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With the growing popularity of unmanned aerial vehicles (UAVs) for consumer applications, the number of accidents involving
UAVs is also increasing rapidly. *erefore, motion safety of UAVs has become a prime concern for UAV operators. For a swarm
of UAVs, a safe operation cannot be guaranteed without preventing the UAVs from colliding with one another and with static and
dynamically appearing, moving obstacles in the flying zone. In this paper, we present an online, collision-free path generation and
navigation system for swarms of UAVs. *e proposed system uses geographical locations of the UAVs and of the successfully
detected, static, and moving obstacles to predict and avoid the following: (1) UAV-to-UAV collisions, (2) UAV-to-static-obstacle
collisions, and (3) UAV-to-moving-obstacle collisions. Our collision prediction approach leverages efficient runtime monitoring
and complex event processing (CEP) to make timely predictions. A distinctive feature of the proposed system is its ability to
foresee potential collisions and proactively find best ways to avoid predicted collisions in order to ensure safety of the entire
swarm. We also present a simulation-based implementation of the proposed system along with an experimental evaluation
involving a series of experiments and compare our results with the results of four existing approaches. *e results show that the
proposed system successfully predicts and avoids all three kinds of collisions in an online manner. Moreover, it generates safe and
efficient UAV routes, efficiently scales to large-sized problem instances, and is suitable for cluttered flying zones and for scenarios
involving high risks of UAV collisions.

1. Introduction

An unmanned aerial vehicle (UAV) or drone is a semiau-
tonomous aircraft that can be controlled and operated re-
motely by using a computer along with a radio link [1].
UAVs can be classified into different types based on their
design, size, and flying mechanism. Among the existing
types, the quadrotors or quadrocopters are particularly
popular because of their simple design, small size, low cost,
greater maneuverability, and the ability to hover in place. A
quadrotor uses two pairs of identical, vertically oriented
propellers of which one pair spins clockwise and the other
spins counterclockwise. Commercially available quadrotors
are increasingly been used in a variety of applications such as
monitoring and surveillance, search and rescue operations,
geographic mapping, photography and filming, wildlife
research and management, media coverage of public events,
remote sensing for agricultural applications, and aerial
package delivery [2–5]. Efficient and scalable solutions for

these applications require an online path generation and
navigation system for multiple UAVs.

UAVs are becoming increasingly popular. In the United
States, the Federal Aviation Administration (FAA) has
projected that the number of small hobbyist drones is
set to increase from an estimated 1.1 million in 2017 to
2.4 million by 2022 (https://www.faa.gov/news/updates/?
newsId�89870). With the growing popularity and use of
UAVs for consumer applications, the number of accidents
involving drones is also increasing dramatically. *e FAA
receives more than 100 reports every month of unauthorized
and potentially hazardous UAV activity reported by pilots,
citizens, and law enforcement (https://www.faa.gov/uas/
resources/public_records/uas_sightings_report/). In a re-
cent incident (https://www.bbc.com/news/uk-england-
sussex-46623754) that took place in the United Kingdom,
the runway at the London Gatwick Airport was shut down
for more than a day because two drones were spotted flying
repeatedly over the airfield. *e disruption affected about
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110,000 passengers on 760 flights as no flights were able to
take off or land. Such incidents on one hand show the
importance of educational and training programmes for
drone operators and stricter legislation for offenders, but on
the other hand, they also motivate the need for a collision-
free path generation and navigation system for UAVs.
Ensuring a hazard-free, safe UAV flight is also equally
important for indoor applications. *erefore, motion safety
of UAVs has become a prime concern for UAV operators. It
refers to the ability of the UAVs to detect and avoid colli-
sions with static and moving obstacles in the environment.
*e static obstacles include buildings, trees, and other
similar stationary items, while movable items (for example,
birds) are considered as moving obstacles.

Some of the commercially available quadrotors are ca-
pable of detecting and avoiding some obstacles. For example,
DJI’s Phantom 4 Pro (https://www.dji.com/phantom-4-pro)
uses five-directional sensors to provide obstacle detection or
sensing in five directions with a front and rear sensing range
of up to 30 meters and up to 7 meters for left and right sides.
However, its obstacle avoidance mechanism does not work
in all kinds of scenarios. In this work, we assume that each
UAV is equipped with an adequate obstacle detection ca-
pability and can successfully detect all static and dynamically
appearing, moving obstacles in its surroundings. *erefore,
the emphasis of this work is not on obstacle detection.
Instead, we focus on collision prediction and avoidance.

Multiple UAVs working in a cooperative manner can be
used to provide powerful capabilities that a single UAV
cannot offer [3]. *erefore, for larger and highly complex
applications and tasks which are either beyond the capa-
bilities of a single UAV or cannot be performed efficiently if
only a single UAV is used, multiple UAVs can be used
together in the form of a swarm or a fleet. In such scenarios, a
safe operation cannot be guaranteed without preventing the
UAVs from colliding with one another and with static and
dynamically appearing, moving obstacles in the flying zone.
*erefore, in the context of UAV swarms, ensuring motion
safety entails devising and implementing an online motion
path planning, coordination, and navigation system for
multiple UAVs with an integrated support for collision
prediction and avoidance.

*e problem of motion safety of UAVs is currently
attracting significant research attention. Some comprehen-
sive literature reviews on motion planning algorithms for
UAVs can be found in [6, 7]. *e main focus of these ap-
proaches is on an offline motion planning phase to plan and
produce UAV paths or trajectories before the start of the
mission. Augugliaro et al. [8] also presented a planned
approach that generates feasible paths ahead of time. LaValle
[9] and Karaman and Frazzoli [10] presented sampling-
based path planning algorithms. Silva Arantes et al. [11]
proposed a path planning approach for critical situations
requiring an emergency landing of a UAV. Dong et al. [3]
presented a software platform for cooperative control of
multiple UAVs. Bürkle et al. [12] proposed a multiagent
system architecture for team collaboration in a swarm of
drones. Ivanovas et al. [4] proposed an obstacle detection
approach for UAVs. de Souza [13] and de Souza and Endler

[14] presented an approach for movement coordination of
swarms of drones using smart phones and mobile com-
munication networks. *eir work focuses on the internal
communication of the swarm and does not provide a so-
lution for collision-free path generation.

In this paper, we present an online, collision-free path
generation and navigation system for swarms of UAVs. *e
proposed system uses geographical locations of the UAVs
and of the successfully detected, static and dynamically
appearing, moving obstacles to predict and avoid the fol-
lowing: (1) UAV-to-UAV collisions, (2) UAV-to-static-
obstacle collisions, and (3) UAV-to-moving-obstacle colli-
sions. It comprises three main components: (1) a complex
event processing (CEP) and collision prediction module, (2)
a mutually exclusive locking mechanism, and (3) a collision
avoidance mechanism. *e CEP and collision prediction
module leverages efficient runtime monitoring and CEP to
make timely predictions. *e mutually exclusive locking
mechanism prevents multiple UAVs from attempting to fly
to the same location at the same time. *e collision
avoidance mechanism tries to find best ways to prevent the
UAVs from colliding into one another with the successfully
detected static and moving obstacles in the flying zone. A
distinctive feature of the proposed system is its ability to
foresee potential collisions and proactively find best ways to
avoid the predicted collisions in order to ensure safety of the
entire swarm. In contrast to the existing works [3, 4, 6–16],
our proposed system does not depend on a planning phase
and produces efficient, collision-free paths in an online
manner.We focus on collision prediction and avoidance and
online path generation and navigation for swarms of UAVs.

We also present a simulation-based implementation of
the proposed system along with an experimental evaluation
involving a series of experiments and compare our results
with the results of four existing approaches [9–11, 17]. *e
results show that the proposed system successfully predicts
and avoids all three kinds of collisions in an online manner.
Moreover, it generates safe and efficient UAV routes, effi-
ciently scales to large-sized problem instances, and is suitable
for cluttered flying zones and for scenarios involving high
risks of UAV collisions. Our proposed navigation system, its
implementation, experiments, and results are not based on or
limited to a particular application of UAV swarms. Instead,
they are generic enough to be applicable to a wide range of
applications. *e work presented in this paper extends our
preliminary approach and results reported in [2].

We proceed as follows: Section 2 sets up the terminology
and context. *e proposed online, collision-free path gen-
eration and navigation system for UAV swarms is presented
in Section 3. In Section 4, we illustrate the main steps of our
proposed approach on a small example. Section 5 presents
some important implementation details along with the
experimental evaluation. Section 6 reviews important related
works. Finally, we present our conclusions in Section 7.

2. Preliminaries

*e proposed system not only provides support for online
collision prediction and avoidance, it also generates
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complete routes for all UAVs in the swarm. Unlike tradi-
tional motion path planning approaches that require that all
obstacles and their precise locations must be known before
the start of the mission, the proposed approach does not
assume any a priori knowledge of the obstacles. In other
words, we assume that the terrain of the flying zone is not
known beforehand.*erefore, the proposed system does not
make any assumptions on the number and locations of the
static and dynamically appearing, moving obstacles. It does
not require a preliminary, offline motion planning phase to
produce efficient routes for the UAVs. In our approach, the
drones take off from their start locations and fly uninter-
ruptedly towards their destinations until the proposed
system predicts a collision and triggers our collision
avoidance mechanism to prevent the predicted collision.
Since the proposed system uses geographical locations of the
UAVs to generate their paths and predict and avoid colli-
sions, it requires correct and precise location information of
all UAVs in the fleet. Imprecise and incorrect information
can result in longer paths, and in the worst case, some UAVs
can collide with other UAVs or with some static or moving
obstacles.

Let themission flying zone be represented by a finite set
of locations AREA � l1, l2, l3, . . . , lM􏼈 􏼉, where each loca-
tion li is represented as a point in a three-dimensional
space (x, y, z). In an outdoor mission, the dimensions
x, y, and z may correspond to latitude, longitude, and
altitude or elevation, respectively. To ensure a suitable
formation of the swarm, it is assumed that the distance
between any two consecutive locations in AREA is less
than or equal to the sensing range senr of the UAVs and
greater than or equal to the safe distance diss for the
UAVs. For example, the front and rear sensing range senr

of Phantom 4 Pro UAV is up to 30 meters. *erefore, if the
swarm comprises Phantom 4 Pro UAVs, the maximum
distance between any two consecutive locations
li, lj ∈ AREA| i≠ j should be less than or equal to 30
meters. *e safe distance diss for UAVs depends on their
maximum speed Sp, obstacle detection and processing
time Pt, and wireless communication latency Cl [13]. For
example, if two UAVs are found heading towards each
other at a maximum speed Sp of 5 meter per second each
and with an obstacle detection and processing time Pt of
0.5 seconds and a wireless communication latency Cl of
0.2 seconds, the safe distance diss can be estimated as

diss � 2 · Sp(2 · Cl + Pt), (1)

which yields 9 meters. *erefore, in this example, the
minimum distance between any two consecutive locations
li, lj ∈ AREA | i≠ j should be greater than or equal to 9
meters. As a simplification to the problem, we assume that all
consecutive locations in AREA are a uniform, fixed distance
apart from one another denoted as dis such that
diss ≤ dis≤ senr. Hence, the flying zone AREA can be viewed
as a three-dimensional grid. *is simplification allows faster
generation, comparison, and evaluation of solutions or UAV
paths. For clarity, important terminology and notation used
in this paper are summarized in Table 1.

Furthermore, let SWARM � d1, d2, . . . , dN􏼈 􏼉 be a set of
drones or UAVs in the swarm. *e static obstacles are
denoted as STA OBS � so1, so2, . . . , soO􏼈 􏼉. Similarly the
dynamically appearing, moving obstacles are represented by
the set MOV OBS � mo1,mo2, . . . ,moP􏼈 􏼉. Each drone
occupies a certain location in AREA. *e drones take off
from their start locations and fly towards their destination
locations. A drone route or path is a sequence of locations
from drone’s start location to drone’s destination location.
For a drone di, routei � 〈lin, . . . , lfin〉 such that ran(routei)⊆
AREA and where lin is the initial or start location and lfin is
the final or destination location of di. Similarly, each static
and moving obstacle occupies a certain location in AREA.
Moreover, the moving obstacles keep on moving arbitrarily
until they leave the flying zone.

We formulate three basic safety requirements (SRs) for a
swarm of drones:

SR1: ∀di ∈ SWARM,∀soj ∈ STA OBS, di does not
collide with soj

SR2: ∀di, dj ∈ SWARM|i≠ j, di and dj do not collide
with each other
SR3: ∀di ∈ SWARM,∀moj ∈ MOV OBS, di does not
collide with moj

Since the proposed system does not assume any a priori
knowledge on the numbers and locations of the static and
moving obstacles and does not depend on a preliminary,
offline motion planning phase, none of the SRs can be verified
before the start of the mission. For SR1 which concerns static
obstacles, it is necessary that the drones do not fly into a
location where a static obstacle is situated. Our proposed
system helps the drones to avoid all successfully detected static
obstacles in an online manner by providing efficient collision
prediction and collision avoidance mechanisms. Similarly, for
SR2which concerns collisions with other drones, it is required
that at any given time t, each location is occupied by at most
one drone. *e proposed system stops the drones from flying
into other drones in the vicinity. *e proposed mutually
exclusive locking and collision avoidance mechanisms pre-
vent the drones from flying into any locations occupied by
other drones at time t. For SR3which concerns collisions with

Table 1: Terminology and notation.

Notation Description
AREA *ree-dimensional flying zone
Cl Wireless communication latency
dis Distance between two consecutive UAVs
diss Safe distance for the UAVs
SWARM Swarm of drones
lfin Final or destination location of a UAV
li A location in AREA
lin Initial or start location of a UAV
MOV_OBS Set of moving obstacles
Pt Obstacle detection and processing time
routei A UAV route
senr Sensing range of the UAVs
Sp Maximum speed of the UAVs
STA_OBS Set of static obstacles
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dynamically appearing, moving obstacles, the proposed sys-
tem provides a similar approach as SR1 that helps the drones
to avoid all successfully detected moving obstacles in an
online manner.

3. Collision-Free Path Generation
and Navigation

Figure 1 presents a high-level system architecture and
overview of the proposed online, collision-free path gen-
eration and navigation system for swarms of UAVs. *e
main components of the proposed system include the fol-
lowing: (1) a CEP and collision prediction module, (2) a
mutually exclusive locking mechanism, and (3) a collision
avoidancemechanism.*e inputs to the system are the UAV
location updates, static obstacle detections, and moving
obstacle detections. Based on these three inputs, the CEP and
collision prediction module predicts: (1) UAV-to-UAV
collisions, (2) UAV-to-static-obstacle collisions, and (3)
UAV-to-moving-obstacle collisions. Our collision avoid-
ance mechanism tries to find best ways to avoid or bypass
collisions and computes collision-free routes for UAVs in an
online manner. In a densely populated and cluttered flying
zone, it might not be possible to immediately compute a
bypass route for all drones. In such scenarios, the proposed
systemmight put some of the drones into the hover-in-place
mode until the situation improves and the routes clear.
Additionally, it may also let some UAVs to temporarily
retreat or backtrack to find more suitable, collision-free
routes.

*e proposed system implements a safety-first approach.
*erefore, a hazard-free, safe operation of the swarm takes
precedence overall of the other objectives including lengths
of the UAV routes, timely arrival of the UAVs to their
destinations, and achievement of any other mission-specific
goals. As a consequence, we do not formulate the problem as
an optimization problem. Instead, we implement a sto-
chastic, greedy approach that tries to find safe and efficient
routes. *e UAVs take off from their start locations and fly
uninterruptedly towards their destinations until the CEP
and collision prediction module predicts a collision, in
which case our collision avoidance mechanism is invoked to
avoid the collision. In addition, our mutually exclusive
locking mechanism prevents multiple UAVs from
attempting to fly to the same location at the same time. At
each step, the proposed approach makes a stochastic, greedy
decision for each UAV. It tries to find a next location for
each UAV which is not only safe but also reduces the
distance from the destination. *e main components of the
proposed system are described in the following subsections.

3.1. Complex Event Processing and Collision Prediction.
Complex event processing (CEP) is a technique for real-
time, fast processing of a large number of events from one or
more event streams to derive and identify important
complex events and patterns in the event streams. CEP has
been successfully used in a variety of business domains
including retail management, health care, and cloud

computing [18, 19]. For example, in retail management, CEP
can be used to detect shoplifting and out-of-stock events.
*e basic or primitive events in CEP are processed into
complex or composite events by means of event processing
queries, which are written in a Structured Query Language-
(SQL-) like language. *erefore, CEP provides a similar
functionality for real-time event streams that a relational
database management system provides for persistent data.

One of the most widely used CEP tools is the Esper CEP
engine (http://www.espertech.com/esper/), in which the
event processing queries are written in the Event Processing
Language (EPL). *ere are three main steps for using the
Esper CEP engine:

(1) In the first step, event types and sources of events are
registered with the CEP engine. An event class in
Esper is written as a Plain Old Java Object.

(2) *e second step requires event processing queries to
be written in EPL.

(3) Finally, in the third step, event sinks are imple-
mented which can be used to perform some suitable
control and repair actions.

*e CEP and collision prediction module in our pro-
posed system uses a CEP engine tomonitor and keep track of
the current location of the UAVs and of the successfully
detected static and moving obstacles. Table 2 presents the
three types of events from the proposed system along with
their properties. *e UAVs generate and send location
update events on regular intervals, for example, every 50
milliseconds. A drone location event (DroneLocEvent)
contains the drone name of the concerned drone
di ∈ SWARM, drone location li in the three-dimensional
flying zone AREA, and the event time t. *e CEP engine
receives and processes these events to predict possible UAV-
to-UAV collisions in the swarm. Similarly, for each suc-
cessfully detected static obstacle, a static obstacle event
(SObsEvent) is generated and sent to the CEP engine. A
static obstacle detection event contains the obstacle name of
the static obstacle soi ∈ STA OBS and the location
li ∈ AREA of the static obstacle. *e CEP engine processes
all UAV location update events and static obstacle detection
events to predict UAV-to-static-obstacle collisions. Finally,
for successfully detected moving obstacles, moving obstacle
events (MObsEvents) are generated and sent to the CEP
engine. A moving obstacle detection event contains obstacle
name of the moving obstacle moi ∈ MOV OBS, the location
li ∈ AREA of the moving obstacle, and the event time t. *e
CEP engine processes UAV location update events and
moving obstacle detection events to predict UAV-to-mov-
ing-obstacle collisions.

*e proposed system implements three EPL queries to
process the three types of events and determine if a drone is
flying in a close proximity of another drone or a static or
moving obstacle. Listing 1 presents the first query. It uses
DroneLocEvents to check if two drones are in a close
proximity of each other. If a match is found, the CEP engine
triggers the concerned event sink, which may predict a
UAV-to-UAV collision and then invoke the collision
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avoidance mechanism to prevent the UAVs from colliding
into each other.


e second query in Listing 2 uses DroneLocEvents and
SObsEvents to determine if a drone is in close proximity of a
static obstacle. Similarly, the third query in Listing 3 uses
DroneLocEvents and MObsEvents to determine if a drone is
in close proximity of a moving obstacle. In each case, the
relevant event sink is triggered, whichmay predict a collision
and invoke the collision avoidance mechanism.

To predict the three di�erent kinds of collisions, the
event sinks use various parameters and rules. 
e param-
eters include the (current) locations of the drones and of the
static and moving obstacles and the desired next locations of
the drones. 
e collision prediction rules are presented in
Algorithm 1. Rule 1 states that a UAV-to-UAV collision is
predicted when the desired next location of a drone
di ∈ SWARM is the same as the current or the desired next
location of another drone dj ∈ SWARM | i≠ j. Similarly,
Rule 2 is used for predicting UAV-to-static-obstacle colli-
sions, which can occur if a drone di ∈ SWARM attempts to
�y to a location occupied by a static obstacle soj ∈ STA OBS.
Finally, Rule 3 states that a UAV-to-moving-obstacle col-
lision is predicted when the desired next location of a drone
di ∈ SWARM is the same as the current location of a moving
obstacle moj ∈ MOV OBS.

3.2. Mutually Exclusive Locking Mechanism. 
e CEP and
collision prediction module described in the previous sec-
tion covers most of the scenarios that can lead to a UAV
collision. However, since the UAVs may move fast and
arbitrarily, some failures and collisions can still occur. For
instance, during a mission, a location li ∈ AREA is free and
two UAVs di, dj ∈ SWARM | i≠ j concurrently decide to
move to li. If the CEP and collision prediction module takes
slightly longer to predict the UAV-to-UAV collision, the
collision avoidance mechanism might not be left with
enough time to prevent the collision. However, if the CEP

and collision prediction module quickly and correctly
predicts the collision, the collision avoidance module can
save the UAVs di anddj by allowing only one of them to
continue �ying to li. 
e other UAV will either be redirected
to another location or will fail to move in the current it-
eration. To prevent such scenarios and failures, we augment
our collision prediction approach with a mutually exclusive
locking mechanism.


e proposed system uses mutually exclusive locks on
the current and the immediate next locations of UAVs to
prevent multiple UAVs from attempting to move to the
same location at the same time. 
e lock state of each lo-
cation li ∈ AREA can be either locked or unlocked. 
e
current location of each UAV is always considered locked
for all other UAVs. Moreover, as soon as a UAV decides its
next move, the system puts a mutually exclusive lock on the
immediate next location of the UAV so that the other UAVs
do not attempt to move to the same location. Similarly, while
deciding about their next moves, the UAVs �rst check the
lock state of the possible next locations and only attempt to
move to some of the unlocked locations. Moreover, if
multiple UAVs d1, d2, . . . , dN ∈ SWARM concurrently at-
tempt to lock the same location, only one of them acquires
the lock. For scenarios involving very short time intervals,
the mutually exclusive locks may be acquired in one time
interval and the moves may be performed in the next time
interval. 
e UAVs release the locks of their previous lo-
cations as soon as they �y to their next locations.

Figure 2 illustrates the proposed locking mechanism. It
shows that a UAV always keeps a mutually exclusive lock for
its current location. Moreover, when deciding about a next
move, it �rst checks the lock state of all possible next lo-
cations. It then attempts to lock one of the unlocked lo-
cations. After successful locking of the next location, it
moves to the next location. Finally, it releases the lock of the
previous location. In this way, two or more UAVs never
attempt to move to the same location at the same time.

3.3.CollisionAvoidanceMechanism. Whenever the CEP and
collision prediction module predicts a collision, it invokes
our collision avoidance mechanism which tries to �nd best
ways to avoid the predicted collisions and computes colli-
sion-free routes for UAVs in an online manner. Based on the
severity of the predicted collision, its surroundings, and the
overall situation of the SWARM and of the successfully

CEP and
Collision

Prediction

Collision
Avoidance

UAV
Location
Updates

Static
Obstacle

Detections

Moving
Obstacle

Detections

Collision-
Free Paths

Mutually 
Exclusive
Locking

Mechanism

Figure 1: Overview of the proposed online, collision-free path generation and navigation system for swarms of UAVs.

Table 2: 
ree types of CEP events from the proposed system.

Event type Properties
DroneLocEvent Drone name di, drone location li, event time t
SObsEvent Static obstacle name soi, obstacle location li
MObsEvent Moving obstacle name moi, obstacle location li,

event time t
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detected static and moving obstacles (STA OBS and
MOV OBS) in AREA, our collision avoidance mechanism
uses one of the three collision avoidance techniques in the
following order: (1) redirecting the UAV into another di-
rection, (2) putting the UAV into the hover-in-place mode
until the route is cleared, and (3) temporarily retreating or

backtracking the UAV to explore some alternate collision-
free routes. *e pseudocode of the proposed collision
avoidance mechanism is given in Algorithm 2. Our back-
tracking approach is described in the following section.

*e first collision avoidance technique, namely, redi-
recting the UAV into another direction, means changing the

select A.droneName as aName, A.x as aX, A.y as aY, A.z as aZ,

B.droneName as bName, B.x as bX, B.y as bY, B.z as bZ, from

DroneLocEvent.win:time(1 sec) A, DroneLocEvent.win : time(1 sec)
B where A.droneName !� B.droneName and A.x in [B.x − 2 : B.x + 2]

and A.y in [B.y − 2 : B.y + 2] and A.z in [B.z − 2 : B.z + 2]
and (A.x� B.x or A.y� B.y or A.z� B.z)

LISTING 1: EPL query to determine if two drones are in a close proximity of each other.

select A.droneName as aName, A.x as aX, A.y as aY, A.z as aZ,

O.obstacleName as oName, O.x as oX, O.y as oY, O.z as oZ, from
DroneLocEvent.win : time(1 sec) A, SObsEvent.win : time(1 hour) O

where A.x in [O.x − 1 : O.x + 1] and A.y in [O.y − 1 : O.y + 1] and A.z in
[O.z − 1 : O.z + 1] and (A.x� O.x or A.y� O.y or A.z� O.z)

LISTING 2: EPL query to determine if a drone is in close proximity of a static obstacle.

select A.droneName as aName, A.x as aX, A.y as aY, A.z as aZ,
O.obstacleName as oName, O.x as oX, O.y as oY, O.z as oZ, from

DroneLocEvent.win : time(1 sec) A, MObsEvent.win : time(1 sec) O
where A.x in [O.x − 2 : O.x + 2] and A.y in [O.y − 2 : O.y + 2] and A.z in

[O.z − 2 : O.z + 2] and (A.x� O.x or A.y� O.y or A.z� O.z)

LISTING 3: EPL query to determine if a drone is in close proximity of a moving obstacle.

(1) {Rule 1}
(2) ∀di, dj ∈ SWARM | i≠ j, let li, lm ∈ AREA be the current and the desired next locations of di and similarly lj, ln ∈ AREA be the

current and the desired next locations of dj

(3) if lm � lj ∨ lm � ln ∨ ln � li then
(4) predict a UAV-to-UAV collision
(5) end if
(6) {Rule 2}
(7) ∀di ∈ SWARM,∀soj ∈ STA OBS, let lm ∈ AREA be the desired next location of di and lj ∈ AREA be the location of soj

(8) if lm � lj then
(9) predict a UAV-to-static-obstacle collision
(10) end if
(11) {Rule 3}
(12) ∀di ∈ SWARM,∀moj ∈ MOV OBS, let lm ∈ AREA be the desired next location of di and lj ∈ AREA be the current location of

moj

(13) if lm � ljthen
(14) predict a UAV-to-moving-obstacle collision
(15) end if

ALGORITHM 1: Collision prediction rules.

6 Scientific Programming



�ying direction of the UAV. For example, if a UAV is �ying
in the x dimension of AREA, but the CEP and collision
prediction module predicts a collision due to the presence of
an obstacle or another UAV on the path, then the UAV
cannot continue a hazard-free �ight in the x dimension any
more. 
erefore, the collision avoidance mechanism redi-
rects the UAV to �y in the y or z dimension so the UAVmay
be able to avoid the collision. However, in a densely pop-
ulated and cluttered �ying zone, the collision avoidance
mechanism might not be able to immediately compute a
bypass route for all drones. 
erefore, in such scenarios, the
proposed collision avoidance mechanism activates the
hover-in-place mode for some of the UAVs until the situ-
ation improves and the routes clear. Additionally and as a
last resort, it temporarily backtracks some UAVs to explore
some alternate collision-free routes. It should be noted that
all three collision avoidance techniques incur some over-
head, which might extend the routes and increase the �ight
durations for some of the UAVs. However, as explained
previously, this is inevitable for a safety-�rst approach.

3.4. Backtracking Approach. 
e proposed backtracking
approach temporarily retreats or backtracks a UAV, so it
may explore some alternate collision-free routes. As shown
in Algorithm 2, the proposed backtracking algorithm is
triggered in two situations: (1) if a UAV hovers for too long
or (2) if a UAV keeps on moving but it does not �nd a
suitable collision-free route to reach to its destination. In
densely populated, cluttered �ying zones, such situations are
not unprecedented. Sometimes, a UAV keeps on hovering or
moving near its destination, but it does not �nd a collision-
free route to reach to the destination because some other
UAVs or obstacles reside between the UAV and its desti-
nation location and thus obstructs the UAV’s routes. In such
situations, it is important to allow the UAV to temporarily
retreat or backtrack, so it may be able to explore some al-
ternate routes to reach to its destination.


e pseudocode of the proposed backtracking algorithm
is presented in Algorithm 3. 
e algorithm iterates until the
required number of backtrack steps is successfully

completed or the maximum number of backtrack attempts is
reached (line 9). In each iteration, it attempts to move the
UAV in the opposite direction of the UAV’s destination. It
randomly chooses one of the three dimensions (x, y, z) and
tries to move the UAV so that the distance from the des-
tination is increased. 
e backtrack algorithm does not
disable the CEP and collision prediction module and the
mutually exclusive locking mechanism. 
us, in each iter-
ation, the UAV either backtracks one step or if a collision
hazard is found or the UAV fails to lock the required lo-
cation, then it hovers at its current location. When the UAV
returns to the normal �ight mode (line 10), it explores some
alternate collision-free routes to reach to its destination.

4. An Illustrative Example

In this section, we present a small example to illustrate the
main components and steps of the proposed online, colli-
sion-free path generation and navigation system. Although
the proposed system works for a realistic, three-dimensional
�ying zone, it is di�cult to illustrate and demonstrate a
three-dimensional �ying zone on a paper. 
erefore, we use
a two-dimensional �ying zone for a simpler illustration.

Figure 3 presents an illustrative example with four
UAVs, two static obstacles, and four moving obstacles in a
two-dimensional �ying zone.
e �ying zone in our example
is shown as a 7× 7 grid, where all consecutive locations are a
uniform, �xed distance apart from one another. 
e start
and destination locations of each drone are also highlighted.

e goal is to route the drones from their start locations to
their destination locations while avoiding collisions with
static and moving obstacles and with the other drones in the
swarm.

It should be noted that the knowledge of the precise
locations of the obstacles in this example is only for illus-
tration purposes. As described previously, the proposed
system does not make any assumptions on the number and
locations of the static and moving obstacles in the �ying
zone. Similarly, although Figure 3(a) shows that all moving
obstacles are present in the �ying zone before the start of the

Check the lock state
of possible next

locations

Attempt to lock one
of the unlocked next

locations
Successful? Move to the next

location
Release the lock of

the previous location
Yes

No

Figure 2: 
e mutually exclusive locking mechanism.

(1) redirect the UAV into another direction
(2) if not successful then
(3) activate the hover-in-place mode until the UAV route is cleared
(4) end if
(5) if the UAV hovers for too long or if it takes too long to �nd a suitable collision-free route then
(6) temporarily backtrack the UAV to explore some alternate collision-free routes
(7) end if

ALGORITHM 2: Collision avoidance mechanism.
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(1) while the UAV is in the backtrack mode do
(2) randomly choose one of the three dimensions (x, y, z)
(3) attempt to move the UAV in the opposite direction of its destination
(4) if a collision-hazard is found or the required location is locked by another UAV then
(5) hover in place
(6) else
(7) backtrack the UAV by moving it one step away from its destination
(8) end if
(9) if the required number of backtrack steps is successfully completed or the maximum number of backtrack attempts is reached

then
(10) deactivate the backtrack mode and return to the normal �ight mode
(11) end if
(12) end while

ALGORITHM 3: Backtracking.
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Figure 3: Continued.

8 Scienti�c Programming



mission, in a realistic scenario, some moving obstacles (for
example, birds) may dynamically appear in the �ying zone
during the execution of the mission.

Figure 3(b) presents a snapshot of the �ying zone after
�ve time intervals have elapsed since the start of the mission.
It shows that each UAV started �ying from its start location
and �ew towards its destination location while randomly
choosing to �y in the horizontal or vertical dimension in
each time interval. Figure 3(b) also shows that the left most
moving obstacle from Figure 3(b) left the �ying zone during
the execution of the mission and that the remaining moving
obstacles moved to some new arbitrary locations within the
�ying zone. Although the moving obstacles moved in an
arbitrary fashion either horizontally or vertically, in �ve time
intervals each moving obstacle moved only one step, that is,
only to a next consecutive location in the �ying zone.

erefore, the moving obstacles moved slower than the
drones. 
is is a reasonable assumption because if the
moving obstacles move faster than the drones, even the most
advanced and fastest collision detection, prediction, and
avoidance mechanisms will not be able to avoid UAV-to-
moving-obstacle collisions.


e labelled, directional edges in Figure 3(b) show the
collision-free UAV routes generated by the proposed
system in an online manner. For example, in the top left
corner of Figure 3(b), the �rst downward edge labelled 1
means that UAV 1 �ew in the downward direction. Sim-
ilarly, the next edge in the same direction labelled 1, 2
shows that UAVs 1 and 2 used the same edge. However, two

UAVs using the same edge does not mean a UAV-to-UAV
collision. A UAV-to-UAV collision on an edge can happen
when two UAVs �y at the same edge at the same time. In
this example, UAV 1 and UAV 2 �ew on the same edge but
in di�erent time intervals. UAV 1 left the edge before UAV
2 arrived there, and hence, there was no collision hazard
between the two UAVs. Figure 3(b) also shows the current
locations of the UAVs after �ve time intervals. It can be
seen that all UAVs except UAV 3 �ew �ve steps. UAV 3
�ew four steps and then hovered in the �fth time interval
because the system could not �nd a collision-free move for
UAV 3.


e UAVs in Figure 3 used the proposed mutually ex-
clusive locking mechanism at each step. As described in
Section 3.2, each UAV �rst attempted to lock one of the
unlocked next locations. After successful locking of their
next locations, the UAVs moved to their next locations and
released the locks of their previous locations. 
erefore, at
any time, two or more UAVs did not attempt to move to the
same location in the �ying zone.

UAV 1 in Figure 3(b) started �ying vertically in the
downward direction and continued towards its destination
until it detected a static obstacle. At this stage, our CEP and
collision prediction module predicted a UAV-to-static-ob-
stacle collision and invoked our collision avoidance
mechanism, which redirected the UAV into the horizontal,
rightward direction, so the drone could continue �ying
towards its destination. However, in the same time interval,
UAV 3 tried to �y into the same location where UAV 1 was
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Figure 3: A simple illustrative example with four UAVs, two static obstacles, and four moving obstacles in a two-dimensional �ying zone.
(a) Before the start of the mission. (b) After �ve time intervals. (c) After the completion of the mission.
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headed. *e two UAVs detected each other, and the UAV
and collision prediction module predicted a UAV-to-UAV
collision. As a result, our collision avoidancemechanismwas
invoked, which tried to redirect UAV 3 in the vertical,
upward direction, but the UAV detected a moving obstacle
at that location, and the CEP and collision prediction
module predicted a UAV-to-moving-obstacle collision.
*erefore, the collision avoidance mechanism activated the
hover-in-place mode for UAV 3, but let UAV 1 to lock and
then move to the next location. Hence, UAV 3 flew only four
steps in five time intervals. In this example, UAVs 2 and 4
did not encounter a collision hazard and flew normally
towards their destinations. Moreover, none of the UAVs
hovered for too long or took too long to find a suitable,
collision-free route. *erefore, our backtracking algorithm
was not invoked.

Figure 3(c) shows a snapshot of the flying zone after the
completion of the mission. It shows that how each drone
found its way to its destination while avoiding obstacles
and other drones on its way. Once again, the remaining
three moving obstacles moved to some new arbitrary lo-
cations within the flying zone. In the sixth time interval,
UAV 1 was redirected in the downward direction to avoid a
collision with UAV 3. Similarly, after flying downwards for
two time intervals, UAV 1 reached the end of the flying
zone and was once again redirected to the horizontal,
rightward direction. Finally, after flying for a few more
intervals in the rightward direction, UAV 1 reached its
destination. As can be seen in Figure 3(c), all other UAVs
found their ways in similar ways.

5. Implementation and
Experimental Evaluation

To demonstrate and evaluate our proposed system, we have
developed a software simulator.*is section briefly describes
some important implementation details along with an ex-
perimental evaluation involving a series of experiments. We
also compare our results with the results of the following
four approaches:

(1) Particle Swarm Optimization- (PSO-) Based Ap-
proach. Sujit and Beard’s [17] PSO-based path
planning approach generates paths for a swarm of
drones.

(2) Greedy Heuristics and Genetic Algorithms (GAs)
Approach. Silva Arantes et al.’s [11] approach uses
greedy heuristics and GAs to generate and optimize
paths for a UAV under critical situations.

(3) Rapidly Exploring Random Trees (RRTs). A sampling-
based path planning algorithm proposed by LaValle
[9].

(4) RRT∗. An extension of RRT developed by Karaman
and Frazzoli [10] to plan optimal paths.

5.1. ImplementationDetails. *e implementation of the first
main component of the proposed system called the CEP and

collision prediction module is based on the Esper CEP
engine and Algorithm 1. *e second component, called the
mutually exclusive locking mechanism, implements the
proposed locking mechanism presented in Figure 2. Simi-
larly, the collision avoidance component implements
Algorithms 2 and 3.

We have implemented a simple, controlled simulation
platform that does not take into account complex physical
phenomena and uncontrolled environment variables such as
gravity and wind. *e objective is to test and evaluate the
proposed system in an ideal scenario while ignoring and
minimizing the effects of external uncontrolled factors.
*erefore, it is easier to analyze and interpret the results.*e
implementation assumes that all drones fly at the same speed
and that there were no internal drone failures during the
execution of the mission. We also assume that at least one
feasible path exists for each UAV.

5.2. Experiment Design and Setup. Table 3 presents the ex-
periment design. *e experimental evaluation comprises
four experiments. In each experiment, we ran our proposed
approach, Sujit and Beard’s [17] PSO-based approach, Silva
Arantes et al.’s [11] greedy heuristics and GA-based ap-
proach, LaValle’s [9] RRT algorithm, and Karaman and
Frazzoli’s [10] RRT∗ algorithm 10 times and used a random
seed every time. All results reported in this section are
averaged over 10 runs.*e experiments were run on an Intel
Core i7-4790 processor with 16 gigabytes of memory. *e
length of the time interval used in the software simulator was
50 milliseconds. We measured the following dependent
variables:

(i) Average Route Length (ARL). *e average UAV
route length measured as the number of UAV
moves in the discretized flying zone. A UAV route is
a sequence of moves or steps from UAV’s start
location to UAV’s destination location. To be
minimized to generate shorter routes.

(ii) Length of the Longest Route (LLR). *e total number
of steps in the longest generated route. To be
minimized to generate shorter routes.

(iii) Number of Collisions (NC). *e number of UAV
collisions. To be minimized to generate safer routes.

(iv) Computation Time (T). Computation time of the
algorithm in milliseconds (ms). It is the time that
the algorithm takes to run and produce the results.
To be minimized to reduce the computation
overhead.

Experiment 1 was designed to simulate a small problem
instance. *e main objective was to evaluate the collision
prediction and avoidance capabilities of the proposed system
in a simpler scenario. *e experiment used a 10×10×10
flying zone with 20 drones, 20 static obstacles, and 20
moving obstacles. Experiment 2 used a large problem in-
stance involving a larger flying zone and a higher number of
drones and obstacles and was designed to evaluate the
proposed system for a larger problem instance. *e
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experiment used a 20× 20× 20 flying zone with 50 drones,
50 static obstacles, and 50 moving obstacles.

*e third experiment evaluated the proposed system for
a densely populated, cluttered environment involving a large
number of static and moving obstacles. Experiment 3 used a
similar experiment design as Experiment 1, but with twice as
many static and moving obstacles. Finally, the objective of
Experiment 4 was to evaluate the proposed system in a
scenario involving high risks of drone collisions. *e ex-
periment used a similar experiment design as Experiment 2
but with twice as many drones.

All drones and obstacles were placed randomly. How-
ever, to ensure that the drones do not collide during take off,
unique start locations were used and no obstacles were
placed at the drone start locations. Similarly, the destination
locations for the drones were also chosen randomly, but it
was ensured that all destination locations are unique and
that no obstacles were present at the destination locations.

5.3. Results and Analysis. *e results are presented in
Table 4. *e best results in the table are highlighted in bold
font. *e results in the ARL and LLR columns show that the
RRT∗ algorithm [10] produced the shortest drone routes in
all experiments, while RRT [9] generated the second shortest
routes. *e NC column shows that the proposed approach
produced the safest routes in all experiments, while the
greedy heuristics and GA-based approach [11] produced the
second safest routes. In terms of T, RRTperformed the best,
while the proposed approach performed second best in
Experiments 2 and 3, and the greedy and GA-based ap-
proach performed second best in Experiments 1 and 4. *e
PSO-based approach [17] did not perform best or second
best with respect to any dependent variable.

In the first experiment, the ARL for the proposed, PSO-
based, greedy and GA-based, RRT, and RRT∗algorithms was
17, 25, 26, 16, and 15, respectively. Similarly, the LLR for the
proposed, PSO-based, greedy and GA-based, RRT, and
RRT∗algorithms was 36, 49, 47, 36, and 29, respectively. *e
five approaches also produced similar results in Experiments
2 to 4. *erefore, the RRT∗ algorithm produced the shortest
routes in all experiments.

Although the proposed approach did not produce the
shortest routes, it produced the safest routes in all four
experiments. *e NC column in Table 4 shows the number
of collisions or crashes for the proposed, PSO-based, greedy
and GA-based, RRT, and RRT∗ algorithms. *e total
number of crashes in all experiments was 0, 14, 9, 18, and 29,
respectively. As stated in Section 3, the proposed system
provides a safety-first approach in which a hazard-free, safe

operation of the UAV swarm takes precedence over any
other objectives including the route length. *is safety-first
aspect of the proposed approach is evident in all experi-
ments. *e proposed approach generated slightly longer
routes by trading route length for UAV safety. As a result, all
UAV-to-UAV, UAV-to-static-obstacle, and UAV-to-mov-
ing-obstacle collisions were avoided, and all drones suc-
cessfully completed their maneuvers.

*e last column in Table 4 shows the T results of the five
algorithms in milliseconds. *e results show that the RRT
algorithm took the least amount of time to run and produce the
results in all experiments, while the proposed approach per-
formed second fastest in Experiments 2 and 3, and the greedy
and GA-based algorithm performed second fastest in Exper-
iments 1 and 4. *erefore, the results show that the proposed
algorithm has a low computation overhead and it generates
safe and efficient routes in a reasonable amount of time.

Experiment 1 results show that the proposed system is
suitable for smaller problem instances.*e performance and
scalability of the proposed system are further demonstrated
in the results of Experiment 2 which produced drone routes
for a larger problem instance. In Experiment 3, the drones
encountered more obstacles on their ways because the flying

Table 3: Experiment design.

Experiment 1 2 3 4
Experiment type Small Large Cluttered flying zone High risk of UAV collisions
Flying zone 10×10×10 20× 20× 20 10×10×10 20× 20× 20
Number of UAVs 20 50 20 100
Static obstacles 20 50 40 50
Moving obstacles 20 50 40 50

Table 4: Comparison of the results with a UAV-based approach
[17], a greedy heuristics and GA-based approach [11], and two
sampling-based path planning algorithms called RRT [9], and
RRT∗ [10].

Approach Experiment RRT LLR NC T (ms)

Proposed

1 17 36 0 670
2 34 62 0 683
3 20 47 0 642
4 36 97 0 637

PSO

1 25 49 3 949
2 54 71 1 894
3 35 53 5 932
4 34 91 5 793

Greedy and GA

1 26 47 1 600
2 53 69 0 715
3 36 56 4 714
4 34 94 4 627

RRT

1 16 36 2 481
2 29 58 4 598
3 20 44 7 610
4 34 86 5 599

RRT∗
1 15 29 3 612
2 27 58 4 721
3 18 37 9 738
4 30 89 13 688
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zone was cluttered with static and moving obstacles. It
forced them to take longer routes to their destinations, but
the proposed approach managed to successfully avoid all
obstacles and collisions and routed all drones to their
destinations. It shows that the proposed system is also
suitable for densely populated, cluttered flying zones. Fi-
nally, Experiment 4 results show that the proposed approach
is also suitable for complex problem instances involving high
risks of drone collisions.

6. Related Work

*e problem of motion safety of semiautonomous robotic
systems is currently attracting significant research attention.
A comprehensive overview of the problems associated with
autonomous mobile robots is given in [20]. *e analysis
carried out in [21] shows that the most prominent routing
schemes do not guarantee motion safety. Our approach
resolves this issue and ensures not only safety but also
provides efficient, online routing.

Macek et al. [22] proposed a layered architectural so-
lution for robot navigation. *ey focused on the problem of
safe navigation of a vehicle in an urban environment. *ey
also distinguished between global route planning and col-
lision avoidance control. However, in their work, they fo-
cused on the safety issues associated with the navigation of a
single vehicle and did not consider the problem of collision-
free path generation and navigation in the context of fleets or
swarms of robots. Aniculaesei et al. [23] presented a formal
approach that employs formal verification to ensure motion
safety. *ey used UPPAAL model checker (http://www.
uppaal.org/) to verify that a moving robot engages brakes
and safely stops upon detection of an obstacle. Since our
proposed system does not assume any a priori knowledge on
the numbers and locations of the static and moving obstacles
and does not depend on a preliminary, offline motion
planning phase, the safety requirements cannot be verified
before the start of the mission. *erefore, we did not employ
formal verification.*e solution proposed in our work is fast
and flexible as it dynamically generates and recomputes the
drone routes in an online manner and avoids unnecessary
stopping of the drones.

Petti and Fraichard [24] proposed an approach that relies
on partial motion planning to ensure safety. *ey state that
calculation of an entire route is such a complex and com-
pute-intensive problem that the only viable solution is a
computation of the next safe states and navigation within
them. *eir solution supports navigation of a single vehicle.
In our work, we have discretized the flying zone and have
developed a highly efficient system that computes the next
safe states for an entire swarm and provides a mechanism for
online path generation and collision avoidance.

A comprehensive literature review on motion planning
algorithms for UAVs can be found in [6]. *e approaches
reviewed in [6] are applicable to a preliminary, offline
motion planning phase to plan and produce an efficient path
or trajectory for a UAV before the start of the mission. Our
proposed system does not depend on a planning phase and
produces efficient, collision-free paths for an entire swarm in

an onlinemanner. Amore recent survey onmotion planning
of UAVs can be found in [7].

Augugliaro et al. [8] presented an algorithm for gen-
erating collision-free trajectories for a quadrotor fleet. *ey
focused on a planned approach that generates feasible paths
ahead of time. LaValle [9] and Karaman and Frazzoli [10]
presented sampling-based path planning algorithms called
RRTand RRT∗, respectively. RRTwas designed to efficiently
explore high-dimensional spaces by incrementally building a
tree. RRT∗ is an extension of RRT. It was designed to plan
optimal paths.

Majd et al. [15, 16] proposed a path planning and
navigation approach for swarms of drones. *ey combined
offline path planning with an online navigation approach
and used machine learning and evolutionary algorithms to
generate efficient paths while maximizing safety of the
drones in the swarm.*ey also used collision prediction and
drone reflexes to prevent collisions with unforeseen obsta-
cles. In comparison, this paper presents an online, collision-
free path generation and navigation approach, which does
not need offline path planning.

Dong et al. [3] presented a software platform for online
cooperative control of multiple UAVs. *eir work focuses
on monitoring and control of multiple UAVs from a ground
control station.*e approach does not generate paths for the
UAVs. Instead, the complete flight information (including
the UAVs paths) is provided to the ground control station
that sends control commands to the UAV fleet. de Souza [13]
and de Souza and Endler [14] presented an approach for
movement coordination of swarms of drones using smart
phones and mobile communication networks. *ey used
CEP but only to analyze and evaluate the formation accuracy
of the swarm. Moreover, their work focuses on the internal
communication of the swarm and does not provide a so-
lution for collision-free path generation. Bürkle et al. [12]
proposed a multiagent system architecture for team col-
laboration in a swarm of drones. *ey also developed a
simulation platform for patrolling or surveillance drones
which monitor a protected area against potential intrusions.
However, they did not address path planning and collision
avoidance for the swarm.

Ivanovas et al. [4] proposed an obstacle detection and
avoidance approach for a UAV. *eir approach uses com-
puter vision techniques for detecting static obstacles in stereo
camera images. *e main focus of their approach is on how
some block matching algorithms can be used for obstacle
detection. *ey did not present a path planning and collision
avoidance approach for multiple UAVs. Barry and Tedrake
[25] proposed an obstacle detection algorithm for UAVs that
allows detect and avoid collisions in an online manner.
Similarly, Lin [26] presented an online path planner for UAVs
that detects and avoids moving obstacles. *ese approaches
are only applicable for individual UAVs and do not provide
support for a swarm of UAVs. In our work, we assumed that
each UAV is equipped with an adequate obstacle sensing and
detection capability and does not require any additional
support for obstacle detection. *erefore, we focused on
collision prediction and avoidance and online path generation
and navigation for swarms of UAVs.
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Sujit and Beard [17] proposed a PSO-based path plan-
ning algorithm for swarms of drones. In their approach,
whenever a drone detects a moving obstacle, the PSO-based
algorithm generates a new path for the drone depending on
the time allowed to compute a new path before the collision
can occur. Silva Arantes et al. [11] presented a UAV path
planning approach for critical situations requiring an
emergency landing of the UAV. *eir approach uses greedy
heuristics and UAVs to generate and optimize feasible paths
under different types of critical situations caused by
equipment failures.

In Section 5, we have presented a comparison of the
results of our proposed approach with Sujit and Beard’s [17]
PSO-based approach, Silva Arantes et al.’s [11] greedy
heuristics and GA-based approach, LaValle’s [9] RRT al-
gorithm, and Karaman and Frazzoli’s [10] RRT∗ algorithm.
*e results show that our proposed approach produced the
safest routes in all four experiments.*erefore, the proposed
approach outperformed the PSO-based, greedy heuristics
and GA-based, RRT, and RRT∗ approaches with respect to
drone safety.

7. Conclusions

In this paper, we presented an online, collision-free path
generation and navigation system for swarms of UAVs. *e
proposed system uses geographical locations of the UAVs
and of the successfully detected, static and dynamically
appearing, moving obstacles to predict and avoid the fol-
lowing: (1) UAV-to-UAV collisions, (2) UAV-to-static-
obstacle collisions, and (3) UAV-to-moving-obstacle colli-
sions. It comprises three main components: (1) a CEP and
collision prediction module, (2) a mutually exclusive locking
mechanism, and (3) a collision avoidance mechanism. *e
CEP and collision prediction module leverages efficient
runtime monitoring and CEP to make timely predictions.
*e mutually exclusive locking mechanism prevents mul-
tiple UAVs from attempting to fly to the same location at the
same time. *e collision avoidance mechanism tries to find
best ways to prevent the UAVs from colliding into one
another with the successfully detected static and moving
obstacles in the flying zone.*erefore, a distinctive feature of
the proposed system is its ability to foresee risks of collisions
in an online manner and proactively find best ways to avoid
the predicted collisions in order to ensure safety of the entire
swarm.

We also presented a simulation-based implementation
of the proposed system along with an experimental evalu-
ation involving a series of experiments and compared our
results with the results of four existing approaches. *e
results showed that the proposed system successfully pre-
dicts and avoids all three kinds of collisions in an online
manner. Moreover, it generates safe and efficient UAV
routes, efficiently scales to large-sized problem instances
involving dozens of UAVs and obstacles, and is suitable for
densely populated, cluttered flying zones and for scenarios
involving high risks of UAV collisions.

As part of our future work, we plan to implement the
proposed system in a more realistic simulation environment

that allows take into account complex physical phenomena
and uncontrolled environment variables. Moreover, we want
to test and evaluate our system for heterogeneous drones
that may have diverse capabilities and fly at different speeds.
Finally, an adequate support and online mechanisms to
handle and control the situations arising from imprecise
information of UAV locations and internal drone failures
during mission execution are also planned as future works.
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