predictions based on cases +MF+BSI.
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patterns from heterogeneous data are more complex than
those found in only outpatient case data. PM has a better
ability to handle small-scale heterogeneous input data. *e
results of correlation experiments also show that it is
completely feasible to use exogenous factors to predict the
incidence of infectious diarrhea in Xiamen.

5.3. Ae Visualization Analysis of Predictions. In time series
prediction, it is sometimes more interesting to compare the
performance on capturing the so-called extreme events, e.g.,
an oscillation after a stable growth or decay, or a huge
sudden change during oscillations. *us, a visualization
comparing real values and PM predictions is presented in
Figure 4. *e red dashed lines mark the 10th and 23rd week,
whose values follow the highest and lowest real values,
respectively.

*e prediction of time series extreme events has been
proposed by previous studies [46]. We can see that the
number of outpatients peaked at 9th week and 10th week,
and their outpatient counts significantly dropped. In this
situation, PM models with BSI +MF fit the real value
better than other methods, which illustrates the ability of
weighted layers in summarizing the interactions of ex-
ogenous inputs, and the heterogeneous data fusion is an
effective method to improve prediction accuracy. *e
advantage is also retained in the method with MF and BSI.
It also should be noted that at 9th week, the number of
cases reaches the peak values, and MF effectively im-
proves the accuracy in this timestamp, which makes up
for the loss of accuracy of fusion of BSI and historical data
in the forecast at that time. Historical cases and MF have
slightly fluctuated at 13th week. By incorporating BSI
data, the influence of random disturbance in this time-
stamp is obviously reduced for prediction results. When
the value at 23rd week followed the lowest real value, the
performance of the PMmodel with all heterogeneous data
fusion is not stable.

Moreover, the predicted value using MF or BSI of 45th
week is obviously higher, and the situation is reflected in
the fusion of MF and BSI. A possible reason is that the
internal random disturbance of exogenous data has not
been completely eliminated in the preprocessing stage.
*erefore, the extreme weather conditions or special
events and degrade the prediction performance.

6. Conclusions

In this paper, we focus on predicting the number of in-
fectious diarrhea outpatient visits in the upcoming week. A
parsimonious model (PM) is proposed by condensing
previous prediction models. *e benchmarks of ten algo-
rithms with four groups of inputs show the advantage of our
method. It achieves better prediction performance by
consolidating MF data and BSI data.

In the future, we will try to investigate the prediction of
other cities and improve the robustness of PM in predicting
those cities. Moreover, the simultaneous forecast of multiple
cities would be our future research direction.
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